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Millions of people are suffering from cancers, but accurate early diagnosis and effective

treatment are still tough for all doctors. In recent years, long non-coding RNAs

(lncRNAs) have been proven to play an important role in diseases, especially cancers.

These lncRNAs execute their functions by regulating gene expression. Therefore,

identifying lncRNAs which are related to cancers could help researchers gain a deeper

understanding of cancer mechanisms and help them find treatment options. A large

number of relationships between lncRNAs and cancers have been verified by biological

experiments, which give us a chance to use computational methods to identify

cancer-related lncRNAs. In this paper, we applied the convolutional neural network (CNN)

to identify cancer-related lncRNAs by lncRNA’s target genes and their tissue expression

specificity. Since lncRNA regulates target gene expression and it has been reported

to have tissue expression specificity, their target genes and expression in different

tissues were used as features of lncRNAs. Then, the deep belief network (DBN) was

used to unsupervised encode features of lncRNAs. Finally, CNN was used to predict

cancer-related lncRNAs based on known relationships between lncRNAs and cancers.

For each type of cancer, we built a CNN model to predict its related lncRNAs. We

identified more related lncRNAs for 41 kinds of cancers. Ten-cross validation has been

used to prove the performance of our method. The results showed that our method is

better than several previous methods with area under the curve (AUC) 0.81 and area

under the precision–recall curve (AUPR) 0.79. To verify the accuracy of our results, case

studies have been done.

Keywords: long non-coding RNA (lncRNA), cancer, convolutional neural network (CNN), deep belief network (DBN),

machine learning

INTRODUCTION

Four to nine percent of the sequences’ transcription are long non-coding RNAs (lncRNAs) in
mammalian genomes (Canzio et al., 2019; Ji et al., 2019). lncRNA was regarded as the noise of
genome transcription and did not have biological functions at first. However, an increasing number
of studies have reported that lncRNA is widely (Robinson et al., 2019) involved in chromosome

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2020.00637
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2020.00637&domain=pdf&date_stamp=2020-08-11
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dunan05@aliyun.com
mailto:xiegf@aliyun.com
https://doi.org/10.3389/fcell.2020.00637
https://www.frontiersin.org/articles/10.3389/fcell.2020.00637/full
http://loop.frontiersin.org/people/994170/overview
http://loop.frontiersin.org/people/998611/overview


Liu et al. A Method to Identify Cancer-Related lncRNAs

silencing, genomic imprinting, chromatin modification,
transcriptional activation, transcriptional interference, and
nuclear transport (Cheng et al., 2018a). Recently, it has been
proven to be associated with many kinds of cancers.

The secondary structure, spliced form, and subcellular
localization of most lncRNAs are conserved (Karner et al.,
2020), which is very important for lncRNA to execute functions.
However, compared to the functions of microRNAs (miRNAs)
and proteins, the function of lncRNA is more difficult to
determine. According to the position of lncRNA in the genome
relative to protein-coding genes, it can be divided into five types:
sense, antisense, bidirectional, intronic, and intergenic.

Many researchers have found lncRNAs play an important role
in cancers (Avgeris et al., 2018; Cheng et al., 2018b; Zhao et al.,
2020) and neurodegenerative diseases (Peng and Zhao, 2020)
as other biological molecules (Zhang T. et al., 2017; Bai et al.,
2019; Cheng et al., 2019a; Liang et al., 2019). Although many
researchers have verified many associations between lncRNAs
and cancers by biological experiments, compared with our
knowledge about disease-related genes, we still do not know
enough about disease-related lncRNAs. Considering the time
and money cost of finding disease-related lncRNAs, more and
more researchers tend to use computational methods to identify
disease-related lncRNAs. These methods could be divided into
three categories: machine learning methods, network methods,
and other methods.

Machine learning methods build models based on the
similarities of diseases or lncRNAs and their biological
characteristics (Cheng, 2019; Cheng et al., 2019b; Zeng et al.,
2019; Zou et al., 2019). Lan et al. (2017) developed the
lncRNA–disease association prediction (LDAP) which is a
method based on bagging support vector machine (SVM) to
identify lncRNA–disease associations. They used similarities of
lncRNAs and diseases as the features. Yu et al. (2019) developed
collaborative filtering naive Bayesian classifier (CFNBC) based on
naive Bayesian. They integrated miRNA–lncRNA associations,
miRNA–disease associations, and lncRNA–disease associations
to infer more lncRNA–disease associations. Considering the
discriminative contributions of the similarity, association, and
interaction relationships among lncRNAs, disease, and miRNAs,
Xuan et al. (2019a) developed a dual convolutional neural
network (CNN) with attention mechanisms to predict disease-
related lncRNAs.

Network methods are the most common way to identify
associations between diseases and lncRNAs nowadays (Gu
et al., 2017; Yu et al., 2017; Zhang J. et al., 2017; Kuang
et al., 2019; Wang L. et al., 2019; Liu et al., 2020). This
kind of method would build one or multiple networks to
infer new information. Wang L. et al. (2019) built a lncRNA–
miRNA–disease interactive network and used their novel method
“LDLMD” to predict associations between lncRNAs and diseases.
Sumathipala et al. (2019) used a multilevel network topology
which includes lncRNA–protein, protein–protein interaction,
protein–disease relationship to use network diffusion algorithm
to predict disease-related lncRNAs. The graph convolutional
network (GCN) and CNN were used on a lncRNA–miRNA–
disease network by Xuan et al. (2019b). Deng et al. (2019) built
lncRNA similarity network, disease similarity network, miRNA

similarity network, and their associations. Then, they calculated
the meta-path and feature vector for each lncRNA–disease pair in
the heterogeneous information network.

Other methods may borrow the feature extraction method
or similarity conjecture of network methods, but the core of
this method is matrix decomposition or matrix completion.
Lu et al. (2019) developed the geometric matrix completion
lncRNA–disease association (GMCLDA) which is a method
based on geometric matrix completion. They calculated disease
similarity based on Disease Ontology (DO) and calculated
the Gaussian interaction profile kernel similarity for lncRNAs.
Then they inferred disease-related lncRNAs based on the
association patterns among functionally similar lncRNAs and
similar diseases. Wang Y. et al. (2019) proposed a weighted
matrix factorization to capture the inter(intra)-associations
between different types of nodes. Then, they approximated the
lncRNA–disease association matrix using the optimized matrices
and weights to predict disease-related lncRNAs. Locality-
constrained linear coding label propagation Latent Dirichlet
Allocation (LLCLPLDA) was developed by Xie et al. (2019).
Firstly, local-constraint features of lncRNAs and diseases were
extracted by locality-constrained linear coding (LLC). Then,
they predicted disease-related lncRNAs by label propagation
(LP) strategy.

However, previous methods did not consider the regulating
target gene expression of lncRNA, which is an important function
of lncRNA and plays an important role in associations between
lncRNAs and diseases. In addition, deep learning methods are
an important tool and have shown their power in bioinformatics
(Chen et al., 2019; Lv et al., 2019; Wei et al., 2019; Wu et al.,
2019; Zhao et al., 2019a,b,c). Therefore, in this paper, we used this
information as features of lncRNA. In addition, the expression
of lncRNA in different tissues were also used as the features
of lncRNA. Then, the deep belief network (DBN) was used to
encode, and the CNN was used to classify.

METHODS

Feature Extraction
Tissue Expression Specificity of Long Non-coding

RNA
Compared with protein-coding genes, lncRNA shows strong
tissue specificity. The specificity of lncRNAs in different kinds
of tissues and cell types has been proven by many biological
experiments. The different expression also plays an important
role in essential cellular processes. Sasaki et al. (2007) tested
the expression of lncRNAs in 11 different tissues and found
67% lncRNAs exhibited tissue-specific expression and 29% of
lncRNAs were only expressed in one discrete tissue. Therefore,
the expression of lncRNAs in different tissues were used as
the features.

We obtained the expression of lncRNAs in 13 different
tissues which included adipose, adrenal, breast, colon, heart,
kidney, liver, lung, lymph node, ovary placenta, prostate, testis,
and thyroid.

Therefore, the dimension of each lncRNA’s expression feature
is 1 ∗ 13.
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FIGURE 1 | The number of target genes for each long non-coding RNA

(lncRNA).

FIGURE 2 | The distribution of the number of target genes. lncRNA, long

non-coding RNA.

Target Gene of Long Non-coding RNA
Quantitative reverse transcriptase-polymerase chain
reaction (qRT-PCR) and Western blot were used to test
the different expression genes after knocking down or
overexpressing lncRNAs.

We obtained target genes of lncRNA from LncRNA2Target
(Jiang et al., 2015).

As we can see in Figure 1, there are 349 kinds of lncRNAs.
One lncRNA has more than 100 target genes. Then, we draw
the distribution of the number of target genes corresponding
to lncRNA.

As shown in Figure 2, most of the target genes are
corresponding to less than five lncRNAs. Therefore, if we used
them to be the features of lncRNAs, the features would be sparse.
Therefore, we only select the most common target genes to be
the features. The genes which are corresponding to more than
five lncRNAs were selected as the features of lncRNAs. There are
45 kinds of genes. Then, we need to encode these genes.

F = [G1,G2, · · · , G45] (1)

where G1 denotes the first gene of these 45 genes, and F denotes
the feature of lncRNA. For each lncRNA, if G1 is the target gene
of it, then G1 = 1, otherwise G1 = 0.

Therefore, the dimension of each lncRNA’s target gene feature
is 1 ∗ 45.

Deep Belief Network
The DBN can effectively learn complex dependencies between
variables (Zhao et al., 2019d). The DBN contains many layers of
hidden variables, which can effectively learn the internal feature
representation of the data and can also be used as an effective
non-linear dimensionality reduction method.

When the observable variables are known, the joint posterior
probabilities of the hidden variables are no longer independent
of each other, so it is difficult to accurately estimate the posterior
probabilities of all hidden variables. The posterior probability of
early DBN is generally approximated by Monte Carlo method,
but its efficiency is relatively low, which makes its parameter
learning difficult. In order to effectively train the DBN, we
convert the sigmoid belief network of each layer to a restricted
Boltzmann machine (RBM). The advantage of this is that the
posterior probabilities of the hidden variables are independent
of each other, which makes it easy to sample. In this way, the
DBN can be regarded as being stacked from top to bottom by
multiple RBMs, and the hidden layer of the Lth RBM is used as
the observable layer of the L + 1th RBM. Further, the DBN can
be trained quickly by layer-by-layer training, that is, starting from
the bottom layer and training only one layer at a time until the
last layer. The specific layer-by-layer training process is to train
the RBM of each layer in turn from bottom to top. Assuming we
have trained the RBM in the first L-1 layer, we can calculate the
conditional probability of the bottom-up hidden variables:

p(h(i)|h(i−1)) = σ (b(i) +W(i)h(i−1)) (2)

where b(i) is the bias of ith layer of RBM. W(i) is the connection
weight. h(i) is the ith layer of RBM.

The process of training DBN is as follows:

Input : train dataset v̂(n), learning rate λ

Output: weight matrix W (l), bias a(l) and b(l)

For l = 1:L

Initialization: W (i), a(l), b(i) = 0

Sample from train dataset ĥ(0)

For i = 1: l−1

Sample h(i) based on p(h(i)|ĥ(i−1) )

End

Set h(i-1)as the train sample to train lth layer of

RBM

End

Since the dimension of expression feature and target gene
feature are different, we should reduce the dimension of target
gene feature and make it the same as the expression feature’s.
Therefore, in this paper, two layers of RBM were used to build
a DBN model.

The number of nodes of the two layers was 32
and 12, respectively. Sigmoid function was used as the
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activation function.

σ (x) =
1

1+ e−x
(3)

Therefore, the dimension of final features is 2 ∗ 13.

F =

[

G1,G2, · · · , G13

E1,E2, · · · , E13

]

(4)

where G1,G2, · · · , G13 denotes target gene feature after DBN,
and E1,E2, · · · , E13 denotes the expression of lncRNAs in 13
different tissues.

TABLE 1 | The structure of convolutional neural network (CNN).

Layers Parameter

Convolutional layer Filter = 64

kernel size = (1,4)

Activation function = tanh

Pooling layer pool size = (2,2)

Activation function = tanh

Convolutional layer Filter = 128

kernel size = (1,2)

Activation function = tanh

Pooling layer pool size = (1,2)

Activation function = tanh

Fully connected layer Units = 512

Activation function = tanh

Output Units = 2

Activation function = sigmoid

Convolutional Neural Network
The power of CNN in dealing with bioinformatic problems has
been proven by many researchers. We selected CNN as the
classifier based on two reasons. (1) The dimension of features is
2 ∗ 13, which can be regarded as an image. (2) The outstanding
performance of CNN in image classification.

There are five layers in our CNNmodel. The structure of CNN
is shown as Table 1.

Work Frame
Figure 3 shows the work frame of our method “DBN–CNN.”
There are three steps of our methods. Firstly, we should extract
features of lncRNAs. There are two parts of features: expression
feature and target gene feature. Then, DBN was used to encode
the target gene feature. After encoding, the two kinds of features
were combined together. Finally, CNN was used to classify.

RESULTS

Data Description
The known associations between lncRNA and diseases were
obtained from LncRNADisease database (Bao et al., 2019). We
totally obtained 41 kinds of cancer-related lncRNAs. The number
of their corresponding lncRNAs is shown as Figure 4.

As shown in Figure 4, People’s understanding of cancer-
related lncRNAs varies widely. We have known more than 100
lncRNAs for some cancers, but few lncRNAs are known for some
cancers. To better build our model, we only selected cancers
which have more than 20 related lncRNAs. Therefore, 16 kinds
of cancers were selected.

FIGURE 3 | Work frame of deep belief network (DBN)–convolutional neural network (CNN). lncRNA, long non-coding RNA.
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FIGURE 4 | The number of long non-coding RNAs (lncRNAs) for each cancer.

TABLE 2 | The performance of deep belief network (DBN)–convolutional neural

network (CNN) in 16 cancers.

Cancer Area under

curve (AUC)

Area under precision

curve (AUPR)

Cervical cancer 0.87 0.82

Breast cancer 0.81 0.78

Colorectal cancer 0.81 0.75

Stomach cancer 0.88 0.83

Urinary bladder cancer 0.93 0.85

Lung cancer 0.79 0.82

Ovarian cancer 0.93 0.85

Thyroid cancer 0.94 0.86

Prostate cancer 0.84 0.72

Liver cancer 0.84 0.74

Pancreatic cancer 0.77 0.69

Ovarian epithelial cancer 0.90 0.87

Gallbladder cancer 0.96 0.88

Endometrial cancer 0.76 0.72

Colon cancer 0.88 0.82

Esophageal cancer 0.91 0.87

The target genes of lncRNAs were obtained from
LncRNA2Target database. We have discussed about this in
section Target Gene of Long Non-coding RNA.

The expression of lncRNAs in 13 different tissues was
obtained from NON-CODEV5 (Zhao et al., 2016). We only used
human data.

The Performance of Deep Belief
Network–Convolutional Neural Network
We did 10-cross validation on each cancer. Area under the curve
(AUC) (Cheng, 2019; Dao et al., 2020; Zhang et al., 2020) and area
under the precision–recall curve (AUPR) were used to evaluate
the performance of DBN–CNN. The results are shown inTable 2.

As we can see in Table 2, the performance of DBN–CNN is
quite different in different cancers. This may be caused by the
different sample sizes. The average AUC is 0.86 and AUPR is 0.80.

Comparison Experiments
To verify the superior of DBN–CNN, we compared it with similar
methods. Since themain function of DBN is to reduce dimension,
principal component analysis (PCA) has the same function.

FIGURE 5 | The receiver operating characteristic (ROC) curves of the three

methods. DBN, deep belief network; CNN, convolutional neural network; PCA,

principal component analysis.

FIGURE 6 | The area under the precision–recall curve (AUPR) of the three

methods. DBN, deep belief network; CNN, convolutional neural network; PCA,

principal component analysis.

Therefore, instead of using DBN to encode, we used PCA this
time and CNNwas used to classify the features after PCA.We call
thismethod PCA–CNN. In addition, we also used the deep neural
network (DNN) to replace CNN so this comparison method was
called DBN–DNN.

We used these three methods to test on 16 cancers and
summarized the results to get a final AUC and AUPR for each
method. The receiver operating characteristic (ROC) curves are
shown in Figure 4.

As shown in Figure 5, the blue curve denotes the results of
DBN–CNN. The red and black curves denote PCA–CNN and
DBN–DNN, respectively. As we can see, DBN–CNN performed
best among these three methods. The AUC of DBN–CNN is
0.81, which is better than 0.77 and 0.75 for PCA–CNN and
DBN–DNN, respectively.
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As shown in Figure 6, the AUPR of DBN–CNN is the highest
with the least standard error.

Case Study
Liu et al. (2002) found down syndrome cell adhesion molecule -
antisense RNA 1 (DSCAM-AS1) is associated with breast cancer
by constructing two suppression subtracted cDNA libraries.

Martens-Uzunova et al. (2014) reported the association
between H19 and bladder cancer. They also pointed out that H19
could be the biomarker of bladder cancer.

Shi et al. (2014) measured the expression level of lncRNAs-
Loc554202 in breast cancer tissues and found that Loc554202
was significantly increased compared with normal control and
associated with advanced pathologic stage and tumor size.

CONCLUSIONS

Increasing evidence has shown the relationship between lncRNAs
and cancers. lncRNAs could be the biomarkers to help diagnose
cancer and also help researchers understand the mechanism
of cancers. Compared with people’s knowledge of disease-
related protein coding genes, we knew few about disease-
related lncRNAs. However, the biological experiments for finding
disease-related lncRNAs are time-consuming and expensive.

Therefore, in this paper, we proposed a novel method for
identifying cancer-related lncRNAs. We called this method
“DBN–CNN,” which is a fusion of DBN and CNN. Two kinds
of features were used based on the biological background. Since
lncRNAs have tissue-specific expression and the expression of
cancer tissues is different from normal tissues, the expression
of lncRNAs in different tissues could provide important

information for us to identify cancer-related lncRNAs. In
addition, lncRNAs execute their regulation function by
interacting with their target genes. Therefore, the target genes
of lncRNAs can also be the features of lncRNAs. To encode the
features, DBN was used to reduce the dimension. Finally, CNN
was used to identify real cancer-related lncRNAs based on the
final feature.

To verify the effectiveness of our method, we compared
DBN–CNN with PCA–CNN and DBN–DNN since PCA can
also reduce the dimension of features and DNN can also do
classification. The results showed that DBN–CNN performed
best. Finally, case studies have been done to verify the accuracy of
our results. We found potential lncRNAs for 16 kinds of cancers,
which can be a kind of guidance for researchers finding novel
cancer-related lncRNAs.
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