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Pure total flavonoids from Citrus (PTFC) effectively reduce the symptoms of non-
alcoholic fatty liver disease (NAFLD). Our previous microarray analysis uncovered the
alterations of important signaling pathways in the treatment of NAFLD with PTFC.
However, the underlying core genes that might be targeted by PTFC, which play
important roles in the progression of NALFD are yet to be identified. In this study, we
predicted the vascular endothelial growth factor-C (VEGF-C) as potential key molecular
target of PTFC against NAFLD via network pharmacology analysis. The network
pharmacology approach presented here provided important clues for understanding
the mechanisms of PTFC treatment in the development of NAFLD.

Keywords: pure total flavonoids from citrus, non-alcoholic fatty liver disease, vascular endothelial growth factor-
C, network pharmacology, non-alcoholic steatohepatitis

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming a major healthcare problem
worldwide affecting 15–30% population in Asia (Srivastava et al., 2017). It is defined as abnormal
hepatic lipid accumulation (>5% by weight) without excessive alcohol intake (Nalbantoglu
and Brunt, 2014). NAFLD is considered to be a hepatic manifestation of metabolic syndrome
(Takahashi et al., 2015), which is closely associated with obesity, insulin resistance, diabetes and
hypertriglyceridemia (Kirpich et al., 2011). NAFLD may progress from simple steatosis (SS) into a
more severe form, non-alcoholic steatohepatitis (NASH) (Konerman et al., 2017). NASH is typically
characterized by ballooning degeneration, inflammation and fibrosis. It may lead to cirrhosis and
hepatocellular carcinoma (HCC) without intervention or treatment (Miele et al., 2007; Chow et al.,
2017; Konerman et al., 2017). Recently, NASH has become the third most common indication for
liver transplantation in the United States (Takahashi et al., 2015).

To date, the underlying mechanism of NAFLD progression is largely unknown and there
is no established pharmacotherapy for NAFLD except for life style modification by diet and
exercise (Takahashi et al., 2015). In recent years, growing attention has been paid to natural
products or Chinese herbal medicine intervention as a promising alternative for the treatment of
NAFLD (Takahashi et al., 2015; Xu et al., 2015; Chen et al., 2017). We previously found that pure
total flavonoids from Citrus (PTFC) attenuated NASH symptoms. Naringin, neohesperidin and
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narirutin are three major components of PTFC and the total
flavonoid content exceeds 75% (Wu et al., 2017). Naringin
possesses diverse pharmacological properties including anti-
inflammation, against oxidative stress and apoptosis (Chen
et al., 2016). Neohesperidin functions in inactivating nuclear
factor kappa B (NF-κB) involved inflammation pathway and
suppressing nuclear factor of activated T-cells (NFAT) and
calcium oscillations (Tan et al., 2017). In addition, neohesperidin
also has hypoglycemic and hypolipidemic effects (Jia et al., 2015).
Narirutin has been reported to prevent lipid formation and
suppress inflammation as well as antioxidation (Chakraborty
and Basu, 2017). Anti-inflammation (Wu et al., 2017) and
antioxidation (Jiang et al., 2014) play important roles in PTFC
treatment. However, limited information is available about the
relationship between the progression of NAFLD and PTFC
treatment. The underlying core genes that might be targeted by
PTFC, which play important roles in the progression of NALFD
are not yet clear.

Network pharmacology (Hopkins, 2008) is based on the
principles of network theory and systems biology, which explores
the link between drugs and disease from a holistic perspective and
is coincided with the characteristics of multi-component, multi-
target and multi-pathway of Chinese herbal medicine. In recent
years, network pharmacology combined with high-throughput
omics detection has been increasingly widely used in the target
prediction of drugs, active components identification and/or
pharmacological mechanisms analysis of natural products or
traditional Chinese medicine (Liu et al., 2015; Gu and Pei, 2017;
Isgut et al., 2017). In this study, we constructed the networks of
NAFLD progression and PTFC treatment in parallel via network
pharmacology analysis to find the common gene targets as
the potential molecular targets of PTFC with the previous raw
data we obtained.

The previous microarray data which included microarray
information of C57BL/6 mice fed with high-fat diet (HFD)
for different time or intervened with PTFC was categorized
into NAFLD progression group and PTFC treatment group,
and then was analyzed in parallel to find the common target
nodes of the networks between these two groups. Out of our
expectation, vascular endothelial growth factor-C (VEGF-C),
the crucial regulator of lymphangiogenesis was identified as the
key potential target of PTFC against NAFLD. Our new finding
indicated that the dynamic changes in the expression of VEGF-
C may play important roles in the progression of NAFLD and
targeting for VEGF-C might be one of the main mechanisms
of PTFC treatment.

MATERIALS AND METHODS

The Source of Microarray Data
In our previous study (Wu et al., 2017), we reported the alteration
of TLR/CCL signaling pathway among ND (normal diet) group,
24-week HFD fed group and PTFC treatment group, in which the
data of 16-week HFD fed group were not included. In the present
study, we used the microarray data of ND, HFD for 16- and
24-week groups combined with PTFC treatment group for our

follow-up analysis. As the report described, control group SPF
C57BL/6 mice were fed with ND for 24-week, HFD group mice
were fed with HFD for 16 and 24-week. Mice with HFD 6-week
received intragastric administration with PTFC for 18-week. The
Mouse OneArray@v2 gene chip was used to measure the gene
expression profiles. The raw microarray data were uploaded to
the Gene Expression Omnibus (GEO) database1.

The Whole Workflow of Network
Pharmacology Strategy
The workflow of this study is summarized in Figure 1. We
firstly categorized the microarray data into NAFLD progression
group (subgroups A, ND for 24-week; B, HFD for 16-week; C,
HFD for 24-week) and PTFC treatment group (subgroups A,
ND for 24-week; C, HFD for 24-week; D, HFD for 24-week
combined with PTFC intervention for 18-week). After quality
control and data preprocessing, the differentially expressed
genes (DEGs) were identified. Meanwhile, the gene ontology
(GO) and the Kyoto encyclopedia of genes and genomes
(KEGG) pathway enrichment analyses were performed. The
DEGs in each group were clustered by using Short Time-
series Expression Miner (STEM). The gene-pathway networks
were constructed based on the CTD2. To refine the genes
that were significantly associated with NAFLD progression or
PTFC treatment, we performed weighted gene co-expression
network analysis (WGCNA) on the DEGs obtained via
STEM. The protein-protein interactions were subsequently
identified using the STRING database3. Integrating the analyses
based on CTD and WGCNA-STRING, gene-pathway networks
of NAFLD progression and PTFC treatment groups were
established to identify the common genes and pathways that
play major regulatory roles in the progression of NALFD
and PTFC treatment.

Data Quality Control and Preprocessing
The raw data (GPR files from Agilent standard array) were
transferred to a recognizable expression profiling format by using
Express Converter Version 2.1 (Sioson et al., 2006)4 and the full
matrix of gene expression was obtained. Limma package (Version
3.32.5) of R (3.4.1)5 was used to normalize the gene expression
profiling. Density distribution of the normalized gene expression
profiles was performed by using ggplot2 package of R (3.4.1).
The Principal components analysis was performed by using Psych
package Version 1.7.8 of R(3.4.1)6 (Condon and Revelle, 2014).

DEGs Identification
The DEGs within groups B-A, C-A, D-A, C-B and D-C were
identified by Limma (Version 3.32.5) of R (3.4.1) (see text
footnote 5) package (P < 0.05 and |logFC|>1. Pheatmap package

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128850
2http://ctd.mdibl.org/
3http://string-db.org
4http://expressconverter.software.informer.com/
5http://bioconductor.org/packages/release/bioc/html/limma.html
6https://cran.r-project.org/web/packages/psych/index.html
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FIGURE 1 | The whole workflow of network pharmacology strategy to screen common target nodes for NAFLD progression group and PTFC treatment group. ND,
normal diet; HFD, high-fat diet; DEG, differentially expressed gene; STEM, short time-series expression miner; CTD, the comparative toxicogenomics database;
WGCNA, weighted gene co-expression network analysis; SRING: string database.
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FIGURE 2 | Data normalization and hierarchical clustering. (A) Box plots of normalized data for expression profile of all samples. Data distribution before (left) and
after (right) normalization. The vertical axis represents all samples. (B–F) Hierarchical clustering analysis of differentially expressed gene among the samples. Each
gene is represented in each row and the column denotes each run. Scale bar denotes the Z-score fold change. The vertical axis represents all samples among
pairwise comparisons of subgroups B vs. A, C vs. A, D vs. A, C vs. B and D vs. C. A, ND for 24-week; B, HFD for 16-week; C, HFD for 24-week; D, HFD for
24-week combined with PTFC intervention for 18-week.

TABLE 1 | The number of DEGs up- or down-regulated in each pairwise
comparisons.

Comparisons Down-regulated Up-regulated Total

DEGs DEGs DEGs

B vs. A 368 1004 1372

C vs. A 275 1178 1453

D vs. A 126 293 419

C vs. B 33 57 90

D vs. C 544 121 665

A, ND for 24-week; B, HFD for 16-week; C, HFD for 24-week; D, HFD for 24-week
combined with PTFC intervention for 18-week.

(Version 1.0.8) (Wang et al., 2014)7 was applied to perform
hierarchical clustering.

GO Biological Process and KEGG
Pathway Enrichment
GO Biological Process and KEGG pathway enrichment were
conducted using DAVID version 6.88 (Huang et al., 2009a,b).We
used Cytoscape3.5.19 (Shannon et al., 2003) to visualize the
pathways and the related genes.

7https://cran.r-project.org/web/packages/pheatmap/index.html
8https://david.ncifcrf.gov/
9http://www.cytoscape.org/

STEM Clustering Analysis
Venn diagrams were generated using Venn Diagram (Version
1.6.17)10 of R (3.4.1) (Chen and Boutros, 2011). Clustering
analysis of DEGs was carried out using short time-series
expression miner (STEM) (version1.3.11)11 (Shannon et al.,
2003). The correlation coefficient of gene expression in each
cluster was set higher than 0.8 and the significance p-value
was less than 0.05.

Network Construction Based on CTD
We first downloaded KEGG pathways and associated genes from
CTD (see text footnote 2) with the key word “non-alcoholic fatty
liver disease, NAFLD.” We compared these information with the
DEGs clustered by using STEM and their associated pathways
and constructed the networks of gene-pathway. Visualization was
performed by using Cytoscape3.5.1 (see text footnote 9).

WGCNA Analysis and Protein-Protein
Interaction Network Construction
WGCNA analysis was performed by using WGCNA package
(Version 1.61) of R (3.4.1) (Langfelder and Horvath, 2008)12.

10https://cran.r-project.org/web/packages/VennDiagram/index.html
11http://www.cs.cmu.edu/~jernst/stem/
12https://cran.r-project.org/web/packages/WGCNA/
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FIGURE 3 | Venn diagrams and STEM clustering analysis of the DEGs in NAFLD progression group and PTFC treatment group. (A) Venn diagrams showing the
number of DEGs in the three pairwise comparisons in NAFLD progression group (left) and PTFC treatment group (right). (B) STEM clustering of DEGs expression
patterns of NAFLD progression group (left) and PTFC treatment group (right). Each box shows a clustering of gene expression pattern. The cluster ID number is
marked in the top left-hand corner of the box and the curve denotes gene expression tendency in different sample subgroups. The number in the middle is the
number of DEGs. The P-value of clustered time series genes is marked in the bottom left-hand corner of each cluster box. The colored box denotes significant
clustering (P < 0.05).

STRING Version 10.5 database (Szklarczyk et al., 2017)13

was applied to construct the network of protein-protein
interaction. Visulization was performed by using Cytoscape3.5.1
(see text footnote 9).

Real-Time PCR, Western Blot Assay and
Statistical Analysis
Total RNAs from liver tissues of the 24 mice (n = 6/group)
were extracted by using Takara MiniBEST Universal RNA
Extraction Kit (Takara, Dalian, China; Cat # 9767). PrimeScript
kit (Takara, Dalian, China; Cat # RR820A) was used to synthesize
cDNA, according to the manufacturer’s method. real-time
PCR was performed with C1000TM Thermal Cycler CFX 384
(Bio-Rad) and SYBR Premix EX Taq (Takara, Dalian, China; Cat
# RR420A) as previously described (Wu et al., 2017). Relative
transcript levels were calculated via the 2−11C(t) method and
β-actin transcripts were used as the internal control. The primer
sequences are shown as follows. VEGF-C: GTG AGG TGT
GTA TAG ATG TGG GG (forward), ACG TCT TGC TGA
GGT AAC CTG (reverse); COL4A1: CCT GGC ACA AAA
GGG ACG A (forward), ACG TGG CCG AGA ATT TCA
CC (reverse); CCL4: TTCCTGCTGTTTCTCTTACACCT
(forward), CTGTCTGCCTCTTTTGGTCAG (reverse);

13https://string-db.org/

CCR7: TCATTGCCGTGGTGGTAGTCTTCA (forward),
ATGTTGAGCTGCTTGCTGGTTTCG (reverse). Western blot
was performed as we previously described (Wu et al., 2017).
The antibodies of VEGF-C (ab191274) and COL4A1 (ab135802)
were purchased from Abcam Trading Co., Ltd., and were
diluted 1:500 or 1:30. The antibodies of GAPDH (Mab5465-100)
and Horseradish peroxidase-conjugated immuno-globulin
G antibodies (GAM0072, GAR0072) were purchased from
MultiSciences Biotech, Co., Ltd., and were diluted 1:5000. Blots
were imaged and quantified using Odyssey Fc imaging system
(LI-COR Biosciences).

Data were analyzed using SPSS17.0 software. One-way
analysis of variance was used and results are reported as
mean ± standard deviation. LSD analysis (homogeneity of
variance) was used on comparison among groups. P < 0.05 was
statistically significant.

RESULTS

Data Preprocessing and DEGs Screening
Raw microarray data were converted into a recognizable
expression profiling format and the gene expression matrix was
obtained. A total of 20,105 genes were detected. We normalized
the expression matrix and 20,070 non-redundant genes were
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FIGURE 4 | Gene-pathway networks construction. (A) Network of NAFLD progression group. (B) Network of PTFC treatment group.
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FIGURE 5 | Gene-pathway network construction based on CTD. (A) Network of NAFLD progression group. (B) Network of PTFC treatment group.

identified. The normalized expression data shown with box plots
(Figure 2A) indicated the reliability of the data. The density
distribution analysis showed that the density in subgroups A, B,
C, and D had similar skewed distribution (see section“The Source
of Microarray Data” Supplementary Figure S1A). The principal
component analysis (PCA) plot showed a clear distribution of all
samples (Supplementary Figure S1B).

We identified the DEGs in five pairwise comparisons: B
vs. A, C vs. A, D vs. A, C vs. B and D vs. C using Limma
package (P < 0.05 and |logFC| > 1. The up- or down-
regulated DEGs in each comparison were summarized in Table 1.

Bidirectional hierarchical clustering heatmap was generated
according to the expression levels of DEGs in each comparison
(Figures 2B–F and Supplementary Table S1). The DEGs in
the above five comparisons were mainly involved in biology
processes of immune response (GO:0006955), cell activation
(GO:0001775), immune response (GO:0006955), regulation
of cytokine production (GO:0001817) and immune response
(GO:0006955) respectively. They mainly acted in Chemokine
signaling pathway (mmu04062), Cytokine-cytokine Receptor
Interaction pathway (mmu04060), Cytokine-cytokine Receptor
Interaction pathway (mmu04060) and Chemokine signaling
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FIGURE 6 | WGCNA and the protein-protein interaction network construction. (A) Gene dendrogram and modules colors maps showing modules of co-expressed
DEGs of NAFLD progression group (left) and PTFC treatment group (right). Each module is labeled by a unique color (gray module is for DEGs unassigned). Each
vertical line in the “leaf” represents a DEG. (B) Tables of module-trait relationship of NAFLD progression group (left) or PTFC treatment group (right). Each row
corresponds to a module eigengene and each column represents a trait. Each cell reports the correlation coefficient and the P-value (in parenthesis) between each
module and a trait. The left panel represents eight modules and the number of their member genes. The right panel is a color scale for module trait correlation from
–1 to 1. (C). Protein-protein interaction network of NAFLD progression group (left) and of PTFC treatment group (right).

pathway (mmu04062) separately. (Supplementary Figure S2 and
Supplementary Table S2).

STEM Clustering of DEGs of NAFLD
Processing Group and PFTC Treatment
Group
Further analysis was performed based on two main lines: the
line of NAFLD progression group (subgroups A, B, and C)
and the line of PTFC treatment group (subgroups A, C, and
D). We firstly analyzed the gene sets in the two groups. As
shown in Figure 3A, the two collections of gene sets contained
1,926 and 1,674 DEGs, respectively (Supplementary Table S3).
Next, the STEM analysis was performed with these 1,926 and
1,674 DEGs to analyze the gene expression patterns. Three

significant clusters were identified from the combination gene
sets of NAFLD progress group, including 674, 533 and 134 DEGs
(Figure 3B left and Supplementary Table S4). For the PTFC
treatment group, there were three gene clusters were identified,
which included 691, 479, and 162 DEGs, respectively (Figure 3B
right and Supplementary Table S4).

Kyoto encyclopedia of genes and genomes pathway
enrichment analysis was conducted with these DEGs from
the above clusters. The data showed that DEGs in cluster 11,
14, and 4 in NAFLD progression group mainly participated in
Cytokine-cytokine Receptor Interaction pathway (mmu04060),
Cell Adhesion Molecules pathway (mmu04514) and Steroid
Biosynthesis pathway (mmu00100) et al. (Supplementary
Figure S3A and Supplementary Table S5). And DEGs in cluster
14, 5, and 11 in PTFC treatment group mainly functioned in
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FIGURE 7 | Screening the common hub DEGs between networks of NAFLD progression and PTFC treatment groups. (A) Gene-pathway network of NAFLD
progression group. (B). Gene-pathway network of PTFC treatment group. (C) Merging networks of A and B.

pathways of Chemokine Signaling (mmu04062), Biosynthesis
of Unsaturated Fatty Acids (mmu01040) and Sphingolipid
Metabolism (mmu00600) et al. (Supplementary Figure 3B and
Supplementary Table S5).

Integrated with the above DEGs and associated pathways, the
gene-pathway networks analysis was established. For the NAFLD
progression group, 208 nodes were involved in the network
including 22 pathways, 186 genes (111 DEGs from cluster 11,
60 DEGs from cluster 14 and 15 DEGs from cluster 4) and
292 connections (Figure 4A). The network of PTFC treatment
contained 188 nodes, including 24 pathways, 106 genes (106
DEGs from cluster 14, 21 DEGs from cluster 5 and 37 DEGs from
cluster 11) and 261 connections (Figure 4B).

Networks Construction Based on CTD
The Comparative Toxicogenomics Database (CTD14) was
initially developed to formalize the information of environmental
toxic agent and gene products (Davis et al., 2015). After more
than 10 years’ development, the database was expanded to
represent the interactions of chemical-gene, chemical-disease
and gene-disease (Davis et al., 2017). CTD has been suggested

14http://ctdbase.org/

as a useful tool to predict potential targets of herbal medicine
(Liu et al., 2013; Wang et al., 2017). We searched NAFLD
related information in CTD (Supplementary Table S6) and
compared with the results from STEM analysis (Figure 3), and
then constructed the networks of gene-pathway (Figure 5 and
Supplementary Table S7). The network of NALFD progression
group consisted of 208 nodes and 346 connections. Of
these nodes, 33 nodes were KEGG pathways (15 nodes were
overlapping pathways of CTD, 18 nodes were non-overlapping
pathways), 91 nodes were DEGs from cluster 11, 41 nodes from
cluster 14, 9 nodes from cluster 4 and 34 nodes were other genes
from CTD (Figure 5A). A total of 198 nodes and 318 connections
were involved in the network of PTFC treatment group. 30
nodes were KEGG pathways in which 18 nodes were overlapping
pathways in CTD and 12 nodes were non-overlapping in CTD.
85 nodes were DEGs from cluster 14, 17 from cluster 5, 34 nodes
from cluster 11 and other genes were from CTD (Figure 5B).

Co-expression Gene Modules
Identification and Protein-Protein
Interaction Networks Construction
In order to refine the genes that were highly interconnected
within NAFLD progression or PTFC treatment, we performed
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FIGURE 8 | The expression levels of VEGF-C and COL4A1. (A,B) Real-time PCR verification of the mRNA expression levels of VEGF-C and COL4A1. Relative
transcript levels were calculated via the 2−11C(t) method and β-actin transcripts were used as the internal control. ∗P < 0.05, ∗∗P < 0.01, n = 6/group. (C,D)
Western blot assay of the protein expression levels of VEGF-C and COL4A1. GAPDH was served as the loading control. ∗P < 0.05.

WGCNA (Figure 6) on the clustered DEGs obtained from
STEM analysis showed in Figure 3B. WGCNA is a systematic
biological approach to build a scale-free network using
gene expression data. Genes with highly interconnection
will be assigned in a same module via WGCNA (Kogelman
and Kadarmideen, 2014). We selected the soft thresholding
power 18, 17 (Supplementary Figures S4A,B) and eight
gene modules were identified via Dynamic tree cutting (cut
height = 0.99), respectively (Figure 6A and Supplementary
Table S8). Correlations between modules and NAFLD
progression were shown in Figure 6B left (P-value 1.2e-
87). We selected blocks blue, green and red with higher
correlation coefficients than that of the block gray for further
analysis (Figure 6B left). With the same way, we selected blocks
black, green and yellow for PTFC treatment group (Figure 6A
right and Figure 6B right).

Then the protein-protein interaction network of the DEGs
in the above selected blocks were constructed via STRING
(Supplementary Table S9). The network of NAFLD progression
group comprised 163 nodes (145 DEGs from cluster 11 and 18
DEGs from cluster 14) and 437 connections (Figure 6C left). 127
nodes (26 DEGs from cluster 14 and 101 DEGs from cluster 11)
and 530 connections were contained in the network of PTFC
treatment group (Figure 6C right).

Screening of the Common Hub Genes
Between Networks of NAFLD
Progression Group and PTFC Treatment
Group
Integrating the analysis based on CTD (Figure 5) and co-
expression networks generated by using WGCNA and STRING
(Figure 6C), we constructed gene-pathway networks. As
shown in Figure 7A, for NALFD progression group, nine
pathways were overlapped with CTD, which included Toll-
like receptor signaling, Apoptosis, ECM-receptor interaction,
Chemokine signaling, Cytokine-cytokine receptor interaction,
Focal adhesion, NOD-like receptor signaling, Natural killer
cell mediated cytotoxicity and B cell receptor signaling. For
PTFC treatment group, eight pathways including of Chemokine
signaling, Focal adhesion, Prion diseases, Complement and
coagulation cascades, Cytokine-cytokine receptor interaction,
ECM-receptor interaction, Natural killer cell mediated
cytotoxicity, Hematopoietic cell lineage were overlapped
with CTD (Figure 7B).

Comparing the above two networks, we found two common
hub genes VEGF-C and COL4A1 which occurred in both
networks of NAFLD progression and PTFC treatment groups.
In NAFLD progression network, VEGF-C participated in
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FIGURE 9 | The transcript expression levels of CCL4 and CCR7. Real-time PCR verification of the mRNA expression levels of CCL4 and CCR7. Relative transcript
levels were calculated via the 2−11C(t) method and β-actin transcripts were used as the internal control. ∗P < 0.05, ∗∗P < 0.01, n = 6/group.

pathways of Cytokine-cytokine receptor interaction and Focal
adhesion. COL4A1 participated in Focal adhesion pathway
(Figure 7A). In PTFC treatment network, VEGF-C was also
involved in Cytokine-cytokine receptor interaction and Focal
adhesion pathways. COL4A1 is linked to Focal adhesion pathway
(Figure 7B). Merging the two networks (Figure 7C), it clearly
showed that both VEGF-C and COL4A1 were involved in
networks of NAFLD progression and PTFC treatment and they
were screened as the common gene nodes. The result indicated
that VEGF-C and COL4A1 play major regulatory roles in the
development of NAFLD and might act as targets of PTFC.

Real-Time PCR and Western Blot
Verification
We conducted real-time PCR and Western blot assay to verify
the prediction result. The PCR result showed that during the
development of NAFLD, the expression of VEGF-C in liver
demonstrated an upward trend, which was significantly different
from the control group at 16 and 24 weeks HFD. PTFC treatment
significantly decreased the expression of VEGF-C (Figure 8A).
Although the expression tendency of COL4A1 is similar to that
of VEGF-C, there were no statistically significant differences
between the subgroups (Figure 8B). As shown in Figures 8C,D,
Western blot assay agreed with the real-time PCR result. VEGF-
C and COL4A1 had similar tendencies in protein expression
levels, while COL4A1 expression levels in these four subgroups
manifested no statistically significant changes.

DISCUSSION

Natural products or Chinese herbal medicine are valuable
resources for NALFD treatment. Network pharmacology is
an efficient strategy to predict the potential targets of the
natural products or Chinese herbal medicine. We previously
reported that PTFC effectively reduced the symptoms of NAFLD

FIGURE 10 | Potential roles of VEGF-C in the progression of NAFLD and
PTFC treatment. VEGF-C plays roles in lipid accumulation, obesity-related
insulin resistant, inflammation as well as in fibrosis, which are also important
characteristics in the progression of NAFLD. The effects of lipid reducing,
anti-inflammation, anti-fibrosis and attenuation of insulin resistance of PTFC
may be associated with targeting VEGF-C.

(Chen et al., 2014; Wu et al., 2017). To understand the
functional mechanism of PTFC, it is necessary to identify the
gene targets of PTFC. In the present study, we conducted
data mining and predicted the potential molecular targets
of PTFC via network pharmacology using the microarray
data of our previous report (Wu et al., 2017). Currently,
the potential targets that predicted by network pharmacology
include many molecules, making it difficult to choose from
them for further in-depth research. Considering the relationship
between the progression of NAFLD and PTFC treatment, we
classified the raw data into NAFLD progression group and
PTFC treatment group. Then we conducted a parallel analysis
on these two data sets and tried to find the overlapping
genes as the candidate targets genes. In addition, during the
data analysis process, the data were filtered via the CTD
database to ensure that the information obtained is only
related to NAFLD.
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We first obtained the networks of the NAFLD progression
group and the PTFC treatment group (Figures 7A,B),
respectively. The Toll-like receptor signaling pathway and
Chemokine Signaling pathway were found in the NAFLD
progression network (Figure 7A). We previously reported
the alteration of the members of these two pathways with
PTFC treatment (Wu et al., 2017). The result of this study
further confirmed these two pathways played important
roles in the progression of NAFLD. In addition, Chemokine
pathway was identified in PTFC network, suggesting that
this pathway exerted important effects in PTFC treatment.
These results also indicated that the method adopted in this
study was feasible.

The real-time PCR and Western blot verifications
revealed that there was statistically significant difference
in the expression levels of VEGF-C between ND and 16
or 24 weeks HFD or between the subgroups of 24-week
HFD and PTFC treatment. While there were no statistically
significant differences in the expression levels of COL4A1
among subgroups. Therefore, we selected VEGF-C as the
key target of PTFC against NAFLD. In order to confirm this
result, we detected the mRNA expression levels of CCL4
and CCR7, the upstream regulated genes of VEGF-C (Yu
et al., 2017; Lien et al., 2018) by real-time PCR. The results
revealed that the expression levels of CCL4 and CCR7 in
16-week HFD and 24-week HFD subgroups were significantly
increased compared with that of ND subgroup. PTFC treatment
significantly reduced their expression levels (Figure 9). This
result indicated that the predicted target VEGF-C and its
upstream regulated genes have similar expression tendencies in
the four subgroups.

Vascular endothelial growth factor-C is a member of the
VEGF superfamily, which is critical for angiogenesis and
lymphangiogenesis (McColl et al., 2004). VEGF-C is the main
regulator for lymphangiogenesis and functions mainly through
its receptor VEGF receptor 3 (VEGFR-3) (Rauniyar et al.,
2018). The studies showed that VEGF-C plays important role in
tumor metastasis. Therefore, VEGF-C and its receptor VEGFR-
3 have been considered as the promising therapeutic target
in cancer (Yamakawa et al., 2018). Intriguingly, VEGF-C was
found a potential regulator for dietary regulation of adiposity
and cholesterol metabolism because it is required for intestinal
lymphatic vessel maintenance and fat absorption (Nurmi et al.,
2015). Clinical investigation demonstrated that serum VEGF-C
and VEGF-A levels are higher in obese subjects and VEGF-
C rather than VEGF-A is closely related to dyslipidemia and
atherosclerosis (Wada et al., 2011). VEGF-C overexpression
mice have increased weight gain and ectopic lipid accumulation,
showing the phenotype of insulin resistant and enhanced
pro-inflammatory on normal chow (Karaman et al., 2016).
Transgenic mice that constitutively express soluble-VEGFR-3-
lg show reduced inflammation in adipose tissue, decreased
hepatic lipid accumulation and improved metabolic parameters
than control group under HFD (Karaman et al., 2015). It
was also reported that VEGF-C functions in myofibroblast
differentiation, proliferation and migration and increase fibrosis
by activation transforming growth factor (TGF)-β and ERK

pathways (Zhao et al., 2014). These findings indicated that,
in addition to lymphangiogenesis, VEGF-C plays roles in lipid
accumulation, obesity-related insulin resistant, inflammation as
well as in fibrosis, which are also important characteristics
in the development of NAFLD. PTFC has the effects of
lipid reducing (Chen et al., 2014; Yang et al., 2017), anti-
inflammation (Chen et al., 2014; Wu et al., 2017), anti-
fibrosis (Wu et al., 2017). Hesperidin, one of the main
component of PTFC, has been reported to inhibit obesity
and attenuates insulin resistance (Pu, 2016). Therefore, we
speculate that VEGF-C as the therapeutic target of PTFC
may improve hepatic lipid accumulation, insulin resistant,
inflammation and fibrosis.

Although network pharmacology has its limitations and
cannot replace biological functional verification, our results
strongly suggest that VEGF-C is a key target of PTFC against
NAFLD. The effects of lipid reducing, anti-inflammation, anti-
fibrosis and attenuation of insulin resistance of PTFC may be
closely related to the reduction of VEGF-C (Figure 10). Our
findings also indicate that VEGF-C might be an effective target
for developing effective therapeutic strategies against NAFLD. So
far, the roles of VEGF-C in the progression of NAFLD and in
the PTFC treatment have not been directly described. Further
investigations need to be conducted with liver-specific VEGF-
C knockout mice.
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