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ute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Tran-

scriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads

to increases in transcripts involved in carbohydrate catabolism and protein transla-

tion and glycosylation and decreases in transcripts involved in oxidative metabolism,

fluconazole transport, metal transport, and biofilm formation. Other pathways were

modulated in pH-dependent ways. Our findings indicate that cCAMP has a global role

in pH-dependent responses, and this effect is mediated, at least in part, through

Cyr1 in a Ras1-independent fashion.

IMPORTANCE Candida albicans is a human commensal and the causative agent of
candidiasis, a potentially invasive and life-threatening infection. C. albicans experi-
ences wide changes in pH during both benign commensalism (a common condition)
and pathogenesis, and its morphology changes in response to this stimulus. Neutral
pH is considered an activator of hyphal growth through Rim101, but the effect of
low pH on other morphology-related pathways has not been extensively studied.
We sought to determine the role of cyclic AMP signaling, a central regulator of
morphology, in the sensing of pH. In addition, we asked broadly what cellular pro-
cesses were altered by pH in both the presence and absence of this important sig-
nal integration system. We concluded that cAMP signaling is impacted by pH and
that cAMP broadly impacts C. albicans physiology in both pH-dependent and
-independent ways.
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ocal pH is one facet of the environment that varies widely in the human host-
associated niches occupied by Candida albicans, a commensal fungus and oppor-
tunistic pathogen. Benign chronic carriage of C. albicans in the gastrointestinal tract
occurs frequently, and over the length of this organ system, the pH ranges from 2 in the
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stomach to 8 in the large intestine and can vary widely from subject to subject (1).
Additionally, the vagina is acidic during benign C. albicans carriage and Candida
vaginitis (2). We and others have shown that endogenous fermentative metabolism can
substantially reduce the extracellular pH in sugar-rich environments, particularly in
situations where respiratory metabolism is limited (3, 4). Filamentous growth, a
pathogenesis-related trait, is pH sensitive in vitro, with the number of hyphae in the
population increasing over the pH range from 5 to 7 (5).

C. albicans pH sensing and its morphological response to pH are in part controlled
by the PacC ortholog Rim101, a transcription factor that is posttranslationally activated
in response to elevated pH (6). Rim101 is a major contributor to in vitro hyphal growth
in rich, high-pH tissue culture medium (M199 at pH 8) (7), and disruption of the
pH-sensing regulator Rim101 results in striking virulence defects in murine models of
disseminated and oropharyngeal candidiasis and Candida keratomycosis (8-10). How-
ever, Rim101 is not absolutely required for hyphal growth; it is dispensable for the
formation of hyphae in response to serum, which is thought to activate hyphal growth
through the cyclic AMP (cAMP) pathway.

Ras1 and adenylate cyclase (Cyr1) are central components of cCAMP signaling. They
work together to govern filamentous growth, responses to stress, coordination of
multicellular behaviors, and white-opaque switching in C. albicans (reviewed in refer-
ence 11), and both Ras1 and Cyr1 contribute to virulence in a murine model of
disseminated candidiasis (12, 13). Ras1 is a soluble small GTPase which, in its GTP-
bound conformation, activates the adenylate cyclase Cyr1 (also referred to as Cdc35 in
the literature) (14). The resultant increase in intracellular cAMP relieves repression of
protein kinase A by its regulatory subunit Bcy1, resulting in the initiation of the hyphal
growth program (15-17). This pathway integrates a multitude of environmental signals,
and induction of hyphal growth in response to a number of stimuli has been shown to
involve the Ras1/cAMP pathway, notably serum, GIcNAc, muramyl dipeptides, and
elevated temperature (18-21). Findings from our group, however, have called into
question the canonical unidirectional and linear relationship where stimuli act on Ras1
to activate Cyr1. We have shown Cyr1 to act upon Ras1 by negatively regulating both
the as-yet-unidentified protease that alters Ras1 localization and the Ras1 GTPase-
activating protein Ira2 (22, 23). Rasl-independent activation of Cyr1 leads, through
repression of Ras1 cleavage, to reinforcement of Cyr1 activation. Conversely, Cyr1
inhibition of Ira2 negatively regulates the activation of Cyr1 by Ras1 in response to
cascade output. Synthesis of these observations yields a model where the relationship
between Ras1 and Cyr1 is complex and nonlinear, in which Ras1 can activate Cyr1 in
response to some stimuli but Ras1 activation is in turn tightly regulated by Cyr1.

Here, using a citrate-buffered defined medium that can be poised at either pH 4 or
7, we confirmed that more cells had hyphal morphology at neutral pH, whereas
pseudohyphae and yeast predominated at pH 4. As these hypha-inducing conditions
(37°C with GIcNAc) activate Ras1 and Cyr1 (21, 24) and true hyphal growth is sup-
pressed in this medium by low pH, we asked if Ras1 or Cyr1 is downregulated in
response to low pH, and if so, whether the reduction in activity of this pathway
contributes to the observed repression of hyphal growth at low pH. We found that the
fraction of Ras1 in the proteolyzed form and the fraction of Ras1 in its active GTP-bound
conformation increase at low pH. These changes in Ras1 require Cyr1, which we have
shown previously to negatively regulate both Ras1 cleavage and Ras1-GTP levels. Thus,
we propose that low pH downregulates Cyr1 activity, and this is consistent with the
observation that dibutyryl cyclic AMP restores hyphal growth in a cyr1A/A mutant strain
at both pH 4 and pH 7 (22, 23). A transcriptional analysis revealed pH-dependent and
-independent effects of Cyr1 on gene expression.

RESULTS

Low pH represses growth morphology of hyphae and promotes growth as pseu-
dohyphae in inducing medium with GIcNAc. In order to study the effects of pH on
C. albicans, we sought to implement a buffer system for use in a defined, hypha-
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FIG 1 Low pH represses growth of cells with the hyphal morphology and promotes growth as
pseudohyphae. (A) GIcNAc promotes hyphal induction in citrate-buffered medium. Representative
images show cells grown in the indicated medium for 3 h at 37°C in YNB or YNBN medium buffered
to pH 7 with phosphate or citrate, and counts are from 3 independent experiments. (B and C) Medium
buffered to pH 4 promoted pseudohyphal growth. Representative images of cells grown for 3 h in
YNBNC at pH 4 and 7 are shown (B), and quantitative enumeration of cellular morphologies is
summarized (C). Error bars represent one standard deviation.

inducing medium that would support analysis of effects of pH on morphology. To
achieve this, we used a variation of YNBNP (yeast nitrogen base, N-acetylglucosamine,
phosphate; a defined medium with GIcNAc and buffered to pH 7 with phosphate) in
which the phosphate buffer was replaced with citrate buffer (YNBNC). Citrate has pK,'s
at 3.1, 4.8, and 6.4, which make it possible to study the effects of low and neutral pH
with a single buffer. Following inoculation of C. albicans SC5314 wild-type (WT) cells
from an overnight culture grown as yeast in yeast extract-peptone-dextrose (YPD)
at 30°C into YNBNC (pH 7) at 37°C, a majority of cells formed true hyphae (92% =
4% [mean = standard deviation]), with no invagination at either the bud neck or
septa along the germ tube at the 3-h time point, similar to results obtained in the
phosphate-buffered variant of this medium (YNBNP), though the percentage of cells
growing as true hyphae was slightly less than in medium with a phosphate buffer
at this time point (Fig. 1A). In YNBC without GIcNAc at 37°C, fewer than 25% of cells
grew as true hyphae, suggesting that GIcNAc plays a role in the induction of
filamentation in this medium.

In a separate set of experiments, we compared cells grown in YNBNC buffered to
either pH 7 or 4 at 37°C for 3 h, and hypha formation by wild-type SC5314 was 80% =
6% of total cells at pH 7 and 10% = 8% of cells at pH 4. At the lower pH, the dominant
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population was pseudohyphae (68% =+ 3% of total cells) (Fig. 1B and C). This finding is
consistent with previously published observations in which filamentous growth is
antagonized by medium pH values below ~6 (5, 7, 25). To determine if the lack of
filamentation under the pH 4 culture conditions was due to inhibition of growth, we
compared growth rates at the two different pHs and assessed growth by using the
yeast-locked tetO-NRG1 strain (bearing a tetracycline-repressible copy of the NRGI-
encoded hyphal repressor [26]) that enabled growth analysis by measurement of light
absorbance. We found that growth was not lower but in fact slightly higher at pH 4
than at pH 7. In YNBNC at 37°C, this strain had a doubling time of 102 = 1 min at pH 4
and 112 = 3 min at pH 7. To rule out the possibility that NRGT overexpression was
affecting growth, we also examined growth of WT SC5314 at pH 4 and pH 7 at 30°C in
YNBC, which is identical to YNBNC except it lacks the hyphal growth inducer GIcNAc.
Again, growth was slightly but significantly faster at pH 4 than at pH 7 (113 = 1 min
and 120 £ 6 min, respectively). In both cases, the slightly faster growth at pH 4 was
statistically significant (P < 0.05).

Disruption of Cyr1 and Ras1 results in an inability to grow as hyphae at
pH 4 and 7. Cyr1 and Ras1 work together to positively regulate filamentous growth in
response to GIcNAc and elevated temperatures in liquid medium, and mutants lacking
the genes encoding either of these proteins are impaired in hyphal growth (12, 19, 21).
The adenylate cyclase Cyr1 has been described as essential for filamentation in liquid
medium, and when morphology was assessed over the course of 24 h, cyr1A/A mutants
grew exclusively as yeast in YNBNC at either pH 7 or pH 4, whereas the WT and the
cyr1A/A::CYRT mutant strain formed predominantly pseudohyphae at pH 4 and hyphae
at pH 7 (Fig. 2) (13). Consistent with previous studies that have shown that strains
lacking RAST have a less severe defect than do cyr7 null mutants, a ras1A/A mutant
strain grew as a combination of pseudohyphae and yeast (Fig. 2). Reconstitution of a
wild-type allele of RAST at the native locus restored growth similar to that of the wild
type as true hyphae at pH 7, but cells still had pseudohyphal morphology at pH 4
(Fig. 2).

Low pH induces Ras1 proteolysis, but this does not explain the change in
morphology. Cyr1 responds to a variety of Ras1-dependent and -independent signals
(reviewed in reference 27). Ras1 and Cyr1 reciprocally regulate each other; Cyr1 activity
can be stimulated by Ras1-GTP, and Ras1-GTP binding and Ras1 proteolysis are
negatively regulated by Cyr1 (22, 23). To determine if Ras1 total protein levels differed
in cells grown in YNBNC at either pH 7 or pH 4 (22), Ras1 abundance was measured by
Western blotting. In SC5314, and also the rasTA/A:RAST strain expressing native RasT,
total Ras1 protein levels (the sum of cleaved and full-length Ras1) were not different
between cells grown at pH 4 versus pH 7. However, growth at pH 4 resulted in a
decrease in full-length Ras1 concomitant with the appearance of the cleaved product,
with 48% =+ 12% of the total Ras1 existing in the cleaved isoform at pH 4 and no
consistently detectable cleaved Ras1 at pH 7 (Fig. 3A). A strain bearing only a RAST allele
in which the 20 residues containing the cleavage site have been deleted (ras1A200-220)
produces a Ras1 protein that is not cleaved, and it supports robust hyphal growth (22).
In the ras1A200-220 strain, Ras1 was uncleaved at pH 4 and pH 7 and did not show the
same decrease in full-length Ras1 as the cleaved product that accumulated in SC5314
or an isogenic strain bearing the WT allele (Fig. 3A).

To determine if the effect on Ras1 proteolysis was downstream of two important
transcriptional regulators of morphology, we interrogated the Ras1 profile of the
tetO-NRG1 and tetO-UMEG6 strains, which overexpress a hyphal repressor (NRGT) or a
hyphal activator (UME6) in the absence of doxycycline (Fig. 3B). In the tetO-UME6 strain
grown without doxycycline, the cleaved product was more abundant at pH 4 than pH 7,
suggesting that alterations in the Ras1 protein profile are not downstream or indepen-
dent of these transcriptional regulators. In the presence of NRG1 overexpression, the
induction of proteolysis also took place in response to pH, though proteolysis was
induced less strongly, suggesting Nrg1 as an indirect or direct regulator of Rasl
proteolysis.
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FIG 2 Disruption of Cyr1 and Ras1 results in an inability to grow as hyphae at pH 4 and 7. Ras/cAMP
signaling is required for efficient induction of filamentation in YNBNC. Strains were photographed
following 3 h of growth at 37°C in YNBNC at pH 4 or 7.

Ras1-GTP binding increases following exposure to low pH. As the effect of
low pH on morphology is consistent with downregulation of Ras signaling, we sought
to determine the effect of pH on Ras1-GTP binding. The fraction of Ras1 in its active
GTP-bound state was assayed by precipitation with recombinant Ras binding domain
(RBD) followed by elution and detection by Western blotting with an anti-Ras antibody.
The proportion of the total Ras1 pool that was GTP bound was markedly higher in cells
grown at pH 4 than in those at pH 7, with both the full-length and cleaved isoforms
showing increased GTP binding (Fig. 3A). Ras1 cleavage is not responsible for the
increase in GTP binding, as increased Ras1-GTP binding at low pH was also observed in
a strain with the ras1A/A:ras1A200-220 genotype.

The effects of low pH on Ras1 cleavage and GTP binding are rapid. The
effects of the pH shift on Ras1 were rapid as well as sustained. When cells were grown
at neutral pH, we observed the appearance of the Ras1 cleavage product within 15 min
after cells were shifted to pH 4 with citrate buffer, but not when cells were transferred
to a medium buffered to pH 7 with citrate. Furthermore, this difference in Ras1 profiles
between pHs persisted over the course of growth and was stable for an hour following
the shift to pH 4 from pH 7, suggesting that the alteration of Ras1 cleavage by pH is fast
as well as persistent (Fig. 3C). The increase in Ras1-GTP binding was also rapid and was
evident within 30 min of a shift to low pH (Fig. 3D).

Ras1 proteolysis and GTP binding are not responsible for pseudohyphal
morphology at pH 4. Above, we reported that low pH increases Ras1 cleavage and

Volume 1 Issue 6 €00283-16

mSphere™

msphere.asm.org 5


msphere.asm.org

Hollomon et al.

A ras1 B tetO-NRG1 tetO-UMEG6
SC5314 cyrt CYR1 RAS1 A200-220 ira2
< N~ < ~ < ~ < ~ < ~ b~ o N~
T I T ¥ & T T T T T T
o [oR o o o o [oR [oR Q. Qo [oN o

GTP-Ras1

C RAS1 ras1A200-220
pH4 pH7

0L O o Wwoo
™ © ™ ©

O Loading Total Ras1
"
1
8
i
il
1
e
il
i
3}
"
iy
"

2

©
i

o
i

Total Ras1 GTP-Ras1

Fraction of the population
o
"

RAS1

M Hyphae [ Pseudohyphae Yeast

FIG 3 Low pH alters Ras1 localization and its activation state, but these changes are not responsible for the
effect of pH on morphology. (A) Total Ras levels (top) were comparable at pH 4 and 7, although cleavage
prevailed at pH 4. (Top) Western blot results for the GTP-bound fraction of the lysates. (Middle) Anti-Ras1
Western blot results with whole-cell lysates. (Bottom) Gelcode Blue stain of the membrane blotted in the top
panel, to indicate loading. Cells were grown for 3 h in YNBNC at the indicated pH. (B) Western blot of the Ras1
profile and microscopy of tetO-UME6 and tetO-NRG1 strains with and without 50 pg per ml doxycycline. (C)
Ras1 profile of cells of the indicated genotype grown for 3 h in YNB-GIcNAc-0.2% glucose (YNBNG) adjusted
to pH 7 and subsequently buffered to the indicated pH with citrate for the indicated time. (D) Ras1-GTP binding
of RAST cells grown for 3 h in YNBNG adjusted to pH 7 and subsequently buffered to the indicated pH with
citrate for 30 min. (E) Quantitative morphology of the indicated strains grown for 3 h in YNBNC at 37°C at pH 4
or pH 7. Error bars represent one standard deviation.

Ras1-GTP binding. Ras1 proteolysis delocalizes the Ras1 N-terminal catalytic domain
from the plasma membrane and decreases Ras1- and Cyr1-dependent hyphal growth
(22). To determine if pH-induced cleavage of Ras1, and the resultant decrease in the
amount of Ras1 at the membrane, is responsible for the decreased growth as hyphae
at pH 4, we assessed morphology of the WT RAST strain and the ras1A200-220 mutant
strain in cultures grown at pH 4 and 7. The ability to cleave Ras1 did not affect the
proportion of the population growing as pseudohyphae at low pH; the ras1A/A:RAS1T
and ras1A/A:ras1A200-220 mutant strains similarly grew as hyphae at pH 7 and
pseudohyphae at pH 4, with no statistically significant difference in the ratio of hyphae
to pseudohyphae between the two strains at pH 4 or pH 7 (Fig. 3E).

Although hyperactivation of cAMP signaling frequently results in hyphal growth, it
has also been reported to result in pseudohyphae in place of hyphae under
filamentation-inducing conditions (12, 28). To determine if the increase in GTP binding
was responsible for pseudohyphal growth at pH 4, we compared the morphology of
the ras1A/A:ras1G13V mutant (bearing an allele that encodes a constitutively GTP-
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bound Ras1) to that of the ras1A/A::RAST mutant. The ras1A/A:ras1G13V mutant and its
isogenic ras1A/A::RAST comparator mutant strain behaved like the wild type and were
similarly pseudohyphal at pH 4 and hyphal at pH 7 (Fig. 3E). These data indicate that
changes in Rasl1 cleavage and GTP binding are not responsible for the decrease in
hyphal growth at pH 4.

Effects of pH on Ras1 require Cyr1, and dibutyrl cCAMP (dbcAMP) can rescue
hyphal growth at low pH. Work from our group has previously shown that Cyr1-
synthesized cAMP represses Ras1 proteolysis in hyphae (22). Additionally, we have
found that diminution of Cyr1 activity results in increased Ras1-GTP binding through
inactivation of Ira2 (23). In an ira2-deficient strain, which lacked the gene encoding the
Ras1 GTPase-activating protein, Ras1 was proteolyzed in response to low pH but had
high and pH-insensitive Ras1-GTP binding, indicating that the increase in GTP binding
in response to pH is mediated through Ira2 (Fig. 3A). Based on this observation, we
concluded that the increase in proteolysis at low pH was not solely due to the increase
in Ras1-GTP levels. Moreover, as with Ras1 proteolysis, the increase in GTP binding
occurred following exposure of preformed hyphae grown at neutral pH to low pH
(Fig. 3D).

Based on the known Cyr1 repression of levels of proteolyzed Ras1 and Ras1-GTP,
and the observed increase in both of these Ras1 forms in cells at low pH, we
hypothesized that low pH inhibits Cyr1 in a Rasl-independent fashion. To test this
hypothesis, we examined the effect of pH on Ras1 proteolysis and GTP binding in the
presence and absence of Cyr1. Consistent with this model, we found that the induction
of Ras1 proteolysis and GTP binding in response to low pH was substantially diminished
in the cyr1 null strain (Fig. 3A and 4A). Our data indicated that the absence of the
cleaved product from the input blot in the GTP binding assay in the cyr7 mutant was
due to postlysis degradation in the Ras1-GTP pulldown buffers; the cleaved product
was present when lysates were prepared in homogenization buffer (defined in Mate-
rials and Methods) (see Fig. S1 in the supplemental material). The basis of the difference
in the stability of the Ras1 cleaved product between the cyr7 null strain and its
complement is not yet understood. To test the hypothesis that this event took place as
a result of a change in the output of the Rim101 pathway, we examined the Ras1
cleavage profile of cells shifted to pH 4 or maintained at pH 7, with and without RIM1017.
The induction of cleavage was observed in rim107A/A strains, indicating that regulation
of this proteolytic event by pH is independent or upstream of the Rim101 cascade (see
Fig. S2).

We and others have observed that the nonhydrolyzable, cell-permeable cAMP
analog dbcAMP is able to rescue the phenotypic effects of reduced cyclic AMP
signaling, and we hypothesized that addition of dbcAMP would suppress the effect of
pH on morphology under our conditions (12, 13, 22, 24). Addition of dbcAMP was able
to induce filamentous growth at both pH 4 and pH 7 in a cyr1 null strain (Fig. 4B and
Q). At pH 4 with 10 mM dbcAMP, 20% = 4% of the population grew as true hyphae,
74% = 6% of the population grew as pseudohyphae, and the remainder grew as yeast,
whereas in the absence of dbcAMP all cells were in the yeast form. This indicated to us
that addition of dbcAMP was able to partially overcome the inhibitory effect of low pH
on filamentous growth. The addition of dbcAMP also stimulated hyphal growth at pH 7,
whereas in the presence of dbcAMP, 68% = 8% of the population grew as true hyphae,
25% = 10% of the population grew as pseudohyphae, and the rest grew as yeast; at
pH 7 without dbcAMP, cells similarly grew as yeast. The observation that at pH 4 a cyr1
null strain is capable of both hyphal and pseudohyphal growth in the presence of
dbcAMP suggests that the effect of pH on filamentous growth, at least in part, requires
Cyr1. Taken together, these data are consistent with the model that low pH inhibits
cAMP synthesis by Cyr1 independently of Ras1 to negatively regulate hyphal growth in
response to acidic pH.

pH of the medium affects intracellular pH in YNBNC. Work in the Mihlschle-
gel lab identified bicarbonate as an important activator of Cyr1 in Candida albicans (29).
At physiological pH, bicarbonate acts as a buffer and exists in equilibrium with its
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FIG 4 Alterations in morphology, Ras1 cleavage, and intracellular pH are consistent with pH
inhibition of cCAMP signaling. (A) Anti-Ras1 Western blot results with whole-cell lysate of cells grown
for 3 h in YNBNC at the indicated pH. (B) Quantitative morphology of cyr71A/A strain cells grown for
3 h at 37°C in YNBNC with or without 10 mM dbcAMP. (C) Representative images of cells grown as
described for panel B. (D) pHluorin-determined intracellular pH of cells of the indicated genotype
grown for 3 h in YNBNC at 37°C at pH 4 or 7 (left) or grown in YNBN for 3 h and subsequently shifted
to pH 4 or 7 with 50 mM citrate buffer for 30 min (30" exposure; right). Error bars in panels B and D
represent one standard deviation.

conjugate acid, carbonic acid. As our data indicated that Cyr1 output decreases at low
pH, we hypothesized that growth at low pH resulted in a lower cytosolic pH, which
could drive the equilibrium from bicarbonate toward carbonic acid, thereby depleting
this activator of Cyr1.

To test the hypothesis that the pH of the medium alters the cytosolic pH under our
conditions, we employed a Candida optimized, pH-sensitive ratiometric green fluores-
cent protein (GFP; pHluorin) (30), which is predictably altered in its fluorescence
emission wavelength by pH. SC5314 cells expressing pHluorin grown in YNBNC at pH 7
for 3 h had an intracellular pH (pH,) of >8, over 1.1 units higher than cells grown in the
same medium at pH 4 (pH; 6.9) (Fig. 4D). Cells grown as hyphae at neutral pH and
subsequently shifted to pH 4 with citrate also showed a reduction in pH; compared to
controls maintained at pH 7 with citrate. We measured the pH; for the tetO-NRG1 strain,
where although the cytosol was more acidic under each condition compared to the
wild type, the pH; was still lower in cells grown at pH 4 than in those grown at pH 7.

Definition of the Cyr1 regulon under acidic and neutral medium condi-
tions. With evidence that low pH affects cAMP signaling and pH,, we employed an
unbiased transcriptomic approach to determine the contribution of C. albicans Cyr1 to
differences in gene expression between neutral and low pH. We grew both the cyr7A/A
mutant and its complemented derivative for 4 h at either pH 4 or 7, followed by RNA
extraction from cells and transcriptome sequencing (RNA-Seq) analysis. At pH 7, the
cyrTA/A mutant had many genes that were differentially expressed relative to its
complemented strain, with 2,587 transcripts (1,101 upregulated and 1,486 downregu-
lated in the mutant compared to the complemented strain) meeting our criteria for
significantly different expression (>2-fold change, <0.05 false-discovery rate [FDR])
(Fig. 5A; see also Table S2 in the supplemental material). There were similarly large
differences between the cyr1A/A strain and its complement at pH 4, with 2,341
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FIG 5 RNA-Seq analysis of CYRT cells in the adaptation to acid pH. (A) Black shows the sum of
transcripts that were >2-fold different and had an FDR of <0.05; blue shows transcripts that were
upregulated at pH 7 and complemented; red shows transcripts that were downregulated at pH 7 and
complemented. (B) Overlap of genes differentially regulated by pH in the presence and absence of
strain CYR1. (C) Principal component analysis of the cyr1A/A mutant and CYRT strain samples at pH 4
and pH 7.

significantly different transcripts (1,019 increased and 1,322 decreased) (Fig. 5A). Across
both pH 4 and pH 7, 1,808 transcripts were significantly changed in the absence of Cyr1
(771 increased and 1,037 decreased at pH 7, 769 increased and 1,039 decreased at pH 4,
and 16 transcripts lower at one pH and higher at the other). Comparison of the
differentially expressed genes between the cyr? mutant and the CYR7 complemented
strain to the Cyr1 regulon defined by Harcus et al. in 2004 (31) found 196 transcripts (88
positively regulated and 108 negatively regulated by Cyr1) that were differentially
expressed in both data sets (Table S3), and they included transcripts associated with
hyphal growth, including ECE1, HWP1, HYR1, SAP4, and SAP6. In our data, the yeast-
locked cyr1 mutant also had lower levels of other hypha-associated transcripts UMES,
RBT1, ALS3, SAP5, IHD1, and HGCT and higher levels of the yeast-related transcripts
YWP1, ALS4, and NRGT (Table 1). Analysis by gene ontology (GO) term enrichment of the
Cyr1 regulon at pH 7 and pH 4 revealed an enrichment in genes annotated as having
a role in biofilm formation, which includes many of the morphology-associated genes
(HWP1, HYR1, ECE1, and HGC1) (Table 2; Table S5).

Alongside morphology, many transcripts related to metabolism were differentially
expressed between the cyr1A/A mutant and its complemented derivative at both pH 4
and 7 (Table 2; Tables S2 and S4 in the supplemental material). Consistent with
observations made by Harcus and colleagues (31), transcripts encoding elements of the
tricarboxylic acid (TCA) cycle were lower in the cyr1A/A mutant. In addition, we found
significantly lower levels of transcripts corresponding to the glyoxylate shunt enzymes
ICLT and MLST and the pyruvate dehydrogenase complex (Table S4). Among the
pathways that were significantly enriched among the transcripts that were lower in the
cyr1A/A mutant were carboxylic acid catabolism, lipid catabolism, and amino acid and
peptide transport (Table 2). For example, the mutant had lower levels of transcripts
encoding JENT and JEN2, which encode carboxylic acid transporters known to take up
TCA cycle intermediates, and the latter of which was shown to be Cyr1 regulated by
Harcus and colleagues (31, 32). GO terms associated with carbohydrate catabolism,
N-acetylglucosamine catabolism, gluconeogenesis, and the pentose-phosphate shunt
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TABLE 1 Selected transcripts dysregulated in the absence of Cyr1 during adaptation to

neutral or low pH?

Log, fold change for comparison of:

CYR1 vs cyrTA/A

orf19 strains at: pH 7 vs pH 4 with

Gene designation pH 7 pH 4 CYR1 strain
HYR1 orf19.4975 11.1 9.6 NS

ECET orf19.3374 2.9 6.7 NS

UME6 orf19.1822 9.2 6.9 NS

RBT1 orf19.1327 6.8 6.2 NS

ALS3 orf19.1816 6.0 4.8 NS

SAP4 orf19.5716 4.0 1.3 NS

ALS4 orf19.4555 —4.8 -3.0 NS

SAP6 orf19.5542 8.5 3.5 43

SAP5 orf19.5585 6.8 2.1 2.5

IHD1 orf19.5760 54 5.1 1.5

HWP1 orf19.1321 8.7 7.1 1.4

HGC1 orf19.6028 2.6 1.8 14

NRG1 orf19.7150 —-23 -1.4 -1.1

YWP1 orf19.3618 —44 —4.0 -1.3

aPositive values for the CYRT versus cyr1A/A strain comparisons at pH 7 (neutral) and pH 4 (low) indicate
that the indicated gene’s expression was higher in the CYRT strain. Positive values for the comparison of
CYR1 expression at pH 4 versus pH 7 indicate that expression was higher at pH 7. NS, no significant

difference.

were significantly enriched among transcripts that were higher in the cyr1A/A null
strain (Table 2; Table S4). In addition, transcripts related to hexose uptake were also
higher, as were transcripts for alcohol dehydrogenases ADHT and ADH2, in the cyrT null
strain. Although metabolic flux differences can only be inferred from transcriptional
analyses, these data suggested to us that the cyr1 null strain is metabolically more

TABLE 2 Biological process gene ontology groups enriched in the cyr1A/A strain or the

CYR1-complemented strain@

Process

Regulation in cyrTA/A mutant vs
CYR1-complemented strain at:

Lipid catabolism

Carboxylic acid catabolism
Amino acid transport
Peptide transport
Tricarboxylic acid cycle
Electron transport chain
Mitochondrion organization
Iron-sulfur cluster assembly
Oxygen transport

Pyruvate metabolism
Carbohydrate catabolic process
N-Acetylglucosamine catabolism
Pentose-phosphate shunt
Carbohydrate biosynthesis
Fluconazole transport

Biofilm formation

Cell matrix adhesion
Translation

Protein glycosylation

Sulfur compound metabolism
Protein folding

Cellular heat acclimation

Zinc ion homeostasis

Copper ion transmembrane transport

pH 7 pH 4

+ 4+
+ + + 4+t

+ I

aProcesses that were upregulated (+) or downregulated (—) or contained a mix of upregulated and
downregulated genes (*) in the cyr1A/A strain relative to the CYRT-complemented strain at the indicated pH.
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fermentative than its complement, whose transcriptional profile is more suggestive of
oxidative phosphorylation being the dominant mode of central carbon metabolism.

GO term analysis of transcripts that were different between the cyr7 mutant and its
complemented derivative demonstrated enrichment in several other pathways (Ta-
ble 2). The GO terms translation and protein glycosylation were enriched among the
transcripts that were higher in the cyr7 mutant. Cyclic AMP signaling has been previ-
ously observed to negatively regulate azole resistance, and fluconazole transport was
enriched at both pH 4 and pH 7 among those transcripts that were lower in the cyr7 null
mutant (33). Transition metal homeostasis was observed in our analysis under both
conditions; interestingly, zinc ion homeostasis met our cutoff at pH 4 but not pH 7,
while copper ion transport was present in an inverse pattern in our GO analysis. As
discussed below, some pathways were only modulated by Cyr1 at one pH level.

Effects of pH on gene expression. Fewer transcripts showed changed expression
levels between pH 4 and pH 7 than between the mutant and the complemented strain.
Changes in pH altered the gene expression of 640 transcripts in the mutant and 608 in
the complement. However, apart from a core group of 214 genes, 820 genes showed
significantly changed expression in one strain or the other (Fig. 5B). Of those 214 genes
in the core group, however, 74 transcripts had inverse patterns of expression (expres-
sion went up in response to low pH in the mutant and down in response to low pH in
the complemented strain, or vice versa). Of the genes that showed changed expression
with pH changes in the complemented strain, 140 transcripts had similar patterns of
expression between pH 4 and pH 7 in the cyrT null strain and 896 transcripts failed to
change at all with pH or changed in the opposite direction in the cyr1A/A mutant strain.

We also performed a principal-component analysis (PCA) of the transcriptional
response to changes in pH with and without intact cAMP signaling. PCA found little
similarity in the pH responses between the cyr7 null strain and its complemented
derivative, and the effects we observed of pH on the transcriptome were similar in
scope in the cyr1A/A mutant compared to the CYRT complemented strain (Fig. 5C).
Given the very different responses to pH in these two strains, a transcriptional approach
to determining the role of Cyr1 in the adaptation to a change in pH was complex and
yielded results that were challenging to interpret. That being said, some, but not all, of
the Cyr1-regulated morphology-associated transcript levels (HWP1, YWP1, HGC1, SAP6,
NRG1, and YWP1) were lower at pH 4 than at pH 7, which is consistent with decreased
Cyr1 activity at low pH (Table 1). These data are consistent with our model in which
some of the differences between C. albicans at pH 4 and pH 7, particularly the
morphological differences, are due, at least in part, to changes in Cyr1 activity.

We compared the transcripts that changed between pH 4 and pH 7 in the CYR7-
complemented strain to those that were reported by Bruno et al. in 2010 (34), who
described the transcriptional differences between cells grown at pH 4 versus pH 8 in
M199 tissue culture medium. We identified 115 transcripts that were similarly changed
at low versus high pH, with 66 exhibiting lower expression levels at low pH and 59 more
highly expressed at low pH (see Table S6 in the supplemental material). This group of
genes included genes for the pH-regulated cell wall glycosidases PHRT and PHR2, the
transcription factor RIM101, as well as dicarboxylic acid transporters JENT and JEN2 and
the multidrug resistance pump MDRI.

Notably enriched GO terms of transcripts more abundant at pH 7 than at pH 4 in the
CYRT-complemented strain included regulation of the response to stress, as well as cell
adhesion, biofilm formation and adhesion, and the electron transport chain, particularly
transcripts associated with complex | and amino acid transport (Table 3; Table S5).
Enriched GO terms among the less abundant transcripts at pH 7 versus pH 4 included
many involved in transport, such as those for transport of azole drugs (MDR1 and FLUT),
metals, hexoses, and organic anions. Among the transcripts that were lower at low pH,
there was enrichment of those involved in sulfur amino acid and branched-chain amino
acid biosynthesis (Table 4). Chitin catabolism genes were also enriched among pH 7-
repressed transcripts, suggesting carbohydrate or cell wall requirements may be influ-
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TABLE 3 Biological process gene ontology groups enriched among the subset of
transcripts that were higher at pH 7 than at pH 4 in the CYRT-complemented strain

Process Genes in GO group

Regulation of response to stress SAP6, ALS1, SAP5, RIM101, PRA1, ACE2, HGT1, BCR1,
CPH1, SRR1, AHR1

Biofilm formation PHR1, ALS1, IPT1, TRY6, RIM101, TRY4, SUC1, ACE2, HWP1,
HGC1, HSP104, WOR1, QDR1, BCR1, CPH1, AHR1, ADH5

Cell adhesion PHR1, ALS1, TRY6, RIM101, PRAT, AAH1, TRY4, SUCT, ACE2,
HWP1, WOR1, BCR1, AHR1

Electron transport chain NADS5, NAD3, NAD4, COX2, NAD2, NAD6

Amino acid transport AGP2, GAP6, CAN2, GAP2, PUT4, DIP5, GNP3, GAP4, HNM4

enced by pH. Consistent with the model that pH reduces Cyr1 activity, some of the
same GO term categories (amino acid transport, azole transport, and biofilm formation)
were enriched among transcripts that were lower in cells grown at pH and in the
cyr1A/A mutant cells.

Some pathways changed significantly in opposing directions with pH changes when
the cyr? null and complemented strains were compared. Notable among these were
genes involved in sulfate assimilation (MET3, MET14, MET16, and MET10, which encode
enzymes involved in the conversion of sulfate to hydrogen sulfide), which increased at
pH 4 in the mutant and decreased in its complement (Table 2). A number of transcripts
encoded on the mitochondrial genome also showed Cyr1-dependent changes in
expression with pH changes; transcripts encoding components of the electron trans-
port chain significantly decreased in abundance in the complemented strain at low pH,
but in the mutant many of these components showed inverse patterns of expression
(see Table S4).

We examined the data for transcripts of genes known to be involved in the pH
response. PHR1 and PHR2 are two pH-responsive transcripts that encoded cell wall
glycosidases that are reciprocally expressed at low and neutral pH, with PHRT showing
higher expression at pH 7, and they have previously been observed to be dysregulated
in the absence of Cyr1 (31). ATOT is an ammonium exporter that participates in medium
alkalinization and autoinduction of hyphal growth (35, 36). Of the transcripts that
changed significantly in similar directions with pH in both the mutant and comple-
mented strain were PHRT and PHR2, as well as ATOT; however, the magnitude of these
changes was lower in the absence of Cyr1. ATOT was increased 71-fold in the comple-
mented strain at pH 7 versus that at pH 4 but only 18-fold in the mutant, and PHR1 was
similarly induced 11-fold in the mutant and 21-fold in the complemented strain under
neutral pH conditions compared to acidic pH. PHR2 decreased 2.9- and 6.8-fold in the
mutant and complemented strain, respectively, at pH 7 versus pH 4.

RIM101 was more highly expressed at pH 7 than pH 4 in the complemented strain,
but it was not significantly changed in the cyr7 null strain with pH changes. A number
of genes whose expression changed with pH have previously been described to be
regulated by Rim101. In total, 41 transcripts annotated as Rim101 regulated underwent
statistically significant changes in either the presence or absence of Cyr1 (Table 5).
Thirty-one transcripts annotated as Rim101 regulated by CGD were altered in expres-

TABLE 4 Biological process gene ontology groups enriched among the subset of
transcripts that were lower at pH 7 than at pH 4 in the CYRT-complemented strain

Process Genes in GO group

Azole transport FLU1, MDR1

Metal ion transport ZRT2, TRK1, FTR1, FET3, CTR1, MAC1, PHOS87,
FET99, HAK1, FRE10

Hexose transport HGTS8, HGT10, NAG3, NAG4, HGT19, HGT7, HGT17

Organic anion transport JEN2, TPO5, GIT4, GNP1, ALP1, JENT

Chitin catabolic process CHT2, CHT1

Branched-chain amino acid biosynthesis ILV5, BAT21, BAT22, PDC11

Sulfur amino acid biosynthesis MET16, ECM17, MET2, MET1, MET15, MET3
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TABLE 5 Transcripts significantly different based on RNA-seq data that are annotated as
Rim101-regulated in the Candida Genome Database?

Log, fold change in expression
at pH 7 vs pH 4 in:

orf19 CYR1-complemented cyr1A/A
Presence of CYR1 and gene name designation strain strain
Expressed only when CYRT is absent
MUP1 orf19.5280 NS 1.9
PHO113 orf19.2619 NS —-1.8
RBR3 orf19.5124 NS —1.2
RBT1 orf19.1327 NS —-1.1
GIT1 orf19.34 NS —3.7
PGAT10 orf19.5674 NS —2.2
PGA23 orf19.3740 NS —14
PHO112 orf19.3727 NS -1.8
Expressed only when CYRT is present
RIM101 orf19.7247 2.1 NS
HOL4 orf19.4546 1.8 NS
CDR11 orf19.918 1.8 NS
FRP2 orf19.7112 1.5 NS
orf19.7566 13 NS
DIP5 orf19.2942 1.3 NS
ECM21 orf19.4887 1.3 NS
PHO8 orf19.984 1 NS
PGA7 orf19.5635 1.1 NS
KRE6 orf19.7363 —1.1 NS
CRH12 orf19.3966 —-1.2 NS
PTR22 orf19.6937 —-1.7 NS
GNP1 orf19.1193 —2.1 NS
FRETO orf19.1415 -3 NS
RBE1 orf19.7218 —3.2 NS
Expressed in both strains®
CFL2 orf19.1264 23 3.8
PUT1 orf19.4274 1 1.1
orf19.851 —1.1 —-33
CTR1 orf19.3646 —-1.3 —-1.6
RBR2 orf19.532 —1.5 —-1.5
orf19.7077 —-1.7 —24
OPT3 orf19.3749 —-2.3 —-2.7
FET99 orf19.4212 —27 —9.5
JENT orf19.7447 —-29 —-1.3
CRZ2 orf19.2356 -37 -6
RBR1 orf19.535 —6.8 =71

aPositive values indicate expression was higher at pH 7. NS, no significant difference.

bThe following Rim101-regulated transcripts were differentially expressed in response to pH 7 versus pH 4,
but expression was not different between the CYRT-complemented and cyr1A/A strains at pH 7: FRPT,
HMX1, SKN1, ENA2, PHO89, PHO87, and PHR2.

sion in the CYRT complemented strain (including RIM1017), and 25 were altered in the
mutant strain (37). Of these, however, only 16 changed in both strains.

Using NanoString nCounter technology, we used a code set that included morphol-
ogy genes and metabolism and used it to interrogate RNA from cells grown in a
separate experiment on a separate day than the RNA-Seq analysis. The impact of Cyr1
was strongest in the regulation of the morphological genes, but there was a pH effect
on hypha- and yeast-associated transcripts in the complemented strain, with the
exception of HYR1, which increased in abundance at low pH. In the strain with intact
Cyr1 signaling, we observed the induction of PHRT and PHR2 at neutral and low pH,
respectively, and the expression pattern of these transcripts was notably muted in the
absence of Cyr1 (Table 6; see also Table S7 in the supplemental material).

DISCUSSION
In this work, we set out to determine if changes in cAMP signaling participate in the
repression of filamentous growth induced by a low-pH environment in C. albicans. We
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TABLE 6 Selected morphology- and pH-related transcription changes

Log, fold change in transcription for:

CYR1 vs cyr1A/A strain at:

pH 7 vs pH 4 in

Gene pH 7 pH 4 CYR1 strain
HWP1 9.0 9.6 0.4

HYR1 9.0 10.6 -15

ECE1 8.3 8.6 1.0

SAP4 338 24 1.2

YWP1 —43 —26 -13

ALS4 —6.3 —25 —-0.8

NRG1 -1.8 -0.7 -1.2

PHR1 26 3.0 35

PHR2 —0.2 14 —45

found that hyphal growth was antagonized by low pH under medium conditions that
stimulated hyphal growth in a Ras1- and Cyr1-dependent manner. Low extracellular pH
resulted in Cyr1-dependent increases in Ras1 proteolysis and GTP binding, which were
both rapid and sustained, but neither increased GTP binding nor cleavage was respon-
sible for the effect of low pH on morphology. Filamentous growth could be rescued in
a cyr1 null mutant by dbcAMP at both low and neutral pHs, which supports a model in
which low pH acts at least partially upstream of Cyr1. Under our medium conditions,
intracellular pH was reduced by extracellular pH, and we hypothesize that this reduces
the availability of bicarbonate, a Cyr1-stimulatory factor. Analysis of the transcriptome
in the presence and absence of intact cAMP signaling at acid and neutral pH painted
a complicated picture, with Cyr1-dependent and -independent changes in response to
pH and differences in pH response that were dependent on whether cAMP signaling
was intact. Consistent with Cyr1 playing a role in the adaptation to low and neutral pH,
Cyr-regulated transcripts related to morphology were altered in expression by changes
in pH, and the expression levels of the pH-specific genes PHRT and PHR2 were
substantially greater in the presence of Cyrl.

Cytosolic pH is the cumulative result of buffering by a large number of different
molecules (charged amino acid side chains, free amino acids, glycolytic intermedi-
ates, and others), and the activity of plasma membrane and vacuolar ATPases
(V-ATPases) and proton pumps (38). In Saccharomyces, V-ATPases are regulated by
Ras and phosphoinositides, and V-ATPases themselves reciprocally regulate Ras
(39-41). Intracellular pH in Saccharomyces cerevisiae has been shown to be reduced
in the presence of citric acid/phosphate buffer at low pH, and in C. albicans, growth
in medium favoring yeast growth due to low-pH medium has been described to
result in cytosolic acidification compared to an otherwise identical neutral hypha-
inducing medium, and the dynamics of changes in intracellular pH are different
between cells growing as hyphae and those growing as yeast (42, 43). Despite
mechanisms to modulate intracellular pH, our findings using pHluorin-expressing
cells showed that extracellular pH has rapid and prolonged effects on intracellular
pH. These findings mirror observations by Kaur and colleagues (43), who saw a
lower pH; in cells in pH 4.5 medium than in cells at pH 6.5, using ['*C]propionate
distribution as an indicator of pH;. In the tetO-NRGT strain, the external pH still
impacted cytosolic pH to a similar extent, suggesting to us that extracellular pH, as
well as the hyphal growth transcriptional network itself, make independent but
additive contributions to intracellular pH.

In C. albicans, bicarbonate is a Rasl-independent activator of Cyr1, and its
availability is determined by the carbonic anhydrase Nce103, its substrate CO,, and
pH (29). As bicarbonate exists in equilibrium with its conjugate acid, carbonic acid,
a reduction in pH would drive that equilibrium toward the conjugate acid, deplet-
ing a Cyr1 activator. CO, has been demonstrated to control hyphal morphology
through Cyr1, and mutation of the specific residues of Cyr1 responsible for bicar-
bonate sensing resulted in a diminished ability to form filaments under high CO,
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(which is Ras independent) but a normal ability to do so in response to serum
(which is Ras dependent) (44). White-opaque switching has also been shown to be
regulated by CO, in a Cyr1-dependent, but also partially Ras1-dependent, fashion
(45). Taken together, these observations suggest that Cyr1 integrates Rasl-
dependent and -independent inputs, with different phenotypes requiring different
degrees of contribution from each source.

pH has been postulated to regulate bicarbonate-sensitive adenylate cyclases in a
number of systems (development of mammalian spermatozoa during capacitation
being the classic example), but to our knowledge, the extent of perturbation of pH,
necessary to alter adenylate cyclase output has not been empirically determined in vivo
(46-48). We observed a shift in strain SC5314 from pH, 8.0 to pH, 6.6 between neutral
and acidic culture conditions, and it is plausible that this represents a significant change
in the bicarbonate/carbonic acid equilibrium and Cyr1 activation. This equilibrium has
a theoretical pK, of 3.6 in the absence of carbon dioxide, but likely a much higher
effective pK, in vivo, as CO, is generated through oxidative metabolism. Using the
carbonic acid/bicarbonate pK, for mammalian blood chemistry (6.4), one can calculate
the fraction of bicarbonate predicted to exist in the unprotonated form at our mea-
sured pH; levels. In cells grown in YNBNC at pH 7, where the pH; was 8.0, 98% of the
bicarbonate would be in its unprotonated from, whereas in cells grown at pH 4, the pH,
was 6.9, where 80% of the bicarbonate would be in its unprotonated form. Alterna-
tively, it is possible that the change in pH alone is necessary to alter cyclase activity, as
reports have suggested that soluble adenylate cyclases favor neutral to basic pHs for
catalysis, although these experiments were conducted with crude cellular extracts that
likely contained bicarbonate, and it may not be possible to extricate the role of pH per
se from the availability of bicarbonate (49, 50).

From the massive transcriptional changes induced by pH for genes associated with
diverse cellular processes such as hyphal growth, cell wall architecture, and metabo-
lism, it is clear that ambient pH is an important regulator of C. albicans physiology (34,
51). C. albicans has been shown to actively modulate the pH of its environment; work
from the Lorenz group has illuminated a mechanism by which C. albicans induces
filamentation by manipulating the environmental pH through secretion of basic prod-
ucts of metabolism (35). C. albicans Rim101 was initially characterized as an activator of
hyphal growth in response to high pH as a stimulus (7, 25, 52, 53). Low pH can be
thought of as the absence of high pH, or a stimulus unto itself, and analysis of our data
alongside published work is consistent with a model that integrates both of these
elements. Consistent with the model that there exist multiple pH-sensitive regulators,
in our dbcAMP rescue assays more cells grew as hyphae at pH 7 than pH 4 in the
presence of dbcAMP, suggesting that Cyr1 is only one layer of morphological regula-
tion by pH.

Growth at low pH under our conditions resulted in a population that was predom-
inantly pseudohyphal, which is thought to represent an intermediate state between
yeast and hyphal growth (54). Thus, we argue that our data suggest that low pH results
in an intermediate level of CAMP output, where the hypha-activating cues are able to
turn on the pathway sufficiently to support pseudohyphal growth, but low pH prevents
it from being turned on to a sufficient extent to permit true hyphal growth. This
intermediate state is phenotypically very different from the total absence of cAMP
signaling that we saw in the cyr7 null mutant, and it had a remarkably different
transcriptional profile; in this state, we are able to see the effects of other regulators,
such as Rim101, in the transcriptional data that are washed out in the complete
absence of Cyr1. A previous transcriptional analysis of the role of Rim101 in the
adaptation to acidic and alkaline pH found that Rim101 regulated some, but not all,
genes that changed with pH and that Rim101 regulated a number of genes indepen-
dently of pH (51). Via synthesis of this finding with the fact that the effect of pH was
difficult to discern through the overwhelming effect of Cyr1 in our data, we are able to
infer that the genetic basis of the response to pH is complicated, and we suggest
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deletion of single regulators cannot fully explain changes in the transcriptome induced
by changes in pH.

With respect to the role of pH in the course of human disease, acidic pH is an
environmental condition confronted by C. albicans in the phagolysosome, where
alkalinization by C. albicans metabolism is thought to facilitate survival of the fungus
through the autoinduction of hyphal growth (35, 36, 55). There is precedent for
inappropriate activation of cAMP signaling preventing the adaptation to a low-pH
environment; Wilson and colleagues (56) previously described cAMP hyperactivation,
due to the loss of the major cAMP phosphodiesterase, rendered C. albicans sensitive to
acidic pH, with a pde2 null mutant unable to grow at pH 2.5. This suggests that
downregulation of cAMP signaling participates in the adaptation to low-pH environ-
ments. Cyr1 has been demonstrated to be necessary for pathogenesis in immunocom-
petent mice in a model of disseminated candidiasis, and under our experimental
conditions, the ATO7-encoded ammonium exporter through which C. albicans alkalin-
izes its environment, in addition to being regulated by pH itself was altered in its
regulation in the absence of Cyr1 (35, 36). Notably, two transcripts that we saw
prominently induced by low pH, JENT and JEN2, have been shown to be induced upon
phagocytosis by neutrophils (32). Based on these observations, the regulation of Cyr1
by pH may play a role in the adaptation to the phagocytic vacuole. Additionally,
Candida adapts to extremely low pH values in the stomach in the course of intestinal
commensalism, which can be the source from which C. albicans disseminates in
invasive disease.

Vulvovaginal candidiasis (VVC) is one of the most common fungal infections in
humans, affecting most women at some point over the course of their lives, and
represents a context in which acidic pH is a prominent feature of the environment.
Vaginal pH in the context of health is low (<4.5); however, unlike other forms of
vaginitis, VVC is not associated with alkalization of the vagina, and diagnostically, an
acidic vaginal pH is consistent with VVC (2). Histological evidence indicates filamentous
forms are present in VVC, and a yeast-locked strain is defective in a rat model of VVC
(57). Notably, a cyr? null strain is also defective in the ability to persist in the murine
vaginal mucosa compared to its complemented derivative, signifying the importance of
this signaling component in this niche (13). Growth of wild-type Candida in association
with vaginal epithelial cells produced transcriptional changes in many of the same
pathways we observed in our transcriptional analysis (glucose and GIcNAc metabolism,
Efg1), suggesting that cAMP plays a role in this environment (58). Taken together, these
observations strongly imply that there are other factors apart from pH that govern
hyphal growth in the host, including the existence of other stimuli that supersede the
pH signal or alternate pathways capable of inducing hyphal growth in a cAMP- and
Rim101-independent fashion. We suggest that the integration of pH into the complex
decision-making circuits governing Candida morphology merits further study.

MATERIALS AND METHODS

Strains and growth conditions. All C. albicans strains were streaked from frozen stocks maintained at
—80°C onto YPD (1% yeast extract, 2% peptone, 2% glucose) plates, incubated at 30°C for 24 to 48 h,
then stored at room temperature. All strains used in this study can be found in Table S1 in the
supplemental material.

Strain construction. The BWP17 rim101A/A strain and BWP17 rim107+/A strain were constructed as
previously described, using deletion amplicons amplified from pGEM-HIS1 and pRS-ARG4 with flanking
homology to the RIM101 open reading frame (52, 59). Cells were transformed via electroporation,
selected on YNB medium lacking the appropriate amino acid(s), and confirmed using PCR with primers
flanking the RIM107 locus. The SC5314 rim101A/A mutant was generated with the transient CRISPR-Cas9
system (60). Briefly, strain SC5314 was cotransformed with the RIM707-NAT deletion construct (3 ug), the
CaCAS9 cassette (1 ug), and the sgRNA cassette (1 ug) by using the lithium acetate transformation
method (61). We used the following sgRNA RIM101 guide RNA sequence, published by Vyas et al. (2015)
to generate the deletion mutant: AGCAAAAGCTGCTGGCTTGG (62).

Morphological assessment. For morphological assessment, overnight cultures were grown in YPD
and used to inoculate YNBNP medium (as described by Piispanen et al. [22]), or YNBNC (0.67% yeast
nitrogen base-5 mM N-acetylglucosamine-0.2% glucose-50 mM citrate at pH 4 or pH 7) to a final density
of 10¢ cells per ml. YNBNC was prepared by addition of YNB salts without amino acids (RPI Corp.), GIcNAc
(Alfa Aesar) from a 1 M stock solution prepared in water, and glucose from a 20% (wt/vol) solution in
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water and adjustment to final volume with distilled water. This medium was adjusted to pH 7 with strong
base (NaOH) to make YNBN (pH 7-adjusted) medium and filter sterilized. YNBNC was made by addition
of 50 mM citrate at the indicated pH from a sterile 1 M citrate buffer stock to YNBN medium. Five-milliliter
cultures were subsequently incubated at 37°C in tubes on a roller drum for 3 h, an aliquot of culture was
transferred to a slide, and morphology was assessed via differential interference contrast (DIC) micros-
copy.

Growth rate experiments. Growth was assayed by dilution of overnight cultures to an optical
density at 600 nm (OD,,) of 0.05, and optical density was measured over time using a Spectronic 20 D
spectrophotometer.

dbcAMP experiments. Cells were inoculated into the indicated medium at a density of 5 X 105 cells
per ml from a YPD overnight culture. Medium amended with 10 mM dbcAMP from a 100 mM stock
solution of dbcAMP (D0627; Sigma) in water. Cultures were incubated at 37°C for 3 h in glass-bottom
12-well dishes and then fixed with 0.37% formaldehyde, and morphological assessments by DIC
microscopy were performed on an inverted microscope.

Western blot analysis of Ras1. Overnight cultures in YPD were washed once in target medium and
inoculated into YNBNC at 5 X 107 cells per ml, and cultures were incubated as described above. After
3 h, cells were pelleted by centrifugation at 4,500 X g for 5 min and snap-frozen in liquid nitrogen. Pellets
were thawed on ice, washed once in homogenization buffer (10 mM Tris [pH 7.4], 150 mM NaCl, 5 mM
EDTA, 2X Halt protease inhibitor cocktail [Fisher], and 10% [wt/vol] sucrose), resuspended in homoge-
nization buffer, and lysed via bead beating. Protein concentrations of whole-cell lysates were assessed
with the Bradford assay (Bio-Rad Quick Start with Bradford dye reagent). SDS-PAGE and Western blotting
were conducted as previously described, using anti-RAS clone 10 mouse monoclonal antibody (EMD
Millipore).

Analysis of Ras1-GTP binding state. The Pierce Active Ras pulldown kit was used for analysis of
Ras1-GTP binding, and whole-cell lysates were prepared as for the Western blotting assays, with the
replacement of homogenization buffer (HB) or with lysis-binding-wash (LBW) buffer (25 mM Tris-HCl
[pH 7.2], 150 mM NaCl, 5 mM MgCl,, 1% NP-40, and 5% glycerol) supplemented with 2X Halt protease
inhibitor cocktail. Two hundred micrograms of total protein was incubated with RBD-conjugated agarose
and eluted by boiling in Laemmli sample buffer. The eluate as well as the input lysate were subjected
to Western blotting as described above.

pHluorin analysis of intracellular pH. Cells expressing the Candida-optimized pHluorin allele were
analyzed as described in reference 30. Briefly, cells were grown as described above (in YNBN or YNBNC
at pH 37°C) and with YNB LoFlo (catalog number CYN6201; Formedium), a low-fluorescence variant of
YNB salts used to replace YNB salts), and the cytosolic pH was determined by measuring florescence at
an emission wavelength at 518 nm and excitation wavelengths of 405 nm and 485 nm. Permeabilized
control cells were transferred to calibration buffers to generate a standard curve, and the intracellular pH
for experimental cells was extrapolated from that curve.

nCounter transcriptional analysis. YNBNC was inoculated with 5 X 107 cells per ml as described
above, and cultures were grown for 4 h at 37°C. Samples were prepared in duplicate, and cells were
pelleted by centrifugation at 4,500 X g for 5 min and snap-frozen in liquid nitrogen. RNA was extracted
with the Epicentre MasterPure yeast RNA purification kit (MPY03010), and 70 ng total RNA was hybridized
to the NanoString probe set and quantified using the nCounter platform. Counts were normalized to
total signal for each given sample, and replicates were averaged.

RNA-Seq. For RNA-Seq, YNBNC medium was inoculated with 5 X 107 cells per ml as described above,
and cultures were grown for 4 h at 37°C. Cells were pelleted by centrifugation at 4,500 X g for 5 min and
snap-frozen in liquid nitrogen. RNA was extracted with the Epicentre MasterPure yeast RNA purification
kit (MPY03010). RNA quality and quantity were assessed by using a fragment analyzer (Advanced
Analytical, Ankeny, IA) and Qubit (Invitrogen, Carlsbad, CA), respectively. mRNA was enriched by
hybridization to oligo(dT) beads. Directional RNA-Seq libraries were prepared with TruSeq stranded
mRNA library prep chemistry with unique TruSeq indices, using an automated liquid-handling system.
Libraries were pooled and sequenced on a NextSeq500 instrument, using 2X 75-bp paired-end sequenc-
ing (a high-output flow cell). Raw reads were processed using the CLC Genomics Workbench platform (v.
8.5.1) and the default parameter settings installed by the manufacturer. All sequences were trimmed and
mapped to the SC5314 reference genome (version A21-s02-m09-r04; http://www.candidagenome.org)
and with the use of the RNA-Seq analysis tool, and mapped reads were normalized to control for any
differences in library size by using the commands “calcNormFactors,” “estimateCommonDisp,” and
“estimateTagwiseDisp” with default settings in the edgeR package (v. 3.14.0).

The full Gene Ontology annotation was used for GO term analysis. The gene association file, created
19 September 2016, was downloaded from the CGD website (http://www.candidagenome.org), and only
annotations assigned to C. albicans (taxon 5476) were used. In total, 6,313 unique genes had at least one
associated GO term and served as the background distribution of observed gene ontologies for the
C. albicans genome in this study. GO enrichment analysis of the comparisons between the WT and the
cyrl mutant at pH 4 and pH 7 was evaluated using an R script (GOstats.R, within bioconductor), in which
the GSEAGOHyperGParams function was used for calculating a Bonferroni-corrected P value with a cutoff
of 0.05 to determine significant GO term enrichment in the categories Biological Process, Cellular
Component, and Molecular Function. The 100 most significantly enriched terms were retained for
analysis, followed by removal of similar terms.

Accession number(s). The raw and processed RNA-Seq data have been deposited into NCBI Gene
Expression Omnibus under GenBank accession number GSE86540.
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