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Abstract

Motivation: Technological advances in metabolomics have made it possible to monitor the con-

centration of extracellular metabolites over time. From these data, it is possible to compute the

rates of uptake and excretion of the metabolites by a growing cell population, providing precious

information on the functioning of intracellular metabolism. The computation of the rate of these ex-

change reactions, however, is difficult to achieve in practice for a number of reasons, notably noisy

measurements, correlations between the concentration profiles of the different extracellular me-

tabolites, and discontinuties in the profiles due to sudden changes in metabolic regime.

Results: We present a method for precisely estimating time-varying uptake and excretion rates

from time-series measurements of extracellular metabolite concentrations, specifically addressing

all of the above issues. The estimation problem is formulated in a regularized Bayesian framework

and solved by a combination of extended Kalman filtering and smoothing. The method is shown to

improve upon methods based on spline smoothing of the data. Moreover, when applied to two ac-

tual datasets, the method recovers known features of overflow metabolism in Escherichia coli and

Lactococcus lactis, and provides evidence for acetate uptake by L. lactis after glucose exhaustion.

The results raise interesting perspectives for further work on rate estimation from measurements

of intracellular metabolites.

Availability and implementation: The Matlab code for the estimation method is available for down-

load at https://team.inria.fr/ibis/rate-estimation-software/, together with the datasets.

Contact: eugenio.cinquemani@inria.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the last two decades powerful new technologies for metabolo-

mics enabling the high-throughput quantification of metabolites

have emerged. These technologies, usually based on mass spectrom-

etry (MS) or nuclear magnetic resonance (NMR), may be directed

with high precision at specific classes of metabolites (targeted

approaches) or provide a global scan of the entire metabolome

(untargeted approaches) (Patti et al., 2012). Extracellular metabol-

ites, accumulating in or disappearing from the growth medium, are

particularly interesting. Their time profiles, while being relatively

easy to measure, provide a footprint of intracellular physiology (Kell

et al., 2005). In particular, the time-varying concentrations of extra-

cellular metabolites allow the computation of uptake and excretion

rates that can be related to intracellular metabolic fluxes by means

of flux balance models and metabolic flux analysis (Antoniewicz,

2013; Mo et al., 2009). A variety of applications exploiting the

time-course profiles of extracellular metabolites can be found in the

literature, increasing our fundamental understanding of the func-

tioning of metabolic networks or informing efforts to reengineer

these networks for biotechnological purposes (e.g. Behrends et al.

2009; Morin et al. 2016; Taymaz-Nikerel et al. 2016).

The estimation of time-varying uptake and excretion rates from

measurements of extracellular metabolites is a challenging problem

for a number of reasons. First, the available data are noisy, even

when taking into account continuous progress in metabolomics

methods. Second, the time-course profiles of different extracellular
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metabolites are often strongly correlated. One obvious source of

correlation is the proportionality of uptake and excretion rates to

the size of the (growing) population of cells consuming or producing

the metabolites (Stephanopoulos et al., 1998). Third, the time-

course profiles of extracellular metabolites are subject to discontinu-

ities, due to sudden changes in the functioning of metabolism. For

instance, in many bacteria catabolite repression leads to the sequen-

tial utilization of carbon sources, generally favouring carbon sources

that sustain a higher growth rate (Kremling et al., 2015).

Addressing the above issues in a principled manner requires an

explicit model relating exchange reactions, concentrations of extra-

cellular metabolites and the size of the cell population. Moreover,

we need sound statistical methods for the estimation of the rates

from measurements of metabolite concentrations and biomass.

Most existing approaches assume the population to be in a state of

balanced exponential growth, in which the cell population accumu-

lates at a constant growth rate and in which the rates of exchange re-

actions are constant. This much simplifies the problem as it reduces

rate estimation to a standard linear regression problem (see Murphy

and Young 2013 and references therein).

The more general situation in which growth of the microbial

population is not balanced has received some attention under the

headers of dynamic metabolic flux analysis and dynamic flux bal-

ance analysis (Antoniewicz, 2013; Mahadevan et al., 2002).

Existing methods for estimating time-varying uptake and excretion

rates under these conditions are mostly based on data smoothing

using moving averages or splines, followed by explicit computation

of the rates by differentiation (Herwig et al., 2001; Llaneras and

Pic�o, 2007; Niklas et al., 2011). Unfortunately, these methods suffer

from high sensitivity to noise. This has motivated input estimation

methods that do not require differentiation, but fit a parameterized

rate function to the concentration data (e.g. Leighty and

Antoniewicz 2011). For our purpose, however, these approaches

come with a number of drawbacks, in particular the restriction to a

specific class of input functions, no exploitation of information

shared between correlated concentration profiles, and no (auto-

mated) detection of dynamic changes in metabolic regimes.

The aim of this article is to develop a method for precisely esti-

mating time-varying uptake and excretion rates from measurements

of extracellular metabolite concentrations, specifically addressing all

of the above issues in a comprehensive manner. In order to achieve

this, we exploit the fact that the estimation of rates of exchange re-

actions is an instance of more general input estimation problems

that have been extensively studied in control theory and for which

powerful solution methods exist (De Nicolao et al., 1997; Pillonetto

and Bell, 2007). We follow a regularized Bayesian approach, where

the unknown rate profiles are modelled as instances of a random

process (Rasmussen and Williams, 2006). In order to capture fast

changes in metabolic dynamics, we propose the use of time-varying

statistical priors on the unknown rate profiles that are adaptively

and automatically determined by suitable data preprocessing,

including detection of metabolite depletion for the identification of

metabolic regime changes. The resulting estimation problem is then

solved by a dynamical smoothing approach, here developed by the

combination of extended Kalman filtering and smoothing

(Jazwinski, 1970; Kailath et al., 2000). Our approach generalizes

upon related work in bioreactor process control, where Kalman fil-

ters have been used for on-line estimation of growth rate and reac-

tion rates (Bastin and Dochain, 1990; Venkateswarlu, 2005). Since

the data are processed off-line in our case, the additional smoothing

step ensures full exploitation of the data and large improvements

over standard filtering.

The test of our extended Kalman smoothing (EKS) method to

synthetic data with realistic noise levels and a representative number

of samples shows excellent performance, superior to results obtained

with an approach based on spline smoothing. We also apply our ap-

proach to datasets of measured time-varying extracellular metabol-

ite concentrations in Escherichia coli and Lactococcus lactis. The

method proves capable of estimating the rates of substrate uptake

and by-product excretion with high precision, uncovering notably

acetate uptake after glucose depletion in a L. lactis fermentation

experiment.

The approach developed in this article provides a comprehensive

solution to the three main difficulties of estimating time-varying

rates of exchange reactions from extracellular metabolite data—

noise, correlated concentration profiles, and discontinuities—using

a method with a solid mathematical foundation and wide applicabil-

ity. An interesting further development would be the generalization

of the approach to measurements of intracellular metabolite concen-

trations, for which increasingly powerful methods operating in real

time are becoming available (Link et al., 2015).

2 Problem statement

2.1 Dynamic model of cellular growth in a bioreactor
We consider experiments where the growth of a cellular population

in a bioreactor (biomass) and the evolution of the concentration of n

extracellular metabolites are monitored over time. Let b(t) denote

biomass concentration and ci(t), with i¼1,. . .,n, the concentration

of the ith metabolite at time t. Biomass and metabolite dynamics are

modelled as (Fig. 1)

_b tð Þ ¼ l tð Þb tð Þ; (1)

_ci tð Þ ¼ ri tð Þb tð Þ; i ¼ 1; . . . ; n; (2)

where l(t) denotes microbial growth rate at time t and ri(t) is the

rate of excretion (if positive) or uptake (if negative) of the ith metab-

olite per unit of biomass. Equations (1) and (2) form an unstructured

model of a growing cell population, ignoring the functioning of in-

ternal metabolism but describing its interactions with the environ-

ment (Stephanopoulos et al., 1998). The model is based on the

assumption that the only causes of changes in concentrations ci are

due to the uptake and excretion rates, thus leaving aside degradation

of extracellular metabolites and inflow and outflow of the medium

in the bioreactor (Bastin and Dochain, 1990).

The model of Equations (1) and (2) is a nonlinear system of

nþ1 coupled Ordinary Differential Equations (ODEs), with state

vector x ¼ b c1 � � � cn½ �T , input vector u ¼ l r1 � � � rn½ �T

(dependency of the variables on time t is often omitted from nota-

tion for brevity), and initial conditions x(t0) at the starting time t0 of

the experiment. The input profile u(�) is assumed to be piecewise

continuous, so that the solution of the ODE system is well deter-

mined, but not necessarily smooth.

We consider that the different quantities xi(t), with

i¼1,. . .,nþ1, are measured experimentally at time instants t that

b (t )

ri (t )
ci (t)

Fig. 1. Schematic representation of the model of Equations (1) and (2)
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may differ across i. Let T i be a set of measurement times for xi. For

i ¼ 1; . . . ; nþ 1, measurements yi of xi are modelled as

yi tð Þ ¼ xi tð Þ þ ei tð Þ; t 2 T i; (3)

where ei(t) denotes random measurement error with mean zero and

standard deviation ri(t)>0. We assume that ei(t) is statistically inde-

pendent of ei0 t0ð Þ for any t 2 T i and t0 2 T i0 such that i 6¼ i0 or t 6¼ t0.

In a compact notation, the resulting system is

_x tð Þ ¼ fx x tð Þ; u tð Þð Þ; t � t0; (4)

y tð Þ ¼ Cx tð Þx tð Þ þ e tð Þ; t 2 T ; (5)

with fx x; uð Þ ¼ x1 � u and T ¼ T 1 [ . . . [ T nþ1. Because the quantities

observed at different time instants may not be the same, y(t) is a vector

that changes size over time t. At a time t such that t 2 T i1 \ . . . \ T i‘ ,

with fi1; . . . ; i‘g � f1; . . . ; nþ 1g a set with distinct entries, one has

that y ¼ yi1 � � � yi‘½ �T ; e ¼ ei1 � � � ei‘½ �T , and Cx tð Þ is com-

posed of rows i1; . . . ; i‘ of an (nþ1)-dimensional identity matrix.

2.2 Reconstruction of excretion and uptake rates
Let Y ¼ fY1; . . . ;Ynþ1g be the set of all measurements

Yi ¼ fyi tð Þ : t 2 T ig, with i ¼ 1; . . . ;nþ 1. The challenge we ad-

dress is the reconstruction of the rate profiles u(t) over a time inter-

val of interest given data Y. The problem is per se ill-posed (Bertero,

1989; De Nicolao et al., 1997), since infinitely many profiles u(t)

may perfectly explain the data for a corresponding choice of initial

conditions x t0ð Þ, and the same would hold were x t0ð Þ known. In

particular, arbitrarily irregular (“wiggly”) profiles u may fit slowly

changing measurements of the xi. To cope with this, methods based

on direct data fitting, such as spline interpolation of every observed

profile Yi, are often used to compute rate estimates by differenti-

ation of the fits (Herwig et al., 2001; Llaneras and Pic�o, 2007;

Niklas et al., 2011). Unfortunately, these methods may produce un-

realistic reconstructions as they inappropriately account for meas-

urement noise and may loose information carried by the coupling of

the ODEs through the biomass b.

We therefore recast the problem into the framework of regular-

ized estimation (Wahba, 1990). In this framework, reconstruction is

typically expressed as an optimization problem

min
u2U
Q uð Þ þ kR u;Yð Þ; (6)

where U is a convenient class of candidate profiles, Q uð Þ � 0 is a

measure of the regularity of the candidate solution u, and R u;Yð Þ
� 0 quantifies the accuracy by which the state profile predicted by

(4) in response to u explains the data (for ease of exposition, here x

t0ð Þ is considered fixed). Parameter k � 0 trades off regularity of u

for accuracy of the data fit. In practice, existing methods consider a

parametric class of profiles U ¼ fuh : h 2 Hg, and (6) is solved in

terms of the unknown parameters h characterizing the input profile

(Schelker et al., 2012). While this approach guarantees well-behaved

reconstruction of u, the problem remains challenging due to

switches in metabolic regime following the depletion of a growth

substrate. In practice, this entails abrupt changes in the uptake, ex-

cretion, and growth rates u, i.e. extremely fast dynamics that are

hard to detect under the necessary regularity assumptions on u, un-

less explicitly accounted for, e.g. by an ad hoc choice of U and

related definition of Q and k.

To address all of these issues, we propose a reconstruction

method formulated as a Bayesian regularized estimation problem

(Pillonetto and Bell, 2007; Rasmussen and Williams, 2006). The

method is based on automatic detection of the switching times and

subsequent adaptive choice of the regularity of u. The contrasting

objective that this approach is capable to achieve is the reconstruc-

tion of slowly-varying rates within a given metabolic regime, to-

gether with the detection of abrupt changes in growth, uptake and

excretion due to metabolic switches. Moreover, the solution is

nonparametric, i.e. both the definition of a parametric class of can-

didate input profiles uh and the corresponding solution of a (typic-

ally large) parameter optimization problem are circumvented

by means of a dynamic optimization approach. Different from the

recent work of Swain et al. (2016) for the estimation of the deriva-

tive of an experimental profile, here we address the simultan-

eous estimation of several unknown rate profiles, with explicit

account of nonstationary dynamics, by means of a dynamical

approach that is naturally suited to a vast class of nonlinear

dynamics.

3 Estimation method

3.1 Bayesian statement of the estimation problem
In a Bayesian setting, regularized estimation starts by placing a

statistical prior on the unknown profiles that assigns larger

probability to smoother solutions. Consider one entry ui of

u ¼ u1 � � � unþ1½ �T . One models the unknown profile ui tð Þ as the

outcome of a random Gaussian process _vi ¼ ciwi and _ui ¼ vi, where

wi is standard white Gaussian noise. Intuitively, modelling ui as this

double-integral of white noise implies that ui is (with probability 1)

a continuously differentiable profile, with variability (i.e. probability

distribution of its derivative) determined by the magnitude of ci > 0.

In order to account for rates that may undergo faster changes in spe-

cific periods of time (switches in metabolic activity), we let ci be a

function of time, where larger values of ci tð Þ around a time point

allow for rapid changes of ui around that time. Taking this model

for every i ¼ 1; . . . ;nþ 1, and assuming wi and wi0 (i.e. ui and ui0 ) to

be mutually independent for i 6¼ i0, we get the 2 � nþ 1ð Þ-dimen-

sional linear system of ODEs

_n tð Þ ¼ Ann tð Þ þ Bn tð Þw tð Þ; (7)

u tð Þ ¼ Cnn tð Þ (8)

where n ¼ v1 u1 � � � vnþ1 unþ1½ �T ; w ¼ w1 � � � wnþ1½ �T

is a standard Gaussian noise vector process with uncorrelated

entries, and An; Bn tð Þ; Cn are equal to

0 0

1 0

. .
.

0 0

1 0

2
666666664

3
777777775
;

c1 tð Þ

0

. .
.

cnþ1 tð Þ

0

2
666666664

3
777777775
;

0 1

. .
.

0 1

2
664

3
775;

in the same order. With this characterization of the unknown rate

vector, estimation of u at any time t given data Y can be formulated

as the computation of the conditional expectation bu tð Þ ¼ E u tð ÞjY½ �.
In practice, the resulting estimate depends on the choice of the ci.

For a constant ci, it can be shown that this approach leads to an esti-

mation problem that is equivalent to a Tikhonov regularization

problem in the form of Equation (6), where the role of the
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regularization factor k is played by the relative magnitude of the ci

and the ri (De Nicolao et al., 1997; Wahba, 1990). Here, however,

we let ci tð Þ vary in time so as to distinguish (long) periods with slow

rate changes from (short) periods of steep rate transitions. In the fol-

lowing section, we discuss how to (approximately) compute bu tð Þ for

assigned functions ci tð Þ. We then discuss how a suitable choice of

ci tð Þ is made by appropriate data preprocessing.

3.2 Solution via nonlinear Kalman smoothing
We start by considering the stochastic differential equation system

obtained by the composition of Equations (4)–(5) and (7)–(8).

Denoting z ¼ xT nT
� �T

, one gets

_z tð Þ ¼ f z tð Þð Þ þ x tð Þ; t � t0; (9)

y tð Þ ¼ C tð Þz tð Þ þ e tð Þ; t 2 T ; (10)

with f zð Þ ¼ fxðx;CnnÞ TðAnnÞT
h iT

and C tð Þ ¼ Cx tð Þ 0‘�2� nþ1ð Þ
� �

,

where 0‘�2� nþ1ð Þ is a zero matrix of dimensions compatible with Cx tð Þ.
In addition, x is zero-mean white Gaussian noise with covariance ma-

trix Q tð Þ ¼ B tð ÞB tð ÞT , where B tð Þ ¼ 0 nþ1ð Þ� nþ1ð Þ Bn tð ÞT
h iT

, while

e is a zero-mean random measurement error vector with covariance

matrix R tð Þ ¼ diag r2
i1
; . . . ; r2

i‘

� �
(recall that i1; . . . ; i‘ are the entries of

x measured at time t).

Together with a priori statistics for the initial state x t0ð Þ,
Equations (9) and (10) describe z as a continuous-time stochastic dy-

namic system with sampled measurements. By virtue of this, given

that u is part of the system state, computation of bu can be performed

by a dynamical smoothing approach. Here, because the system dy-

namics are nonlinear, optimal linear Kalman smoothing does not

apply, and an approximate solution must be sought. Among many

existing approaches (Doucet et al., 2001; Julier and Uhlmann,

2004), we opt for a smoothing approach based on a forward pass in

the form of an Extended Kalman Filter (EKF, Jazwinski 1970), fol-

lowed by a backward correction step in the form of a Bryson-Frazier

smoother (Cox 1964; Kailath et al., 2000).

The overall procedure, which we refer to as EKS, works as fol-

lows. Let tj, with j ¼ 0; . . . ;m, be the elements of T in increasing

order, i.e. the sequence of measurement times. For j ¼ 0; . . . ;m,

let bz�j ¼ E z tj

� �
jy t0ð Þ; . . . ; y tj�1

� �� �
; bzj ¼ E z tj

� �
jy t0ð Þ; . . . ; y tj

� �� �
andbzþj ¼ E z tj

� �
jy t0ð Þ; . . . ; y tmð Þ

� �
be the optimal Bayesian one-step pre-

diction, filtered, and smoothed estimate of z at measurement times tj,

in the same order, and let P�j , Pj and Pþj be the corresponding esti-

mation error covariance matrices (Jazwinski, 1970). Recall that

z comprises both x and u, i.e. the above quantities provide optimal-

prediction, filtered, and smoothed estimates of state x and rates u.

Starting from a priori mean bz�0 and covariance matrix P�0 of the initial

state z t0ð Þ, the following filtering iteration provides approximate

computation of bz�j and bzj for j ¼ 0; 1; . . . ;m:

• Measurement update: Compute

bzj ¼ bz�j þGj y tj

� �
� C tj

� �bz�j� �
;

Pj ¼ I �GjC tj

� �� �
P�j I �GjC tj

� �� �T þGjR tj

� �
GT

j ;

with Gj ¼ P�j C tj

� �T
S�1

j and Sj ¼ C tj

� �
P�j C tj

� �T þR tj

� �
.

• Prediction: If j < m, compute bz�jþ1 and P�jþ1 as the solutions of

_z tð Þ ¼ f z tð Þð Þ; z tj

� �
¼ bzj; (11)

_P tð Þ ¼ F tð ÞP tð Þ þ P tð ÞF tð ÞT þQ tð Þ; P tj

� �
¼ bPj (12)

at time tjþ1, where F(t) is the Jacobian of f(x) evaluated along the so-

lution of Equation (11).

Note that bzþm ¼ bzm and Pþm ¼ Pm by definition. Then, for j<m, a

backward iteration provides the computation of the bzþj from the results

of the filtering pass with the aid of additional recursively computed

quantities kj and Kj. Defining km ¼ C tmð ÞTS�1
m y tj

� �
� C tj

� �bz�m� �
and

Km ¼ C tmð ÞTS�1
m C tmð Þ, for j ¼ m� 1;m� 2; . . . ; 0:

• Smoothing: Compute

kj ¼ WT
j kjþ1 þ C tj

� �T
S�1

j y tj

� �
� C tj

� �bz�j� �
; (13)

Kj ¼ WT
j Kjþ1Wj þ C tj

� �T
S�1

j C tj

� �
; (14)

bzþj ¼ bz�j þ P�j kj; (15)

Pþj ¼ P�j � P�j KjP
�
j ; (16)

where Wj ¼ Ujþ1 � Ujþ1P�j C tj

� �T
S�1

j C tj

� �
and Ujþ1 is the Jacobian

of the solution at time tjþ1 of Equation (11) with respect to the ini-

tial condition z tj

� �
.

For every j, Ujþ1 can be calculated by means of so-called sensitiv-

ity equations (Khalil, 2002). Because sensitivity equations and the

solution of (12) depend on the solution of (11) in-between time

points, in practice, the quantities Ujþ1; P�jþ1 and bz�jþ1 are simultan-

eously calculated (and stored) at every iteration j of the filtering pass

by the solution of a single augmented ODE system.

The forward sweep (filtering and prediction) is a standard imple-

mentation of the EKF for continuous dynamic systems with sample

measurements (Jazwinski, 1970). Yet, the use of a time-varying ma-

trix Q(t) exploiting the time-varying smoothing profiles ci tð Þ is non-

standard. The backward sweep (smoothing) described here is a

generalization of the method in Cox (1964) to the case of continu-

ous dynamics. For the forward pass, which is critical in ensuring

convergence of the approximate solution, EKF showed good per-

formance at very little computational expense. Yet, for especially

sparse data sets, a preliminary data interpolation step adapted to the

system dynamics is also possible (Supplementary Material S1). Note

that the approach is modular, in the sense that more advanced filter-

ing schemes (Doucet et al., 2001; Julier and Uhlmann, 2004) could

be used in place of EKF to generate the forward predictions bz�j and

P�j used in the smoothing sweep to produce the final estimates bzþj
and Pþj .

The above procedure computes estimates bzþj at measurement

times. Estimates in-between measurement times are easily obtained by

including in T additional times of interest, and a simple adaptation of

the corresponding iterations. The procedure relies on knowledge of

the measurement uncertainties ri entering matrix R at the various

measurement times, of the profiles ci �ð Þ eventually defining the time-

varying matrix Q �ð Þ, and on given a priori initial state statistics bz�0
and P�0 . While we assume that the ri are given, in the following sec-

tion we discuss how the ci (which are typically not known) as well asbz�0 and P�0 (which are most often partially known) can be determined

from suitable data preprocessing. From now on, we will denote the

EKS estimates of u and x at a generic time t as bu tð Þ and bx tð Þ, and the

corresponding estimation error covariance matrices as Px tð Þ and

Pu tð Þ. From the latter matrices, credibility (i.e. Bayesian confidence)

intervals Xa
i tð Þ and Ua

i tð Þ for the estimates of x and u, such that

P xi tð Þ 2 Xa
i tð Þ

� �
¼ a and P u tð Þ 2 Ua

i tð Þ
� �

¼ a, are easily computed.

i304 E.Cinquemani et al.



For a ¼ 95%, in particular, Xa
i tð Þ ¼ bxi62 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Px tð Þi;i
� �r

and

Ua
i tð Þ ¼ bui62 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pu tð Þð Þi;i

q
.

3.3 Detection of switches and filter tuning
In our approach, the choice of Bayesian priors for the estimated

rates is the result of two steps, the determination of smoothing fac-

tors for slow and fast dynamics, and the detection of regions where

fast dynamics take place. In the interest of affordable computational

complexity, these two steps are carried out separately and are finally

combined into the definition of the smoothing profiles ci �ð Þ.

3.3.1 Calculation of smoothing factors and initial state statistics

Here, we discuss the automated choice of appropriate smoothing

profile ci and quantities z�0 and P�0 by data preprocessing. This is

based on a (not necessarily accurate) pre-estimation of state xi and

rate ui profiles from data Yi, separately for every i. The same proced-

ure will also be used later on to benchmark the performance of our

EKS estimation procedure.

Consider the case i¼1 first. Given data Y1 at times T 1, a rough

estimate of b tð Þ ¼ x1 tð Þ over the time period spanned by T 1 can be

drawn by spline interpolation. We use cubic smoothing splines, so

that our interpolation x1 tjkð Þ depends on a smoothing parameter k.

In order to ensure an appropriate choice of k, we resort to the fol-

lowing cross-validation procedure. For a candidate k > 0, we parti-

tion data Y1 into L groups Yk
1 of measurements taken on a set of

T k
1 � T 1 subsequent times, with k ¼ 1; . . . ;L. For every k, we per-

form smoothed spline interpolation using all data Yk0
1 with k0 6¼ k,

and compute �k kð Þ, the sum of squared residuals of the interpolation

at the validation times T k
1. The resulting index � kð Þ ¼ �1 kð Þ þ � � �

þ�L kð Þ quantifies the overfitting (lack of predictivity) of the spline

interpolations (the larger the � kð Þ, the worse the interpolation). We

choose the value of k that optimizes � kð Þ by numerical minimization.

By this optimized smoothing parameter, say ~k1, we finally obtain

the optimized smoothing interpolation ~x1 tð Þ ¼ x1 tj~k1

� �
. Pre-

estimates of the rate profile u1(t) are then obtained by means of

Equation (1), i.e. ~u1 tð Þ ¼ d~x1 tð Þ=dtð Þ= ~x1 tð Þð Þ.
Because of the homogeneity of the smoothing strength over the

whole time span, it is expected that estimates of state and rate pro-

files of appropriate regularity are obtained at all times except at the

few rapid transitions from one regime to another, where over-

smoothing occurs. By this, ~u1 tð Þ provides us with the necessary in-

formation on how to choose the smoothing profile c1 tð Þ. Concretely,

this is obtained by the following method of general applicability.

Recall that, for EKS purposes, u1 is modelled as a twice-integrated

white noise process. For a constant c1 over the time interval

t; t þ s½ Þ, the increment u1 t þ sð Þ � u1 tð Þ has mean zero and stand-

ard deviation equal to c1 � s3=2=
ffiffiffi
3
p

. Because this standard deviation

defines the regularity of ~u1, and because the corresponding ~u1 t þ sð Þ
�~u1 tð Þ are expected to be of the right order in-between metabolic

switches, an appropriate choice of c1 tð Þ within these periods is such

that the standard deviation of u1 t þ sð Þ � u1 tð Þ equals the average

value, say D, of j~u1 t þ sð Þ � ~u1 tð Þj over a grid of times t with sam-

pling period s. Upon computation of D from ~u1, this leads to the def-

inition c1 tð Þ ¼ c
�

1, with c
�

1 ¼ D= s3=2=
ffiffiffi
3
p� �

, for all times t in-between

switches. Finally, in order to capture proportionally faster dynamics,

within periods of fast metabolic changes the smoothing factor is set

to c1 tð Þ ¼ c11 , with c11 ¼ 103c
�

1.

For i 6¼ 1, a nearly identical procedure is followed. For every i, a

cross-validated spline interpolation is operated on data Yi, obtaining

an optimized estimate ~xi tð Þ (with its own parameter ~k i). Then, using

the previous biomass data interpolation ~x1 tð Þ, rate pre-estimates are

obtained with Equation (2) as ~ui tð Þ ¼ d~xi tð Þ=dtð Þ= ~x1 tð Þð Þ. Finally,

c
�
i and c1i are set as a function of ~ui as described above.

Pre-estimates ~xi and ~ui, with i ¼ 1; . . . ; nþ 1, also allow us to fix

the initial state statistics bz�0 and P�0 . More precisely, entries of bz�0
corresponding to xi (resp. to ui) are set equal to the initial value of ~xi

(resp. of ~ui), whereas all other entries are set to 0. From this, P�0 is

set to be a diagonal matrix with diagonal entries defined element-

wise by minf bz�0� �2
;Dg, with D big enough. This ensures that priors

are sufficiently weak, in order to favour convergence of the EKS

without constraining a priori the resulting estimates.

3.3.2 Detection of switches and definition of the smoothing profiles

Switching times are automatically detected by direct processing of

the measurements. We exploit the fact that concentrations ci of

some metabolites dropping to zero are typically associated with

changes of the metabolic regime. In accordance with this, for every

i, a time tj 2 T i is declared a switching time if yi tj

� �
	 2 � ri tð Þ and

the observations yi tj�1

� �
; yi tj�2

� �
; . . . ; yi tj�J

� �
are above the same

threshold.

If a switch at time tj is detected, the time period where rate

changes are expected to be fast is set to tj�1; tj

� �
. Over this switching

period, because a drop of ci can induce sudden rate changes in all

metabolites, ci0 tð Þ is set to c1i0 for i0 ¼ 1; . . . ;nþ 1. Note that the re-

sulting smoothing profiles constitute Bayesian priors that drive the

estimation procedure toward estimates with regularity properties of

the right order. The actual degree of smoothness and steepness of es-

timates at sudden metabolic changes is then inherently adjusted by

the EKS procedure.

Note that failure to detect a metabolic switch, e.g. due to lack of

measurements for critical metabolites, will not spoil the estimation

procedure overall, but will return rate estimates that vary at a slow

pace at metabolic changes, prompting for either a manual definition

of switch times, or a more appropriate experiment design.

3.4 Implementation
The estimation method described in the previous section, comprising

data-driven tuning of the EKS and the EKS itself, has been imple-

mented in Matlab. The software takes as input data Y1; . . . ;Ynþ1,

measurement times T 1; . . . ;T nþ1, error levels r1; . . . ; rnþ1, and per-

forms tuning as well as estimation in a completely automated fash-

ion. It returns full state (i.e. biomass, concentration and rate)

estimated profiles and estimation error covariances, as well as the

estimation settings (notably smoothing factor and switch times).

Custom settings (for instance, modifications of the output settings)

may be specified as well. A more detailed description of the software

and its usage is provided in Supplementary Material Section S6.

4 Validation on simulated data

In order to validate the estimation method of Section 3, we now dis-

cuss its application to simulated data, so as to compare the esti-

mated reaction rates with the actual reaction rates used for

generating the data. As a concrete example, we will consider the

phenomenon of overflow metabolism and diauxic growth. Overflow

metabolism is a recurrent phenomenon in microorganisms occurring

in situations where a primary growth substrate is available in excess

and inefficiently used by the cells, in the sense that secondary sub-

strates are secreted during growth on the primary substrate. Once

the primary substrate has been depleted, growth continues on the se-

cond substrate, often at a lower rate (Kremling et al., 2015; Paczia

et al., 2012). A prototypical example of overflow metabolism
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leading to diauxic growth is aerobic growth of E. coli in minimal

medium with glucose, leading to an overflow of acetate that is uti-

lized after glucose exhaustion, giving rise to a so-called acetate

switch (Enjalbert et al., 2013; Wolfe, 2005). The simulated experi-

ment in this section is much similar to the actual experiments con-

sidered in the following section.

The dynamics of the growing microbial population in the bio-

reactor and of the extracellular metabolite concentrations, the pri-

mary and secondary substrates, are described by Equations (1) and

(2) with n¼2. The simulated rates are piecewise constant functions

of environmental substrate concentrations. Starting from �b ¼ b 0ð Þ
> 0; �c1 ¼ c1 0ð Þ > 0 and �c2 ¼ c2 0ð Þ � 0, the primary substrate rate

r1 tð Þ takes value �r1 < 0 (uptake) until time t¼T1 where c1 tð Þ hits

0, and zero afterwards. The secondary substrate rate r2 tð Þ takes

value �r2 > 0 (excretion) until time T1, then it switches to r
2
< 0

(uptake) until time t¼T2 where c2 tð Þ hits 0, and zero afterwards.

Biomass growth rate takes value �l > 0 until time T1 (growth on first

substrate), then switches to l, with �l > l > 0 until time T2 (growth

on second substrate), and to 0 afterwards (growth arrest). We simu-

lated measurements taken at times T 1 ¼ ftj ¼ j � T; j ¼ 0; . . . ; 3mg
for biomass, and at sparser times T iþ1 ¼ ftj ¼ j � 3T; j ¼ 0; . . . ;mg,
for the primary and secondary substrates. Random measurement

error is added in accordance with Equation (3) with time-

homogeneous standard deviations rb, rc1
; rc2

. The simulated data

are shown in Figure 2a and also separately in Supplementary

Material Section 2.1.

Figure 2a and b shows the detected depletion of substrates and

the EKS estimates of x and u obtained with fully automated filter

tuning. Detection of switches at times T1 (depletion of the primary

substrate) and T2 (depletion of the secondary substrate) is visibly

correct in panel (b), and in absence of further information, poten-

tially fast rate changes are authorized in the time interval between

the last measurement above and the first below the switching thresh-

old. This gives rise to the rate estimates bu displayed in Figure 2b,

with a smooth, slowly-varying profile except within the switching

periods, where transitions are steep as expected.

The same rate estimates are also reported in Figure 3b, where

they are compared with the actual simulated rates and with the rate

estimates ~u found by the smoothing spline method of Section 3.3.1.

That EKS estimates bu outperform estimates ~u obtained via spline

smoothing is apparent. It is worth remarking how the EKS tuning

based on ~u, which operates on the regularity of bu, does not spoil the

EKS estimates themselves (no direct relationship between bu and ~u).

Yet, rate estimates over constant regimes show residual fluctuations,

presumably due to a slight overestimation of the c
�
i by the automated

tuning step. At the same time, estimated rate transitions are still not

as abrupt as in the simulations, and the associated credibility inter-

vals are large. This is primarily due to the sparsity of the metabolite

measurements, causing the estimated transitions to spread over a

somewhat longer period of time. In Figure 3b, small manual ad-

justments of the settings returned by the procedure yield even better

results, with sharp changes closely resembling the actual discontinu-

ous regime changes. It is important to note that these adjustments

are driven in a rather intuitive manner by the qualitative analysis of

the fully automated estimation results, i.e. they can be operated by a

user facing the analysis of experimental data.

In summary, estimation results for a realistic (noisy) simulated

dataset of a diauxic shift experiment show excellent performance of

the automated method and significant improvements relative to a

reference approach. Basic manual refinements of the data-driven

EKS tuning allow the results to be even further improved.

Comparison of estimation results with those obtained with EKF (the

forward pass of the EKS), which is another approach that has been

considered in the literature, also witnesses striking improve-

ments (see Supplementary Fig. S2). The above results are confirmed

by an additional simulation example of fed-batch cultivation in

Supplementary Material Section S2.2.

5 Applications of rate estimation

5.1 Diauxic growth in E. coli
The first application of the method to a real dataset concerns time-

series measurements of glucose, acetate and biomass during aerobic

growth of E. coli in minimal medium with glucose and acetate

(Morin et al., 2016). The acetate has accumulated in the medium as

a by-product of growth on glucose at a rate exceeding the oxydizing

capacity of central metabolism. The bacteria were cultivated in a

bioreactor in batch mode and samples were taken every 10–30 min

over a period of about 6 h, covering rapid exponential growth on

glucose, glucose depletion and continued slow growth on acetate.

The samples were analysed by high-performance liquid chromatog-

raphy (HPLC) to quantify the concentrations of extracellular

(a)

(b)

Fig. 2. Estimation of exchange rates by applying the EKS method to a dataset

obtained by simulating a diauxic growth experiment with overflow me-

tabolism. Simulation parameters are reported in Supplementary Material

Section S2.1, showing the simulated data and their confidence intervals.

(a) Simulated data (circles), detected switching times (in-between vertical

blue lines) when a substrate concentration drops to 0, and EKS estimates of

biomass and concentration profiles with their 95% credibility intervals (red

curves and bands, respectively). (b) EKS rate estimates from the fully auto-

mated procedure with 95% credibility intervals (red curves and bands,

respectively)
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metabolites in the medium (Morin et al., 2016). The resulting

measurements for one replicate are shown in Figure 4b and in

Supplementary Material Section S2.3.

The challenge for the analysis of this dataset is to correctly esti-

mate the rapid changes of the uptake and secretion rates around the

time of glucose depletion at 0 h, while at the same time provide a

stable value for the rates during balanced growth on either glucose

(before the switching time) or acetate (after the switching time). The

algorithm described in Section 3.2 was run for the three variables

biomass (b), glucose concentration (cglc), and acetate concentration

(cace), after a first preprocessing round in which appropriate smooth-

ing profiles and a priori initial state statistics were obtained by spline

smoothing and generalized cross validation (Section 3.3). The EKS

estimates for the rates are shown in Figure 4c.

The most striking conclusion drawn from the estimation results

is the capability of the algorithm to precisely capture the sharp drop

in growth rate when the glucose concentration falls to 0, accompa-

nied by an equally abrupt arrest of glucose uptake and switch from

acetate excretion to acetate uptake. In contrast, the spline smoothing

estimates do not capture this abrupt regime change and, moreover,

lead to unstable estimates of the steady-state exchange rates and

growth rate, visible as oscillations around the steady-state values

(Supplementary Fig. S6).

The importance of the precision of rate estimation can be illus-

trated by testing the consistency of the results with the reaction stoi-

chiometry of intracellular metabolism, using a flux balance model of

E. coli (Feist et al., 2007). In particular, we performed a metabolic

flux analysis in the manner of Morin et al. (2016) just before the

acetate switch, where the smoothing spline and EKS estimates are

most different, and compared estimates for 15 fluxes in central car-

bon metabolism obtained by flux variability analysis. Interestingly,

the smoothing spline estimates yield flux distributions that are much

less precise and non-intuitive (Supplementary Material Section S4).
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Fig. 3. Comparison of the results obtained with different rate estimation meth-

ods applied to the data set of Figure 2. (a) EKS rate estimates and their 95%

credibility intervals obtained after manual adjustment of the automatically deter-

mined switching periods and smoothing factors (red curves and bands, respect-

ively). The adjustments concern a decrease of the length of the transition period

to 10 min and a decrease of the smoothing factors ðc�1; c
�

2; c
�

3Þ ¼ ð1:80; 1:87; 1:12Þ
�10�5 to a uniform value of 10–6 for all i, with ratios c1i =c

�

i unchanged.

(b) Comparison of the true rates (dashed black curves) with estimated rates

obtained by the spline smoothing method (solid blue curves), by the fully

automated EKS method (same as in Fig. 2b; dashed magenta curves), and by a

posteriori manual adjustment of the automatic EKS settings (solid red line)

(a)

(b)

(c)

Fig. 4. Diauxic growth on glucose and acetate of E. coli. (a) Model scheme

defining variables and rates. (b) Data (circles) from Morin et al. (2016) and

EKS estimates with credibility intervals (solid curve and shaded band) of bio-

mass and concentration profiles. (c) EKS rate estimates and credibility inter-

vals (red curve and shaded band) obtained with the fully automated

procedure described in Section 3. The smoothing parameters found for bio-

mass, glucose and acetate, c
�

b ¼ 0:675; c
�

glc ¼ 5:5842 and c
�
ace ¼ 8:4025, were

adjusted by a factor of 10�1; 10�1 and 2–1, respectively. For a comparison of

the EKS estimates with the smoothing spline estimates, see Supplementary

Material Section S2.2
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For example, the partitioning of the incoming flux of glucose over

the glycolysis, pentose-phosphate, and glycogenolysis pathways is

not appropriately accounted for, since every pathway can be prefer-

entially used in some optimal solution. In reality, the major part of

the incoming glucose flux enters glycolysis (Morin et al., 2016), as

observed when using the EKS estimates for metabolic flux analysis

(Supplementary Material Section S4).

We found a remarkable consistency between the predicted intra-

cellular fluxes with the EKS estimates, when cells are in quasi

steady-state growth two hours before glucose exhaustion, with

measured fluxes in a continuous culture of E. coli on glucose (see

Supplementary Fig. S10).

5.2 Production of lactic acid by L. lactis
When growing on glucose, lactose or other sugars, the energy me-

tabolism of L. lactis leads to the excretion of large amounts of lactic

acid. In addition to being a catalyst for the production of butter

milk and cheese, the accumulation of lactic acid in the medium in-

hibits the growth of microorganisms, including food-borne patho-

gens. This has motivated interest in L. lactis for the purpose of food

conservation (Even et al., 2002). The second application of our rate

estimation method concerns a study of the effect of lactic acid over-

flow on L. lactis growth and the consequences of a glucose pulse on

lactic acid production. The bacteria were cultivated in fed-batch in a

fermenter and 30 samples were taken over 3 days and analysed by

means of HPLC to quantify glucose, lactic acid and acetate concen-

trations in the medium (see Supplementary Material Section S3 for

the experimental protocol). The resulting measurements are shown

in Figure 5b and in Supplementary Material Section S2.4.

The interest of the dataset is (1) to quantify the effect of the lactic

acid produced by L. lactis on the growth rate of the cell population

and (2) to account for rapid changes in the rates of acetate and lactic

acid accumulation following the depletion of glucose just before

50 h and the supply of a glucose pulse shortly afterwards (Fig. 5b).

The detection of glucose exhaustion is similar to the previous appli-

cation, but the addition of a pulse of glucose does not strictly fall

within the modeling framework of Equations (1) and (2), which as-

sumes that changes in extracellular metabolite concentrations are

only due to uptake and excretion of the metabolites by the growing

cell population (and not by external inflow into the bioreactor).

While the models can be straightforwardly generalized to cover this

case explicitly (see Supplementary Material Section S5), we here

sidestep the problem by lumping the rates of glucose uptake and in-

flow into a single apparent rate for glucose accumulation. The esti-

mation results are summarized in Figure 5c.

A first conclusion that can be drawn from inspecting the esti-

mated rates is that, due to the growth-inhibitory effect of lactic acid

accumulation, a state of balanced, non-zero growth is never reached

in the first 10 h of the experiment. This problem, well-known in L.

lactis cultivation experiments, demonstrates the importance of being

able to compute a time-varying growth rate profile rather than re-

port a single value at an arbitrary point along the growth curve.

Second, the depletion of glucose just before 50 h is adequately cap-

tured by the method, as well as the subsequent uptake of acetate,

visible in the negative value of the estimated rate following glucose

depletion. This observation, reminescent of diauxic growth in the

previous example, is interesting but currently not well understood.

Just after the glucose pulse at 50.5 h, the acetate excretion rate be-

comes slightly positive again, meaning that the bacteria convert the

added glucose into lactic acid and acetate, in the absence of biomass

accumulation since the growth rate does not noticeably change. This

example demonstrates the capability of the method to capture subtle

dynamic changes in uptake and excretion rates from concentration

profiles of extracellular metabolites.

6 Discussion

Dynamic estimation problems have become ubiquitous in the era of

high-throughput data generation in biology. In the study of gene ex-

pression, for example, time-series measurements of the fluorescence

signals emitted by reporter proteins contain information on time-

varying promoter activities (Zulkower et al., 2015), while time-

series measurements of signal transduction outputs allow the recon-

struction of time-varying inputs, like pathway activation by growth

hormones (Schelker et al., 2012). The measurement of extracellular

metabolites has become simpler to achieve through ongoing ad-

vances in the field of metabolomics and they provide precious

(a)

(b)

(c)

Fig. 5. Lactic acid production by L. lactis. (a) Model scheme defining variables

and rates. (b) Data (circles) and EKS estimates with credibility intervals (solid

red curve and shaded band) of biomass and concentration profiles. The de-

tected switching time lies between the two blue vertical lines. (c) EKS rate es-

timates and credibility intervals (red curve and shaded band) obtained with

the fully automated procedure described in Section 3. The smoothing param-

eters used for biomass, glucose, lactic acid and acetate are c
�

b ¼ 0:01; c
�

glc

¼ 0:1; c
�

lac ¼ 0:1 and c
�
ace ¼ 0:01, respectively. Factors c1i ¼ 103c

�

i , as per de-

fault settings, except for c1glc ¼ 104c
�

glc, to cope with glucose addition
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information on intracellular metabolism (Kell et al., 2005). These

data are often underexploited though, in the sense that in many

studies the time-varying rates of substrate uptake and by-product se-

cretion are not computed. Changes in these rates, however, reveal

changes in cellular metabolism and may thus be instrumental in sys-

tems biology for better understanding the response of cells to exter-

nal perturbations and in biotechnology for dynamically adapting

process conditions.

One of the reasons that time-series measurements of extracellu-

lar metabolites are not fully exploited is the difficulty of estimating

the uptake and excretion rates in a reliable manner. In particular,

we identified three major problems: noisy data, coupling of the

rates of the exchange reactions, and discontinuities in the concen-

tration profiles due to sudden changes in metabolic regime. In

order to address these problems in a comprehensive and principled

manner, we proposed a Bayesian formulation of the estimation

problem and an EKS method for solving the problem. This ap-

proach was seen to perform well on simulated data, in the sense

that the time-varying rates could be accurately reconstructed,

much better than by a reference method based on spline smoothing

and differentiation. When applied to real data sets, the method

was able to recover known features of overflow metabolism in two

different bacteria, E. coli and L. lactis, and provided evidence for

acetate uptake by L. lactis after glucose exhaustion. Moreover, the

estimated rates provide tight constraints for metabolic flux ana-

lysis, as was seen by combining this information with a stoichiom-

etry model of E. coli metabolism.

The method presented in this article bears similarity with ex-

tended Kalman filtering methods developed for on-line control of

bioreactors (Bastin and Dochain, 1990; Venkateswarlu, 2005). In

comparison with most of these studies, we do not consider the esti-

mation problem in an on-line context, but use the entire time-course

of the experiment for reconstructing the rates of the exchange reac-

tions, adding a smoothing step to the filtering procedure. The model

of Equations (1) and (2) only covers growth in batch mode, but our

models can be straightforwardly extended to account for fed-batch

and continuous cultivation by adding terms in the right-hand side of

Equation (2) representing inflow and outflow rates, and possibly

rates of reactions involved in the degradation or gaseous escape of

extracellular metabolites (Bastin and Dochain, 1990). In particular,

extending the model with an inflow rate for glucose would more dir-

ectly describe the L. lactis application (see Supplementary Material

Section S5). The Bayesian approach proposed here for the formula-

tion of the estimation problem and the dynamical smoothing solu-

tion developed in terms of EKS lend themselves to the necessary

generalizations.

Measurement of extracellular metabolites is usually easier to

achieve than measurement of intracellular metabolites. Extracellular

metabolites usually accumulate at much higher concentrations and

evolve on a slower time scale (Granucci et al., 2015; Kell et al.,

2005). Moreover, experimental protocols require less precautions

than for the quantification of intracellular metabolites, demanding

the rapid quenching of metabolism and adequate separation and ex-

traction procedures (van Gulik, 2010). Nevertheless, recent progress

in experimental techniques has made high-frequency and high-

precision measurement of intracellular metabolites feasible (Link

et al., 2015), which suggests interesting extensio

ns of the model and method presented here. In particular, for every

measured intracellular metabolite the rates of all reactions produc-

ing and consuming it need to be estimated. This results in a linear

model, but with more strongly coupled equations. While the basic

principle of the Kalman smoothing approach will remain applicable,

new theoretical and practical problems are expected to occur, not-

ably those related to computational efficiency and observability of

the unknown inputs (Khalil, 2002).
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