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Abstract

Chemical-protein interaction (CPI) is the central topic of target identification and drug discovery. However, large scale
determination of CPI is a big challenge for in vitro or in vivo experiments, while in silico prediction shows great advantages
due to low cost and high accuracy. On the basis of our previous drug-target interaction prediction via network-based
inference (NBI) method, we further developed node- and edge-weighted NBI methods for CPI prediction here. Two
comprehensive CPI bipartite networks extracted from ChEMBL database were used to evaluate the methods, one
containing 17,111 CPI pairs between 4,741 compounds and 97 G protein-coupled receptors, the other including 13,648 CPI
pairs between 2,827 compounds and 206 kinases. The range of the area under receiver operating characteristic curves was
0.73 to 0.83 for the external validation sets, which confirmed the reliability of the prediction. The weak-interaction
hypothesis in CPI network was identified by the edge-weighted NBI method. Moreover, to validate the methods, several
candidate targets were predicted for five approved drugs, namely imatinib, dasatinib, sertindole, olanzapine and
ziprasidone. The molecular hypotheses and experimental evidence for these predictions were further provided. These
results confirmed that our methods have potential values in understanding molecular basis of drug polypharmacology and
would be helpful for drug repositioning.
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Introduction

Over the past decade, the productivity of drug research and

development (R&D) seems to be decreasing [1]. Richard et al.

stated that at present more than 800 drugs are in clinical

development for cancer indications and the current success rate in

bringing drugs to the markets remains only in the range of 5–8%

[2]. One reason about R&D decrease might be due to the

domination of ‘‘one-disease-one-drug-one-target’ paradigm [1].

Several clinical investigations confirmed that most drugs act on

multiple targets rather than one target, that is, drug polypharma-

cology [1,3]. For example, tamoxifen, which is an approved drug

used to treat breast cancer for more than 30 years, has been found

to be effective in experimental models of cutaneous and visceral

leishmaniasis [4]. Several well-known drugs such as thalidomide,

sildenafil, bupropion and fluoxetine were found new uses beyond

their original approved therapeutic indications [5].

Study of chemical-protein interactions (CPI) network is an

important topic toward elucidation of protein functions, under-

standing of molecular mechanisms inside the cell and drug

repositioning. It is both time-consuming and costly to identify CPI

by experiments alone. As a complement, in silico method could

provide us with very useful information in a predictable, reliable,

less costly and timely manner. Various in silico methods have been

proposed to address the CPI prediction. The classical methods can

be classified into ligand-based and target-based ones. For example,

Humberto et al. developed a multi-target QSAR classifier and built

a web server for CPI prediction [6]. Another widely used target-

based method is reverse molecular docking. Several web servers,

such as TarFisDock [7], DRAR-CPI [8] for drug discovery and

CPI prediction have been developed. However, this method

cannot be applied to targets whose three-dimensional (3D)

structures are unresolved, especially for membrane proteins like

G protein-coupled receptors (GPCRs), and were limited usage due

to time-costly and the inaccuracy of the scoring functions.

Recently, several new methods, such as computational chemo-

genomics, phenotype-based and network-based diffusion methods

were successful proposed for CPI prediction [9–23]. Yamanishi

et al. developed a bipartite graph learning method for drug-target

interaction (DTI) prediction [9]. Recently, Yamanishi et al. further

developed DTI prediction method by integrating chemical,

genomic and pharmacological spaces [21]. Though high overall

predictive accuracy was yielded in the Yamanishi’s work, the

sensitivity was anomaly low and the method was not validated

experimentally. Wang et al. developed a computational chemoge-

nomics method from protein primary sequences and used it to

identify several new ligands for four targets (i.e., GPR40, SIRT1,

p38, and GSK-3b) validated by experimental assays [11]. The

drawback of chemogenomics method is that there are a huge

number of samples to be classified, which increase the computa-

tional complexity. Another bottleneck is the lack of the benchmark

negative CPI pairs and it easily results in high false positive rate.

Our recent work found that there is high false positive rate in

computational chemogenmics method, and the performance of
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chemogenmics method was influenced by data set bias and

features selection methods [23].

In our previous paper, we reported three supervised inference

methods: drug-based similarity inference (DBSI), target-based

similarity inference (TBSI) and network-based inference (NBI)

methods for DTI prediction and drug repositioning derived from

complex network theory [24,25]. With the methods, five known

drugs were predicted and experimentally validated to have novel

indications on estrogen receptors and dipeptidyl peptidase-IV

[26]. However, the methods are only suitable for drugs having

known links to targets in the training set and the unweighted DTI

network among drug and target nodes was used. Whether the

weighted DTI network could improve the predictive accuracy or

the method could be extended to general CPI prediction has not

been investigated yet.

In this paper, the above-mentioned three methods were further

improved. Two new methods, namely node-weighted network-

based inference (NWNBI) and edge-weighted network-based

inference (EWNBI) were further presented, and four similarity

metrics (Tanimoto, Cosine, Forbes and Russell-rao) were explored

in the DBSI method systematically, for CPI prediction and drug

repositioning. The methods were then examined with two

comprehensive CPI databases targeting GPCRs and kinases,

respectively. The new targets were further predicted for five

example known drugs, and experimental evidences to support the

predictions were provided.

Materials and Methods

Data Preparation
Two comprehensive CPI data sets were collected from the

ChEMBL database (https://www.ebi.ac.uk/chembl/, accessed in

May. 2010) [27]. The initial database includes 1,195,368

compounds and more than 8,000 targets from various species.

Here, we only focused on two pharmacologically important

families, GPCRs and kinases. The data sets were refined with the

following criteria: (1) only human test data were selected; (2) only

those with Ki or IC50 values less than 10 mM were extracted; (3)

proteins connected with less than three active compounds were

excluded; (4) proteins with non-standard amino acids, DNA,

RNA, or sequence length less than 100 residues were removed;

and (5) nonorganic chemicals and chemicals with molecular

weight less than 100 Dalton or more than 600 Dalton were also

excluded. All compounds in SMILES format and proteins

sequence in FASTA format were extracted from ChEMBL.

Network Construction
The methods adopted in this paper are to prioritize uncon-

nected candidate proteins for a given chemical, or prioritize

unconnected candidate chemicals for a given protein, which

derived from the recommendation algorithms of complex network

theory [26]. We constructed two comprehensive CPI bipartite

networks (or graphs) to represent the data in chemical nodes,

protein nodes and their physical interactions. Denoting the

Figure 1. Schematic diagram of our proposed method. (A) The drug-based similarity inference (DBSI), (B) the target-based similarity inference
(TBSI) and (C) the unweighted network-based inference (NBI), (D) the edge-weighted NBI (EWNBI) and (E) the node-weighted NBI (NWNBI). Green
circle: chemical node, gold square: protein node, black line: unweighted interaction link, cyan line: chemical-chemical two-dimensional structural
similarity (Sc) or protein-protein Smith Waterman genomic similarity (Sg), red line: weighted edges (thick red line denotes the strong edge with high
potency and thin red line denotes the weak edge with low potency).
doi:10.1371/journal.pone.0041064.g001
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chemical set as C~fc1,c2, . . . ,cngand the protein set as

P~fp1,p2, . . . ,pmg, the CPI binary pairs can be described as a

bipartite CPI graph G(C,P,E), where E~feij : ci[C,pj[Pg. A

link is drawn between ci and pj only if the Ki or IC50 was less than

10 mM between ci and pj. The CPI bipartite graph can be

presented by an n|m adjacent matrixfaijg, where aij~1 when Ki

or IC50 value less than 10 mM, otherwiseaij~0.

Methods Development
In our previous work, we proposed three inference methods, i.e.

DBSI, TBSI and NBI, to predict DTI. In this study, we managed

to improve the NBI method with weighted nodes or edges. The

entire workflow was illustrated in Figure 1.

Drug-Based Similarity Inference (DBSI). The DBSI

method was designed based on the hypothesis that two chemicals

with similar chemical structures may exhibit similar bioactivities

(Figure 1A), which was described in our previous work [26]. For a

CPI pair ci{pj , if ci has not interacted with pj yet, the predicted

score by this method is given as:

vD

ij
~

Pn
l~1,l=i

Sc(ci,cl)alj

Pn
l~1,l=i

Sc(ci,cl)

ð1Þ

Sc(ci,cl) indicates two-dimensional (2D) chemical structural

similarity between chemicals ci and cl . In this study, four different

chemical structure similarity metrics, namely Tanimoto, Cosine,

Forbes and Russell-rao were systemically evaluated using MACCS

keys, freely available from OpenBabel (version 2.3.0) [28]. The

further descriptions about four similarity metrics were given in the

work of Willett et al. [29].

Target-Based Similarity Inference (TBSI). The TBSI

method was designed based on the hypothesis that two proteins

with similar genomic space may exhibit similar biology function

(Figure 1B). For any CPI pair ci{pj , if ci does not connect with pj

in the bipartite graph, the predicted score by this method is given

as:

vT

ij
~

Pm
l~1,l=j

Sg(pj ,pl)ail

Pm
l~1,l=j

Sg(pj ,pl)

ð2Þ

Sg(pj ,pl) indicates the genomic sequence similarity between two

proteins pj and pl . The sequence similarity between protein pj and

pl was computed by the Smith-Waterman scores [30].

Unweighted Network-based Inference

(NBI). Considering the bipartite graph G(C,P,E), we applied

a mass diffusion-based method to obtain the predicted list. For a

given chemical ci, supposing that a kind of resource is initially

located in the proteins which are interacted with ci, the resource

will diffuse to all the proteins in the network after the network-

based resource allocation process [24,25]. Each protein node

averagely distributes its resource to all neighboring chemical nodes

and then each chemical redistribute the received resource to all

neighboring protein nodes. The finial resource on the proteins that

are not connected with the chemical ci in G could be considered as

the score of each protein, and the proteins with high score are

more likely to interact with ci. Figure 1C gives a simple example to

illustrate the network-based resource allocation process. It shows

the initial resource of aij between ci (green cycle) and pj (orange

square) followed as:

aij~
1

0

�
Ki IC50ð Þƒ10mM

Ki IC50ð Þw10mM
ð3Þ

Denoting F0n|m as the initial resource matrix (adjacency matrix)

and F0ij~aij , Rn|n as the total resource (degree) of each chemical

and R~diag
Pm

j~1 a1j ,
Pm

j~1 a2j , . . . ,
Pm

j~1 anj

� �
, Hm|m as

the total resource (degree) of each protein and

H~diag
Pn

i~1 ai1,
Pn

i~1 ai2, . . . ,
Pn

i~1 aim

� �
, the final re-

source matrix will be obtained as F1n|m, and F1~F0Wm|m or

FT
1

~FT
0

Wn|n, where transfer matrix Wm|m~(F0H{1)T (R{1F0)

or Wn|n~(R{1F0)(F0H{1)T .

Edge Weighted Network-based Inference (EWNBI). In

the above unweighted NBI method, we only consider the binary

CPI pairs among nodes. However, the edges among chemicals and

proteins are naturally weighted in the real biology world. For the

EWNBI method, each edge of CPI network was weighted by the

potency (xij = 2log10(Ki (or IC50)/100 mM)) of binding affinity (Ki)

or inhibitory activity (IC50) of the physical interactions between the

chemical node ci and protein node pj .

Figure 1D gives a simple example to illustrate the edges

weighted network-based resource allocation process. The initial

resource of a’ij between ci (green cycle) and pj (orange square)

were defined as follows:

a’ij~
xij

0

�
Ki IC50ð Þƒ10mM

Ki IC50ð Þw10mM
ð4Þ

Denoting F ’0n|m as the initial resource matrix and F ’0ij~aij ,

R’n|n as the total resource of each chemical and

R’~diag
Pm

j~1 a’1j ,
Pm

j~1 a’2j , . . . ,
Pm

j~1 a’nj

� �
, H ’m|m as

the total resource of each protein and

H ’~diag
Pn

i~1 a’i1,
Pn

i~1 a’i2, . . . ,
Pn

i~1 a’im
� �

, the final

resource matrix will be obtained as F ’1n|m, and

F ’1~F ’0W ’m|m or F ’T
1
~F ’T

0
W ’n|n, where transfer matrix

W ’m|m~(F ’0H ’{1)T (R’{1F ’0) or W ’n|n~(R’{1F ’0)(F ’0H ’{1)T .

Node Weighted Network-based Inference

(NWNBI). Compared to the earlier unweighted NBI method, we

use a new expression of initial resource distribution of nodes and take

into account the influence of resources associated with the receiver

nodes in CPI bipartite network proposed by Jia et al. [31]. This method

is based on the general knowledge that the hub node with more

resources is more difficult to be influenced. Figure 1E illustrates the

NWNBI method. For the initial resource matrix, the resources of each

chemical and protein node are the same to the unweighted NBI

method. The final resource matrix were calculated asF ’’1n|m, and

F ’’1C~F0W ’’m|m for chemicals and F ’’
1p~FT

0
W ’’n|n for proteins,

where transfer matrix W ’’m|m~(F0H{1)T(R{1F0H
00{1), where

H
00
~diag (

Pn
i~1 ai1)b, (

Pn
i~1 ai2)b, . . . , (

Pn
i~1 aim)b

� �
for

chemical or W ’’n|n~(R{1F0)(R
00
{1F0H{1)T , where

R
00
~diag (

Pm
j~1 a1j)

b, (
Pm

j~1 a2j)
b, . . . , (

Pm
j~1 anj)

b
� �

for

protein, b is a tunable parameter which was used to control the

influence. Compared with uniform case, b = 0, a positive b value

strengthens the influence of hub nodes, while a negative b value

Prediction of Drug Polypharmacology
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weakens the influence of hub nodes. The detailed description can be

found in Jia’s work [31].

Performance Assessment
All performance was assessed based on 10-fold cross validation

techniques. In 10-fold cross validation, the entire compound-

protein pairs were equally divided into ten cross splits. In each step

of cross validation, the model was trained on a set of nine cross

validation splits together. The tenth sub-sample set was used as an

internal validation set (test set). In order to eliminate the error

caused by dividing the data set, all the results were obtained by

independent simulation 10 times test. With the randomly splitting,

some proteins (or chemicals) maybe just in the test set and the

corresponding links couldn’t be predicted with our methods,

because of no links for these proteins or chemicals in the training

set. Such links were not considered in the performance assessment.

Mathematically speaking, all methods provide each given chemical

with an candidate queue of all its unconnected proteins (Ci (Pa, Pb,

…Pm)) or provide each given protein with an candidate queue of

all its unconnected chemicals (Pj (Ca, Cb, …Cn)). For each

predicted list, we consider the topside links as the most possible

candidate CPI. The CPI pairs that were predicted correctly are

termed true positive, and the predicted interactions that are not in

the test set are referred to as false positive. The area under the

receiver operating characteristic curve (AUC) and recall (R) were

calculated to assess the performance [26]. In addition, we also

calculated the recall enhancement (ER) metric [24].

Results

Network Topology Analysis
Based on the criteria described above, 17,111 CPI among 4,741

unique compounds and 97 GPCRs with Ki less than 10 mM, and

13,648 CPI among 2,827 unique compounds and 206 kinases with

IC50 less than 10 mM were collected (Table 1). The Ki values, IC50

values, SMILES, FASTA, compound ID of all compounds and

targeted proteins were given in Tables S1 and S2. The CPI

networks of GPCRs and kinases were constructed using a bipartite

graph. Figure S1 gives the degree distributions of each chemical

and protein. The degree of protein node is the number of

chemicals that the protein links with. The degree of chemical node

is the number of proteins that the chemical links with. The

numbers of chemicals and proteins, the average degree and the

sparsity values were given in Table 1. Sparsity is the proportion of

the known CPI over all the possible interactions. There is a

manifest ligand polypharmacology in GPCRs and kinases

(Figure S1).

Relationships among Several Similarities
The heat maps of the compound-compound 2D structural

similarity (Tanimoto-scores) and protein sequence similarity

(Smith-Waterman scores) were given in Figure S2. The mean

values of 2D Tanimoto-scores were 0.458 and 0.444 for ligands of

GPCR and kinase, respectively. The range of Smith-Waterman

scores of GPCRs was from 0.423 to 0.914 with a mean of 0.517.

The range of Smith-Waterman scores of kinases was from 0.383 to

0.996 with a mean of 0.517. From Figure S2, there was diverse

ligand chemical space and target coverage of GPCRs and kinases.

We also calculated compound structural activity-relationships

(SAR) similarity scores Ss(ci,cj) and protein SAR scores

Ss(pi,pj)~ni,j

�
(niznj{nij) using the Tanimoto-score metric,

where ni,j is the number of proteins or chemicals that interact

with both ci(orpi) and cj(orpj), ni is the degree of ci(orpi), and nj

is the degree of cj(orpj). The further description about SAR

similarity scores was given in Bamborough et al. [32]. Figure 2

gave the distribution of compound 2D structural similarities and

protein domain sequence similarities against compound and

protein SAR similarities. From the box plots, we found two useful

features. First, when the compound-compound pairs have the

higher Tanimoto scores, they have the higher compound SAR

similarities. This feature confirmed the common hypothesis that

two ligands with similar structure have the similar biological

spectrum [33]. Second, when the protein-protein pairs have the

higher Smith-Waterman scores, they have the higher protein SAR

similarities. The second feature confirmed the common hypothesis

that two proteins with similar structural, functional or evolutionary

features will have the similar biological function and bind with

similar ligands [34].

Performance of the Proposed Methods
Unweighted Network-based Inference (NBI). The un-

weighted NBI method only considers the binary CPI pairs among

chemical and protein nodes (Figure 1C). The performance for the

test set by 10 simulation times test was summarized in Table 2.

The high AUC value of 0.98160.001 and 0.97660.002 were

yielded for test sets of GPCRs and kinases, respectively. The

performance of NBI method was significantly higher than that of

the DBSI and TBSI methods, which is in agreement with our

previous work [26]. In this study, four similarity metrics, namely

Tanimoto, Cosine, Forbes and Russell-rao were systematically

investigated. The overall performance of Tanimoto was margin-

ally higher than that of Cosine, Forbes and Russell-rao.

Comparing the DBSI and TBSI method (Table 2), the perfor-

mance of the TBSI method was better than that of the DBSI

method, when prioritizing new candidate proteins to a given

chemical. The performance of the DBSI method was better than

that of the TBSI method, when prioritizing new candidate

chemicals to a given protein.

Node Weighted Network-based Inference (NWNBI). As

shown in Table 2, the performance of NWNBI was marginally

higher than that of the unweighted NBI method. For example, the

R value of 0.974 using NWNBI method was marginally higher

than 0.969 using unweighted NBI method evaluated on top 5

predicted lists. Figure 3 showed that the performance of test set by

simulation 10 times reaches its maximum value at about b = 0.3

for both GPCRs and kinases. Compared with the uniform case of

b = 0, a positive b strengthens the influence of hub nodes of

chemical or protein, while a negative b weakens the influence of

hub nodes. The results indicated that an appropriate increase of

Table 1. Statistics of all known chemical-protein interaction
pairs of the training set and validation set used in this study.

Data Sets Targets Nc Np Ni Ndc Ndp

Sparsity
(%)

Training
Set

GPCRs 4,741 97 17,111 3.61 176.4 3.72

Kinases 2,827 206 13,648 4.83 66.3 2.34

Validation
Set

GPCRs 92 46 271 2.95 5.89 6.40

Kinases 188 28 202 1.07 7.21 3.84

Nc: The number of compounds, Np: The number of proteins, Ni: The number of
chemical-protein interactions, Ndc: The average degree of compound nodes,
Ndp: The average degree of protein nodes.
doi:10.1371/journal.pone.0041064.t001
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the initial resource located on popular proteins can marginally

improve the predictive accuracy of NBI method.

Edge Weighted Network-based Inference (EWNBI). In

this study, the edges of CPI network are weighted by the potency

(xij ) of binding affinity (Ki) or inhibitory activity (IC50) of the real

physical interactions among the chemical and protein nodes

(Figure 1D). As given in Table 2, the performance of EWNBI was

marginally worse than the unweighted NBI, which is broadly

consistent with the strength of the weak ties hypothesis in

biochemical network [35].

Role of Weak Chemical-Protein Interactions. To further

explore the role of weak interactions in CPI bipartite network, we

introduce an exponentl:

a’l
ij
~

xl

ij

0

(
Ki IC50ð Þƒ10mM

Ki IC50ð Þw10mM
ð5Þ

In EWNBI, when a node i allocates its resource to two nodes p

and q, the ratio of resource p and q received is al
ip

.
al

iq. When

l~0, it is the unweighted NBI method; when l~1, it is the

EWNBI method. When lw1, it positively strengthens the

weighted value of strong CPI edges (high potency between

chemical and protein nodes), while 0vlv1 positively strengthens

the weighted value of weak CPI edges (low potency between

chemical and protein nodes). Otherwise, a negative l gives the

negative effects.

As shown in Figure 4, the AUC increases by l increasing

whenlv0. The AUC decreases by l increasing whenlw0. The

highest AUC were yielded when l= 0.50 and 0.25 for GPCRs and

kinases, respectively. The results indicated that the weak

interactions could play an important role in CPI prediction in

the real weighted CPI network, which is in agreement with the

weak ties hypothesis in some real network, such as US air

transportation network [36], the neural network of the nematode

worm C. elegans [36], the co-authorship network [36], social

networks [37] and biochemical network [35] etc. Although it is

well-known that weak links hypothesis is very important for

complex network, this result is the first confirmation in the real

CPI network.

Figure 2. Box plots of compound-compound and protein-protein similarities against compound or protein structure activity-
relationship (SAR) similarities. (A) protein-protein (GPCRs) sequence similarity (Smith-Waterman scores) against GPCRs SAR similarity, (B) protein-
protein (kinases) sequence similarities (Smith-Waterman scores) against kinases SAR similarity, (C) compound-compound (GPCR ligands) structural
similarities (Tanimoto scores) against the GPCR ligands SAR similarities and (D) compound-compound (kinase ligands) structural similarity (Tanimoto
scores) against kinase ligands SAR similarities.
doi:10.1371/journal.pone.0041064.g002
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Prediction of Novel Chemical-Protein Interactions
Although the NBI method can yield high predictive perfor-

mance, there was a defect that the NBI method cannot predict

general chemicals or proteins which did not have any initial links

in the training set [26]. In this study, we resolved this bottleneck by

integrating the NBI and DBSI methods. Ninety-two novel FDA

approved and experimental drugs targeting 46 known GPCRs,

and 188 novel approved and experimental drugs targeting 28

known kinases (designated as the external validation sets in

Table S3) were collected from DrugBank [38] and KEGG [39],

which CPI pairs did not include in the training set (Table 1).

Before prioritizing new candidate proteins for a novel chemical

(designated compound A) using NBI method, we constructed a

new initial virtual resources for compound A as follows: (i)

Calculate the Tanimoto similarity between compound A and each

compound in the training set; (ii) Displace the topology CPI links

of a compound with the highest Tanimoto similarity score in the

training set for compound A; (iii) Then the candidate proteins were

prioritized for compound A using the new constructed virtual CPI

bipartite network. As summarized in Table 3, the reasonable

predictive accuracies were yielded. For GPCRs, the AUC value of

0.77 was yielded when prioritizing candidate targets to a given

novel drug using the NBI method, which higher than 0.74 using

DBSI method. For 188 drugs of kinase, the AUC value of NBI

method was about 0.83, which was marginally lower than DBSI

method. The possible reason is that the CPI network of kinases

was too sparse, as the average degree of 188 drugs of kinase was

only 1.07 (Table 1). In order to assess the reliability of the gold

standard data to determine whether the good results might be

based on very similar homologous relationships between com-

pounds and similar compounds, we re-evaluated the generaliza-

tion ability of our methods based on the new validation set after

removing 50% high similar compounds with top Tanimoto scores

using MACCS keys on the original external validation set

(Table S3). As showed in Table S4, the reasonable high perfor-

mance was also yielded for the new validation set after removing

high similar compounds.

Cast Studies
In order to test the real predictive ability of our method, we

prioritized all candidate CPIs for known ligands or proteins using

the unweighted NBI method by combining the training sets and

external validation sets. About 183 thousands of candidate CPI

pairs among 4833 known ligands (including 139 FDA approved or

experimental drugs) and 97 GPCRs were predicted. About 415

thousands of candidate CPI pairs among 3015 known ligands

(including 267 FDA approved or experimental drugs) and 206

kinases were predicted. All predicted CPI lists can be downloaded

from web sites: http://www.lmmd.org/database/cpi/ for further

experimental investigation. Two known and predicted CPI

bipartite networks were constructed using Cytoscape (http://

www.cytoscape.org/) in Figures 5 and 6. Due to space limit, we

only investigated the predicted targets for five known drugs,

namely imatinib, dasatinib, sertindole, olanzapine and ziprasi-

done. And the molecular hypotheses and experimental evidences

of predictions were provided (Table S5).

Imatinib (DB00619) is an ATP-competitive selective inhibitor

of Bcr-Abl used to treat chronic myelogenous leukemia (CML),

gastrointestinal stromal tumors and a number of other malignan-

cies. In ChEMBL, imatinib (Compound_ID 7083) targeted 9

known kinases, namely hABL1, hABL2, hPDGFRa, hPDGFRb,

hLCK, hKIT, hLYN, hCSF1R and hSYK with IC50 less than

Table 2. The performance of the test set of GPCRs and kinases using different methods by 10 simulation times test of 10-fold cross
validation.

Target Methods Ci (Pa, Pb, …, Pm) Pj (Ca, Cb, …, Cn)

R ER AUC R ER AUC

GPCRs NBI 0.96960.004* 18.860.086 0.98160.001 0.28560.022 270.5621.1 0.97260.002

NWNBI 0.97460.004 18.960.070 0.98160.001 0.28560.022 270.5621.1 0.97260.002

EWNBI 0.97060.004 18.860.072 0.98160.001 0.28360.028 268.4626.6 0.97260.002

DBSI-T 0.48860.014 9.4860.263 0.88560.002 0.21560.037 203.7635.1 0.88560.004

DBSI-C 0.45860.011 8.8860.213 0.87960.002 0.15960.042 151.0639.6 0.87460.004

DBSI-F 0.47660.013 9.2360.260 0.88060.002 0.15860.040 149.9637.9 0.87460.004

DBSI-R 0.42760.011 8.2760.222 0.87960.002 0.16960.035 160.1633.1 0.87460.004

TBSI 0.90760.003 17.660.064 0.96960.001 0.03560.014 33.51613.1 0.57060.007

Kinases NBI 0.86360.007 35.560.302 0.97660.002 0.38060.022 215.0612.4 0.95860.001

NWNBI 0.87760.007 36.160.294 0.97760.002 0.38060.022 215.0612.4 0.95860.001

EWNBI 0.86660.010 35.760.397 0.97660.002 0.36060.025 203.8613.9 0.95560.002

DBSI-T 0.32660.015 13.460.627 0.87860.003 0.20560.022 115.8612.7 0.84660.006

DBSI-C 0.30360.016 12.560.642 0.87260.003 0.14160.016 79.869.3 0.82660.007

DBSI-F 0.27360.011 11.360.465 0.87260.003 0.13760.016 77.769.0 0.82560.007

DBSI-R 0.28060.014 11.560.587 0.87260.003 0.14060.016 78.969.3 0.82760.007

TBSI 0.64560.007 26.660.289 0.90860.005 0.06160.011 34.566.0 0.66060.008

All performances were evaluated based on top 5 predicted lists. NBI, network-based inference; NWNBI, node weighted network-based inference; EWNBI, edge weighted
network-based inference; DBSI-T, drug-based similarity inference with Tanimoto similarity score; DBSI-C, DBSI with Cosine similarity score; DBSI-F, DBSI with Forbes
similarity score; DBSI-R, DBSI with Russell-rao similarity score; TBSI, target-based similarity inference; R, recall; ER, recall enhancement; AUC, the area under the receiver
operating characteristic curve; Ci (Pa, Pb, …, Pm) represents the prioritization of new targets for a given chemical; Pj (Ca, Cb, …, Cn) represents the prioritization of new
chemicals for a given protein. *The standard deviation of the performance measured by 10 independent simulation times test of 10-fold cross validation.
doi:10.1371/journal.pone.0041064.t002
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10 mM (Figure 5) [27]. As given in Table S5, among top 16

predicted kinases of imatinib, 9 ones were predicted correctly with

a successful hit rate of 56.3%. Interestingly, seven new targets,

namely hVEGFR1, hVEGFR2, hSRC, hEGFR, hFGFR1, hFLT3,

and hTIE2, were also predicted for imatinib with high scores.

Among them, hVEGFR2 was predicted with the highest score at

0.812. Deininger et al. reported that the IC50 values of imatinib

were 31.2 mM, 19.5 mM and 10.7 mM for hFGFR1, hVEGFR1

and hVEGFR2, respectively [40]. Our prediction was consistent

with literatures.

Dasatinib (DB01254) is a novel oral dual, multi-target tyrosine

kinase inhibitor, which was approved for chronic myelogenous

leukemia treatment. In ChEMBL, dasatinib (Compound_ID

12304) targeted 19 known kinases, namely hVEGFR2, hp38a,

hp38b, hp38d, hp38g, hSRC, hEGFR, hPDGFRb, hFGFR1,

hLCK, hKIT, hABL1, hHER2, hMEK1, hMEK2, hFYN, hYES1,

Figure 3. Recall metric of the parameter b on the node weighted network-based inference method for test set when assessed the
top five predicted candidate lists. The recall reaches its maximum value at about 0.4 and 0.3 for GPCRs (A) and kinases (B), respectively. The error
bars denote the standard deviation by 10 times independent simulation test.
doi:10.1371/journal.pone.0041064.g003
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hCSF1R and hEPHA2 with the IC50 value less than 10 mM. As

given in Table S5, on top 27 predicted kinases of dasatinib, 19

targets were predicted correctly with a hit successful rate of 70.4%.

Seven new kinases of hVEGFR1, hVEGFR3, hTIE2, hFLT3,

hPDGFRa, hRAF1R, hABL2, and hHER4 were predicted to bind

with dasatinib with high scores. Lombardo et al. demonstrated that

dasatinib inhibit PDGFR in vitro with an IC50 of 28 nM [41]. Chen

et al. reported that dasatinib is a potent inhibitor of PDGFR via

cell-based assay [42]. Quintas-Cardama et al. reported that

dasatinib effectively inhibited several SRC family kinases, includ-

ing SRC (IC50 = 0.55 nM), LCK ((IC50 = 1.1 nM), FYN

(IC50 = 0.2 nM) and YES (IC50 = 0.41 nM) [43]. The data

indicated that our predicted results are in agreement with

literatures.

Sertindole (DB06144) is an oral antipsychotic drug targeted

with dopamine D2, serotonin 5-HT2A and 5-HT2C, and a1-

adrenoreceptors. The clinical trails have confirmed that sertindole

is effective at a low dopamine D2 occupancy level. In the

ChEMBL, sertindole (Compound_ID 85092) targeted 15 known

GPCRs, namely DRD1, DRD2, DRD3, DRD4, A1AA, A1AB, A1AD,

Figure 4. Analysis of the role of weak chemical-protein interactions by exponent l. When l~0, it is unweighted NBI method; when l~1,
it is the EWNBI method. When lw1, it positivelylw1 strengthens the weighted value of strong CPI edges, while 0vlv10vlv1 positivelylw1
strengthens the weighted value of weak CPI edges. Otherwise, a negativel will give the negative effects. The area under receiver operating
characteristic curve (AUC) was yielded for test set by simulation 10 times test, the error bar denotes the standard deviation. GPCRs (A) and kinases
(B).
doi:10.1371/journal.pone.0041064.g004
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A2AA, A2AC, 5HT1A, 5HT1B, 5HT2A, 5HT2C, A2AB and HRH1

with Ki value less than 10 mM (Figure 6). As given in Table S5, in

top 16 predicted GPCRs of sertindole, 15 receptors were predicted

correctly with a hit successful rate of 93.8%. Sertindole was first

marketed in 1996 in several European countries. However, it was

withdraw two years later because of numerous cardiac adverse

effects such as QTc prolongation and the UK database adverse

drug reactions information tracking reported that the rate of

arrhythmias or sudden death was almost 10-times greater for

sertindole than for olanzapine and risperidone [44]. The

molecular mechanism of side effects of sertindole was unknown.

As given in Figure 6, sertindole was predicted to bind with hB1AR

and hB2AR, which were consistent with literature [45].

Olanzapine (DB00334) approved in 1996, is an atypical

antipsychotic agent, which is used to treat both negative and

positive symptoms of schizophrenia, acute mania with bipolar

disorder, agitation, and psychotic symptoms in dementia [38,46].

Olanzapine mainly targeted with dopamine, histamine H1,

muscarinic, 5-HT2 and a1-adrenoreceptors with high binding

affinities. In the ChEMBL, olanzapine promiscuously targeted 22

known GPCRs, namely hDRD1, hDRD2, hDRD3, hDRD4,

hDRD5, hCHRM1, hCHRM2, hCHRM3, hCHRM4, hCHRM5,

hA1AB, hA1AA, hA1AD, hA2AA, hA2AB, hB1AR, hB2AR, hB3AR,

h5HT2A, h5HT2C, h5HT6 and hHRH1 (Figure 6). As given in

Table S5, in top 26 predicted GPCRs of olanzapine, 22 targets

were predicted correctly with a hit successful rate of 84.6%. The

receptors of hA2AC, h5HT1A, h5HT1B, h5HT1D, h5HT1E,

h5HT2B, h5HT7, hHRH2 and hHRH3 were predicted to have

novel interactions with olanzapine (Figure 6). Recently, several

results reported that olanzapine can bind with the receptors of

h5HT1A, h5HT1B, h5HT1D, h5HT1E and h5HT7 with high

binding affinities [45,47].

Ziprasidone (DB00246) is a selective monoaminergic antag-

onist with high affinity for the serotonin Type (5HT1A, 5HT2),

dopamine D2 and H1 histaminergic receptors. It is a psychotropic

agent indicated for the treatment of schizophrenia. In the

ChEMBL, ziprasidone (Compound_ID 89351) targeted 16 known

GPCRs, namely hDRD1, hDRD2, hDRD3, hDRD4, hA1AA,

hA1AD, hA2AA, hA2AB, hA2AC, h5HT1A, h5HT2A, h5HT2B,

h5HT2C, h5HT6, hHRH1 and hCHRM1 with Ki value less than

10 mM (Figure 6). As given in Table S5, in top 20 predicted

GPCRs of ziprasidone, 16 targets were predicted correctly with a

hit successful rate of 80%. The receptors of hDRD5, h5HT1B,

h5HT1D, h5HT7, hCHRM2, hCHRM3, hCHRM4, hCHRM6,

hB1AR and hB2AR were predicted to have new indications with

ziprasidone. Recently, several results reported that ziprasidone can

bind with the receptors of h5HT1B, h5HT1D, h5HT7, hCHRM2,

hCHRM3, hCHRM4, hCHRM6, hB1AR and hB2AR with the high

binding affinities [45,47], which demonstrated the feasibility of our

methods to prioritize new target to known drugs.

Discussion

Potential Application of Our Methods
Herein, we systematically investigated the utility of unweighted

and weighted network-based inference method in prediction of

new targets for old drugs or general ligands. The proposed method

achieved the AUC was about 0.98 and 0.83 for the test set and the

external validation set, respectively. Today, the increased avail-

ability of large scale open access resources on bioactivities of small

molecules has a significant impact on pharmacology facilitated

[48]. Therefore, our methods could provide a fast and effective

strategy to digest the vast amounts of data for CPI prediction and

drug repositioning.

The method proposed in this study fall within the scope of the

emerging field of systems pharmacology [1]. Recently, systems

pharmacology approaches have been applied successfully to

various problems, such as drug repositioning [1,26]. Herein, we

extended our previous work on developing two different weighted

NBI, namely EWNBI and NWNBI for CPI prediction and drug

repositioning. We found that NWNBI method was marginally

higher than NBI with an appropriate parameter optimization. And

the weak interactions hypothesis was first proposed in CPI network

by EWNBI method. To our knowledge, our method could be used

in several biological relevant directions, such as gene-disease

association prediction [49], drug-diseases association prediction

(drug adverse events prediction) [50] etc. by integrating meta-

biochemical networks in the further.

Polypharmacology of Ligands
The resistance of anti-cancer drugs is a large challenge for

cancer therapeutics [51]. Overcoming the resistance mechanisms

may require targeting tumor cells at promiscuous levels, through

either single drugs binding with the multi-targets or cocktails of

several highly selective inhibitors [52]. A big bottleneck for the

cancer research community is how to decipher chemical-protein

interactome, how to optimize the best combinations of targets and

then prioritize those combinations for clinical testing. The

polypharmacology of kinase ligands was encouraged by our results

(Figure 5) that the emerging class of well-tolerated kinase inhibitors

of imatinib and dasatinib, exhibit the multi-target on kinases and

are less selective than initially findings [53]. Today, more than 800

Table 3. The performance of difference inference methods in
the external validation set of GPCRs and kinases.

Tragets Methods Ci (Pa, Pb, …, Pm) Pj (Ca, Cb, …, Cn)

R ER AUC R ER AUC

GPCRs NBI 0.535 2.60 0.769 0.684 3.15 0.693

NWNBI 0.559 2.72 0.756 0.684 3.15 0.693

EWNBI 0.561 2.72 0.764 0.697 3.21 0.691

DBSI-T 0.470 2.28 0.743 0.603 2.77 0.685

DBSI-C 0.472 2.29 0.739 0.604 2.78 0.684

DBSI-F 0.473 2.29 0.739 0.612 2.82 0.686

DBSI-R 0.473 2.30 0.741 0.610 2.81 0.683

TBSI 0.342 1.66 0.639 0.361 1.66 0.593

Kinases NBI 0.502 5.17 0.828 0.222 2.09 0.607

NWNBI 0.427 4.40 0.812 0.222 2.09 0.607

EWNBI 0.459 4.73 0.821 0.159 1.50 0.597

DBSI-T 0.594 6.11 0.847 0.188 1.77 0.573

DBSI-C 0.588 6.06 0.847 0.148 1.39 0.564

DBSI-F 0.595 6.12 0.846 0.142 1.33 0.563

DBSI-R 0.583 6.00 0.846 0.146 1.38 0.563

TBSI 0.061 0.62 0.326 0.082 0.775 0.510

All performances were evaluated based on top 20 predicted lists. NBI, network-
based inference; NWNBI, node weighted network-based inference; EWNBI, edge
weighted network-based inference; DBSI-T, drug-based similarity inference with
Tanimoto similarity score; DBSI-C, DBSI with Cosine similarity score; DBSI-F, DBSI
with Forbes similarity score; DBSI-R, DBSI with Russell-rao similarity score; TBSI,
target-based similarity inference; R, recall; ER, recall enhancement; AUC, the area
under the receiver operating characteristic curve; Ci (Pa, Pb, …, Pm) represents
the prioritization of new targets for a given chemical; Pj (Ca, Cb, …, Cn)
represents the prioritization of new chemicals for a given protein.
doi:10.1371/journal.pone.0041064.t003
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drugs are in clinical development for cancer indications and the

current success rate in bringing drugs to the markets remains only

in the range of 5–8% [2]. Most of drugs which selectively targeted

kinases with high potency in vitro models are failure in the late stage

of clinical trails due to side effects and lacking in vivo activities

[54,55]. As shown in Figure 5, most of experimental drugs of

kinases (gray circle nodes) in DrugBank were predicted to have a

significant promiscuity. These results could be useful for finding

new usages of some failure of drugs and multi-target anticancer

drugs design. For example, imatinib was initially approved for the

treatment of CML, but it was tested in five patients with

hypereosinophilic syndrome [56].

Figure 5. Discovered chemical-protein interactions (CPI) bipartite networks among 267 FDA approved or experimental drugs and
130 kinases. Circle and square nodes correspond to drugs and kinases, respectively. A gray line represents the old CPI annotated in the DrugBank
and KEGG. The red line represents the predicted CPI. The red arrow line represents the new predicted CPI which is validated by literatures. The size of
the drug node is the fraction of the number of targets that the drug linked. The size of the target node is the fraction of the number of drugs that the
target linked. Color codes are given in the legend. Drug nodes (circles) are colored according to their Anatomical Therapeutic Chemical Classification.
This graph and Figure 6 were prepared by Cytoscape (http://www.cytoscape.org/).
doi:10.1371/journal.pone.0041064.g005
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The features of polypharmacology are not restricted to the

kinases inhibitors. Anti-psychotics drugs, such as sertindole,

olanzapine and ziprasidone also promiscuously targeted with

GPCRs rather than individual one. As given in Figure 6, the

therapeutic effects of sertindole, olanzapine and ziprasidone mainly

targeted three dopaminergic (D1, D2 and D3) and three serotonin-

ergic (5-HT1A, 5-HT1D and 5-HT2A) receptors. But they often lead

to several side effects by binding with adrenergic and histaminergic

receptors, such as QTc prolongation [45]. In this study, it is worth

acknowledged that NBI methods can effectively help to prioritize

the new candidate CPI, decipher potential molecular mechanism of

off-targets and drug repositioning.

Weak Interactions between Chemicals and Proteins
Herein, for the first time we identified the evidence of weak

interactions in CPI network. In fact, multiple weak interactions

cannot be ignored in polypharmacological actions [57]. It is

estimated that most (more than 80%) of the cellular proteins,

signaling and transcriptional networks are in a low-affinity or

transient ‘‘weak linkage’’ with each other [58]. Weak physical

interactions with low binding affinity play critical roles in molecular

recognition among biological systems, from the classic example of

protein folding to recent discoveries in metabolism, gene regulation

and signal transduction [59]. For example, the binding affinity

between enzyme and the alternative substrate is usually low [60].

Figure 6. Discovered chemical-protein interaction (CPI) bipartite network among 139 FDA approved or experimental drugs and 55
GPCRs (Table S4). Circle and square nodes correspond to drugs and GPCRs, respectively. The definition of nodes and edges were given in the
caption of Figure 5.
doi:10.1371/journal.pone.0041064.g006
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The hypothesis of weak interactions for drug therapeutics had been

applied for more than two thousand years in Chinese Traditional

Medicine [61]. A drug with low affinity and multi-target may have

high therapeutic value with fewer side effects than one with high

affinity and single target. For example, sorafenib was designed as a

potent nanomolar (nM) inhibitor of BRAF which a protein

implicated in the survival of melanoma cells. Unfortunately, it

failed in clinical trial due to its low anti-melanoma efficacy [62]. In

contrast to, low affinity and multi-target noncompetitive NMDA

receptor antagonists developed for treatment of Alzheimer’s disease,

may have fewer side effects than some high affinity and single target

drugs [63]. The detailed assessment of weak CPI interaction is a hot

topic in drug discovery and complex network, but it was beyond the

range of this article. Our groups are actively investigating this

important issue.

Conclusions
In summary, we proposed two different weighted NBI methods

for CPI prediction. The high performance was yielded using our

methods. Comparing with conventional ligand and receptor-based

methods, NBI method only used CPI network topology similarity

by simultaneously exploiting both topological and functional

modularity to prioritize new targets for a given drug or prioritize

new drugs for a given target, which did not need any 2D or 3D

structural information of targets and drugs. Our methods will

generate a set of predicted candidate miss linked CPI. The

biologist can then follow up on the new high scoring CPI for

further experimental assay. Therefore, our methods open new

avenue for CPI identification.

The weak links hypothesis had been proposed in several

biochemical networks and social network etc. In this study, the

weak links hypothesis in CPI network was first proposed by

EWNBI method. Enhance and diminish stronger or weaker CPI

edges all decreased the predict accuracy. The maximum predictive

accuracy was yielded when stronger and weaker CPI edges

achieved a balance. These computational polypharmacology

perspectives could let people beef up efforts for CPI prediction

and drug repositioning.
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keys on the original external validation set (Table S3) of GPCRs

and kinases.

(PDF)

Table S5 The molecular hypothesis, experimental evi-
dence and predicted target list for five known drugs,
namely imatinib, dasatinib, sertindole, olanzapine and
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