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Abstract: Heat exchangers are general equipment for energy exchange in the industrial field. En-
hancing the heat transfer of a heat exchanger with low pump energy consumption is beneficial to the
maximum utilization of energy. The optimization design for enhanced heat transfer structure is an
effective method to improve the heat transfer coefficient. Present research shows that the biomimetic
structures applied in different equipment could enhance heat transfer and reduce flow resistance
significantly. Firstly, six biomimetic structures including the fractal-tree-like structure, conical column
structure, hybrid wetting structure, scale structure, concave-convex structure and superhydrophobic
micro-nano structure were summarized in this paper. The biomimetic structure characteristics and
heat transfer enhancement and drag reduction mechanisms were analyzed. Secondly, four processing
methods including photolithography, nanoimprinting, femtosecond laser processing and 3D printing
were introduced as the reference of biomimetic structure machining. Finally, according to the systemic
summary of the research review, the prospect of biomimetic heat transfer structure optimization
was proposed.

Keywords: biomimetic structure; heat transfer enhancement; drag reduction; optimal design;
heat exchanger

1. Introduction

With the rapid development of human society, fossil energy has been gradually
exhausted. All countries in the world are promoting the innovation of energy science and
technology in the industrial field to increase energy utilization efficiency [1–3]. A heat
exchanger is a general device for energy exchange. In the primary energy consumption,
about 80% of the primary energy have to be utilized by converting into heat. Hence, the
heat transfer efficiency of a heat exchanger directly affects the energy utilization efficiency.
The heat transfer can be improved through the application of the enhanced heat transfer
structures [4,5]. The present enhanced heat transfer structures usually increase the heat
transfer coefficient while causing a significant increase in flow resistance, especially in the
microscale heat transfer field with limited volume and mass [6,7].

As an emerging interdisciplinary subject combining biology, materials science and
engineering technology, the bionics provides a new thinking way for energy conservation
and consumption reduction [8,9]. The basic steps of the bionics research are to analyze the
influence factors in practical engineering, and then to search and learn from the external
structures or functional behaviors of animals and plants with homologous mechanisms
in nature. Thus, the biomimetic structures are simplified and manufactured through
processing methods for engineering applications [10–12].
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In recent years, the phenomena of heat transfer enhancement in nature and non-
smooth surface structures of organisms have inspired many researchers. The experimental
or numerical simulation methods were used to study the bio-inspired structure applied
in heat exchangers, traffic tools, agricultural machinery, etc. [13,14]. Furthermore, micro-
nano processing technologies have been developed to satisfy the machining precision
of the biomimetic structures. Therefore, the research progress was summarized for six
biomimetic structures applied in heat transfer enhancement and drag reduction, and four
micro-nano machining technologies were introduced. The prospect of biomimetic heat
transfer structure optimization was proposed, hoping to provide a design reference for
enhanced heat transfer structures of heat exchangers, especially miniature heat exchangers.

2. Biomimetic Enhanced Heat Transfer Structures

The heat transfer is ubiquitous during the natural biological system construction and
life activities process. A long-term nature evolution could provide beneficial guidance for
bionic optimal design of heat transfer structure.

2.1. Fractal-Tree-Like Structure

The fractal theory [15] is commonly used to describe similar fractal geometric struc-
tures in nature, which is employed widely to research the fractal-tree-like structure inspired
by tree trunk lines, leaf veins distribution and human blood vessel networks for the struc-
tural design of heat sinks [16,17].

Figure 1 and Table 1 show the structures of several fractal heat exchangers in recent
years. The scale, shape and application tend to be diversified. Furthermore, the fractal-
tree-like structure characteristics mainly include the branch number and angle [18], the
channel aspect ratio [19], layer number [20] and shape [21–23], which can affect the fractal
heat exchanger performance.
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work [19], (c2) The overall shape of 5-layer fractal-tree-like microchannel [20], (c3) The tree-shaped 
microchannel heat sink with cavities [21], (c4) The tree-shaped microchannel heat sink with cavi-
ties [21]; (d1) The CAD diagram of Y-type heat exchanger [22], (d2) The CAD diagram of H-type 
heat exchanger [22], (d3) The plate heat exchanger with lung pattern [23]. 
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Figure 1. (a1) The image of leaf veins, (a2) The human lung model; (b1) The bifurcate structure of the
vascular system in plants, (b2) The bifurcate structure of the vascular or tracheal system in animals;
Fractal-like branching channel flow networks: (c1) The fractal-tree-like microchannel network [19],
(c2) The overall shape of 5-layer fractal-tree-like microchannel [20], (c3) The tree-shaped microchannel
heat sink with cavities [21], (c4) The tree-shaped microchannel heat sink with cavities [21]; (d1) The
CAD diagram of Y-type heat exchanger [22], (d2) The CAD diagram of H-type heat exchanger [22],
(d3) The plate heat exchanger with lung pattern [23].
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Table 1. Summary of research work for fractal heat exchangers.

Reference Research
Method Dimension Medium Factor

Maximum Heat
Transfer

Enhancement Rate
Application

[19] simulation microscale deionized
water

channel aspect ratio
(α = 0.3–1) 20% microchannel

heat sink

[20] simulation
experiment microscale deionized

water structure layer (0–5) 110% microchannel
heat sink

[21] simulation microscale deionized
water

structure shape
(smooth; ribbed;

concave)
17% microchannel

heat sink

[22] simulation
experiment

conventional
scale

deionized
water

structure shape
(Y-type; H-type;

conventional spiral)
23% spiral-tube heat

exchanger

[23] simulation conventional
scale

deionized
water

structure shape (lung
patterned; corrugated) 71.3% plate heat

exchanger

Through the comparison between the fractal-tree-like microchannel and the traditional
parallel microchannel, the branch number and angle are worth discussing [18]. It proved
that the heat transfer performance of the fractal-tree-like microchannel first increased and
then decreased in the aspect ratio range of 0.3–1 [19]. The thermal resistance was effectively
reduced when the single-layer fractal-tree-like silicon microchannel was turned into the
multi-layer structure [20]. The fractal-tree-like microchannel with micro-rib contributed to
destroy the flow boundary layer near the wall and increase the Nusselt number [21]. The
total heat flux of the spiral-tube heat exchanger increased by 23% for H-type fractal-tree-like
channel, comparing with the conventional spiral-tube [22]. The plate heat exchanger with
lung structure had smaller volume and higher heat transfer coefficient than that of the
corrugated plate-type heat exchanger [23].

2.2. Conical Column Structure

The condensation caused by vapor-liquid phase change is a common natural phe-
nomenon [24,25]. There are two main condensation modes: dropwise condensation and
film condensation. The condensate film is a thermal resistance carrier for the heat exchange
between the steam and wall surfaces. The dropwise condensation has five to ten times
higher heat transfer coefficient than that of the film condensation. This is because the
condensate exists in the form of droplets, which can effectively break away from the wall
and promote dropwise condensation. However, dropwise condensation is so unstable that
it is difficult to maintain. The special structures on plant surfaces can remove condensate
droplets effectively and continuously by means of absorption or self-jumping, which itself
has aroused much attention of scholars [26–28], as shown in Figure 2.

The hollow hairs on the surface of Lychnis sibirica (Figure 2(a1)) appear to be conical
column structures (Figure 2(a2,a3)). These conical column structures are utilized by Lychnis
sibirica to absorb moisture from air, store moisture in the interior, and then bend hairs to
release moisture to the plant in dry environments [29] (Figure 2(a4–a6)). The ability to
survive in the desert of Cactus is closely related to its excellent vapor condensation and
collection system [30–32]. The surface of Cactus (Figure 2(b1)) is uniformly covered with
conical column structures (Figure 2(b2)). Each conical column contains barbs, grooves
and trichomes [33,34]. During moisture collection, the uneven curvature of the conical
column structure leads to the formation of the gradient of the Laplace pressure and drives
droplets to slide spontaneously from the tip to root. Then, droplets are absorbed by
trichomes through capillary action [35,36] (Figure 2(b3)). Similar conical column structures
also appear on the surface of Ruellia devosiana [37] (Figure 2(c1,c2). It proved that the
superhydrophobic surfaces with conical column structures (Figure 2(b4,c3,c4) showed
more excellent condensing heat transfer performance [38,39].
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Figure 2. (a1) The image of Lychnis sibirica, (a2) The field emission SEM image of intact hairs [29], 
(a3) The sponge-like microfibrillar texture within the hair [29], (a4–a6) Hair deformation by water 
droplets [29]; (b1) The image of Cactus, (b2) SEM image of cactus spiny surface [32], (b3) The 
mechanism model of water droplet movement on cactus spiny surface [34], (b4) The image of su-
perhydrophilic mastoids [38]; (c1) The image of Ruellia devosiana, (c2) The SEM image of Ruellia 
devosiana leaf [37], (c3) The image of the flat heat pipe with convex structure [39], (c4) Structure 
and working principle of the flat heat pipe with convex structure [39]. 

The phenomenon of droplets combining and jumping on a superhydrophobic surface 
provides a new research direction for dropwise condensation improvement. In order to 
fly in foggy weather, cicadas have to condense moisture in the air by evolving specific 
structural wings, as shown in Figure 3. The tiny condensate droplets combine together 
and jump off the surface of cicada wings which remove pollutants and keep wings dry 
[40,41] (Figure 3(a1–a3)). This self-cleaning behavior is done by the coordination of the 
conical column structures and hydrophobic wax layer on the surface of cicada wings [42] 
(Figure 3(a4)). The self-jumping of droplets generally includes the growth of the liquid 
bridge, the impact between the liquid bridge and wall, the contraction of the liquid bridge 
into droplets and the separation of droplets from the material surface [43] (Figure 3b). The 
critical radius of self-jumping droplets is positively correlated with the solid-liquid con-
tact area and negatively correlated with the contact angle of the material surface [44]. Both 
the number and the distribution of combined droplets are important factors affecting the 
self-jumping speed [45,46] (Figure 3(c1–c3)). By adjusting the height, tip size and inter-
space of conical column structures (Figure 3(d1–d4)), Wang et al. [47] obtained 320% en-
hancement on the condensation heat transfer coefficient compared with the smooth hy-
drophobic surface. 

Figure 2. (a1) The image of Lychnis sibirica, (a2) The field emission SEM image of intact hairs [29], (a3) The sponge-like
microfibrillar texture within the hair [29], (a4–a6) Hair deformation by water droplets [29]; (b1) The image of Cactus,
(b2) SEM image of cactus spiny surface [32], (b3) The mechanism model of water droplet movement on cactus spiny
surface [34], (b4) The image of superhydrophilic mastoids [38]; (c1) The image of Ruellia devosiana, (c2) The SEM image
of Ruellia devosiana leaf [37], (c3) The image of the flat heat pipe with convex structure [39], (c4) Structure and working
principle of the flat heat pipe with convex structure [39].

The phenomenon of droplets combining and jumping on a superhydrophobic surface
provides a new research direction for dropwise condensation improvement. In order to
fly in foggy weather, cicadas have to condense moisture in the air by evolving specific
structural wings, as shown in Figure 3. The tiny condensate droplets combine together and
jump off the surface of cicada wings which remove pollutants and keep wings dry [40,41]
(Figure 3(a1–a3)). This self-cleaning behavior is done by the coordination of the coni-
cal column structures and hydrophobic wax layer on the surface of cicada wings [42]
(Figure 3(a4)). The self-jumping of droplets generally includes the growth of the liquid
bridge, the impact between the liquid bridge and wall, the contraction of the liquid bridge
into droplets and the separation of droplets from the material surface [43] (Figure 3b).
The critical radius of self-jumping droplets is positively correlated with the solid-liquid
contact area and negatively correlated with the contact angle of the material surface [44].
Both the number and the distribution of combined droplets are important factors affecting
the self-jumping speed [45,46] (Figure 3(c1–c3)). By adjusting the height, tip size and
interspace of conical column structures (Figure 3(d1–d4)), Wang et al. [47] obtained 320%
enhancement on the condensation heat transfer coefficient compared with the smooth
hydrophobic surface.
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emission SEM image of cicada wings [42]; (b) The coalescence-induced droplet jumping on superhydrophobic surfaces 
[43]; (c1–c3) The influence of the number of droplets on droplet jumping height [45]; (d1) A model of condensate self-
propelling nanoneedle array structure with specific geometric parameters: interspace p, tip size d and height h [47], (d2–
d4) The influence of h, d and p on the departure diameters Dw, density ρw of droplets and film-layer thermal resistance Rf 
either of which is important to affect condensation heat transfer [47]. 
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barrier. In contrast, the condensate droplets are difficult to separate on the hydrophilic 
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The Namib desert beetle, which lives in an arid area, has a special hydrophilic and 
hydrophobic composite structure on its back, as shown in Figure 4. The hydrophilic pro-
trusions can gather droplets suspended in the air and hydrophobic grooves can ensure 
that droplets flow to mouthparts after becoming large enough [54,55]. 

 
Figure 4. (a) The image of Namib desert beetle; (b) The SEM image of Namib desert beetle back 
[54]. 

Referring to moisture collection of the Namib desert beetle, a variety of hydrophilic 
and hydrophobic composite structures were designed, as shown in Table 2. Compared 
with hydrophilic or hydrophobic surfaces, the heat transfer performance of the hybrid 
wetting surfaces is greatly enhanced [56–59]. It shows that there is no obvious film con-
densation on the hybrid wetting surface in Figure 5. In addition, the condensate droplets 

Figure 3. (a1) The image of cicada, (a2,a3) The wetting state of the local structure of cicada wings [41], (a4) The field
emission SEM image of cicada wings [42]; (b) The coalescence-induced droplet jumping on superhydrophobic surfaces [43];
(c1–c3) The influence of the number of droplets on droplet jumping height [45]; (d1) A model of condensate self-propelling
nanoneedle array structure with specific geometric parameters: interspace p, tip size d and height h [47], (d2–d4) The
influence of h, d and p on the departure diameters Dw, density ρw of droplets and film-layer thermal resistance Rf either of
which is important to affect condensation heat transfer [47].

2.3. Hybrid Wetting Structure

Wettability is one of important features for a solid surface, which can be divided into
hydrophobic and hydrophilic [48–50]. The condensate droplets separate easily on the hy-
drophobic surface. However, the condensation amount is small due to the high nucleation
barrier. In contrast, the condensate droplets are difficult to separate on the hydrophilic
surface, and the condensation amount is large due to the low nucleation barrier [51–53].
Therefore, it is reasonable to distribute and regulate the wettability of structures for reduc-
ing condensate droplets nucleation barrier and increasing nucleation density.

The Namib desert beetle, which lives in an arid area, has a special hydrophilic and
hydrophobic composite structure on its back, as shown in Figure 4. The hydrophilic
protrusions can gather droplets suspended in the air and hydrophobic grooves can ensure
that droplets flow to mouthparts after becoming large enough [54,55].
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Figure 4. (a) The image of Namib desert beetle; (b) The SEM image of Namib desert beetle back [54].

Referring to moisture collection of the Namib desert beetle, a variety of hydrophilic
and hydrophobic composite structures were designed, as shown in Table 2. Compared with
hydrophilic or hydrophobic surfaces, the heat transfer performance of the hybrid wetting
surfaces is greatly enhanced [56–59]. It shows that there is no obvious film condensation
on the hybrid wetting surface in Figure 5. In addition, the condensate droplets in the
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hydrophobic region are gathered in the adjacent hydrophilic region. Then, the hydrophobic
surface continues to be exposed, so as to provide conditions for the dropwise conden-
sation (Figure 5(a1–a3,b1–b3)). The condensate droplets on the hybrid wetting surface
(Figure 5(b3)) and left surfaces (Figure 5(c1)) formed by the hydrophilic region flow along
channels under the action of gravity (Figure 5(c1,c2)). Differing from that behavior, the
condensate droplets on the hybrid wetting surface (Figure 5(a3)) could be removed through
self-jumping supported by the excess surface energy after combining (Figure 5(d1,d2)).
Furthermore, the pattern shape, inclined angle, spatial layout, fractional area and other
structural parameters of the hydrophilic and hydrophobic region are important factors
affecting the heat transfer performance of the hybrid wetting structures. Choo et al. [60]
fabricated four kinds of superhydrophilic ZnO nanorod arrays on superhydrophobic TiO2
nanorods in the form of dot, mesh, line and branch, respectively. The hybrid wetting
surface with dot patterns had the best condensation efficiency and the increase of surface
inclined angle was beneficial. When the parallel-stripes patterns dipped to the width direc-
tion of the substrate with the inclined angle of sixty degrees, the hybrid wetting surface had
the higher condensation heat transfer coefficient [61]. Mahapatra et al. [62] pointed out that
both interdigitated and staggered line patterns showed better condensation heat transfer
performance than the straight line patterns. The heat transfer enhancement rate of the
staggered line patterns was higher than that of the interdigitated line patterns. Excessively
increasing the area of the superhydrophilic region did not contribute to the condensation
efficiency [62,63].
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Table 2. Several hybrid wetting structures.

Reference Research Method Hybrid Wetting Structure Contact Angle Factor Maximum Heat Transfer
Enhancement Rate
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Table 2. Cont.

Reference Research Method Hybrid Wetting Structure Contact Angle Factor Maximum Heat Transfer
Enhancement Rate
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3. Biomimetic Flow Resistance Reduction Structures

In general, the flow resistance in the heat exchanger is mainly attributed to the internal
friction caused by the viscosity of the fluid and the form drag caused by the shape of
the fixed wall. The flow resistance determines the consumption of pump power, which
is an important index to evaluate the overall performance of heat exchanger. Therefore,
the design of enhanced heat transfer structure should not only pursue the improvement
of heat transfer coefficient, but also strictly control the increase of flow resistance. There
are some special structures on the organism surface in direct contact with the external
fluid. Biomimetic technology improves fluid flow by simulating and designing non-smooth
structures similar with the surface morphology of animals and plants.

3.1. Scale Structure

Fish is an important research object of bionics, and its excellent underwater locomotion
ability has been widely noticed [64,65]. Sharks in the ocean are able to swim quickly mainly
because of the non-smooth scale structures covering their skin, as shown in Figure 6 [66,67].
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Figure 6. The image of a shark and its skin.

Inspired by shark skins, the grooves have been proposed, which could change the
flow pattern in the turbulent boundary layer and reduce the viscous resistance of the
fluid [68,69]. Grooves with triangular, trapezoidal, semicircular, rectangular, blade and
sinusoidal sections have been designed [70–73]. The drag reduction rates of four textured
surfaces with V-shaped, saw tooth, rectangular and semi-circular sections were examined.
In these four geometries, the surface with saw tooth grooves had the best drag reduction
efficiency [73]. The influences of the grooves parameters on the drag reduction rate
have been discussed [74–76]. Martin et al. [74] established three surfaces with blade,
sawtooth, scalloped grooves decorated along flow direction and vertical flow direction
discontinuously. For all three grooves, the drag reduction rate increased first and then
decreased with the increase of dimensionless spacing or height. For sinusoidal grooves, the
variation of drag reduction rate with the dimensionless amplitude was similar to that of
dimensionless structural parameters in Martin’s study. Smaller dimensionless wavelengths
were not helpful for drag reduction. The use of polymer drag reducers or surfactants
could also increase the drag reduction rate of the grooves [77–79]. The drag reduction
rate of a biomimetic riblet surface increased by 6% after grafting the drag reduction agent
polyacrylamide [77]. Table 3 shows several biomimetic shark-skin grooves and maximum
drag reduction rates in recent years.
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Table 3. Several biomimetic shark-skin grooves.

Reference Research
Method Groove Medium Factor Maximum Drag

Reduction Rate

[73] simulation
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In addition, the scale structures of fish living in different environments are different
from each other. Grass carp is a common freshwater fish with multilevel structure scales, as
shown in Figure 7 [80]. The grass carp body is covered by periodic scales and the mutual
coverage of the scales is about 2/3 (Figure 7b). The exposed parts of scales are fan-shaped.
The microscopic morphology of the exposed parts of scales shows that some “crescent-like”
ridge distribution in an orderly manner. Based on the structure, Dey et al. [81] applied the
fan-shaped scale in the microchannel. It indicated that the friction coefficient was reduced
by up to 5% compared with that of the smooth microchannel. Wu et al. [82] established
a 3-D biomimetic surface model with simplified crescent-like ridge and obtained a drag
reduction rate of 3.014% through dynamic finite element analysis. This drag reduction
could be attributed to the stable low velocity fluid film and vortexes between the crescent-
like structures.
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Most crocodiles live in swamps (Figure 8a). When they crawl in the swamp, the
abdominal armor structure with macroscopic gully can introduce water and thicken the
water film to reduce travel resistance (Figure 8b). This coincides with the water film theory
for drag reduction which is applied to the design of ship-type paddy field machinery
(Figure 8c). Yan et al. [83] imitated crocodile to design the rectangular and hexagonal ship
boards (Figure 8d), and obtained drag reduction rate of 6.3% by experimental verification.
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3.2. Concave-Convex Structure

The dung beetle living in soil, cybister bengalensis and humpback whales living in
water all have concave-convex structures on their body surfaces to reduce movement
resistance [84–86], as shown in Figure 9(a1,b1,c1). Besides, Figure 9(d1) shows that wind-
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shaped dunes always take on a hemispherical appearance, allowing them to suffer as little
drag as possible [87].

On the one hand, the secondary flow generated in the concave region contacts with
the main fluid to result in vortex cushion effect which leads to the decreases of velocity
gradient and shear stress near the wall. On the other hand, the low-velocity flow zone
formed between the adjacent convex structures and the backflow appeared downstream of
the convex structure can reduce the direct liquid-solid contact area, increase the thickness
of the boundary layer and thus decrease the flow resistance [88–90].

Table 4 shows the research work of several concave-convex structures in recent years.
Zhu et al. [91] conducted numerical simulation on the simplified CRH3 high-speed train
model with ball sockets. It found that the aerodynamic drag of the train decreased at
first and then increased with the increases of the radius, depth and array distance of ball
sockets (Figure 9(f2)). Li et al. [92,93] pointed out that the resistance could be reduced by
arranging spherical pits in the specific positions such as the front and rear of the train,
bogies and inter-car connections. Palanivendhan et al. [94] used dimples to improve the air
flow around a commercial vehicle body and the drag reduction could only be achieved
by adding a certain number of small size dimples (Figure 9(f3)). Yang et al. [95] carried
out wind tunnel tests on the notchback MIRA model with pits, convex structures and
grooves arranged on the different locations of the car (Figure 9(e1)). When pitted structures
were arranged on the rear of the notchback model, the drag reduction rate was largest.
Xu et al. [96] applied the concave structures to the structural optimization of traditional
smooth microchannels and the flow resistance decreased with the increase of concave
structure depth or the decrease of concave structure spacing (Figure 9(f1)). Huang et al. [97]
studied the influences of concave structures, convex structures and mixed structures on the
flow characteristic of the microchannel heat sinks with impinging jets (Figure 9(e2)). The
results showed that the application of convex structures could minimize the flow resistance.
Jing et al. [98,99] successively optimized the channel structures applied in jet impingement
and swirl cooling, and pointed out that it was better to arrange the protrusion on the side
of the nozzle for drag reduction (Figure 9(e3)).

Table 4. Summary of research work for concave-convex structures.

Reference Research
Method Medium Factor Maximum Drag

Reduction Rate Application

[91] simulation air
ball socket radius (20–180 mm)

ball socket depth (4–16 mm)
ball socket array distance (100–500 mm)

25.19% high-speed
train

[94] simulation air dimple size and number 4% commercial
vehicle

[95] experiment air
structure location (top; luggage hatch;

rear; bottom)
structure shape (pitted; convex; grooved)

2.26% notchback

[96] simulation deionized
water

concave structure depth (d = 0.05–0.2 mm)
concave structure spacing (s = 0.7–2.8 mm) 2% microchannel

heat sink

[97] simulation deionized
water structure shape (convex; concave; mixed) 9% microchannel

heat sink

[98,99] simulation deionized
water structure location (nozzle side; slot side) 5% swirl chamber
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3.3. Superhydrophobic Micro-Nano Structure

The superhydrophobic surface has the advantage of flow drag reduction. The lotus
leaf is a typical superhydrophobic surface (Figure 10a). It has a hierarchical micro-nano
composite structure consisting of papillary epidermal cells and mirror-like waxy crys-
tals [10,100] (Figure 10b,c). This hierarchical structure can absorb the air and make the
gas-liquid contact replace part of the solid-liquid contact. When the fluid flows on the
superhydrophobic surface, the slip motion occurs which reduces the velocity gradient and
shear stress on the boundary surface, delaying the change of flow state near the laminar
flow, and then decreasing the viscous resistance. As a result, droplets can easily slide off
the lotus leaf and carry away contaminant on the surface [101] (Figure 10d).
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Researchers have studied lots of superhydrophobic surfaces by imitating the superhy-
drophobic micro-nano structure of the lotus leaf [102–105]. Tuo et al. [106] established a
superhydrophobic aluminum foil surface with the contact angle of 160◦ and achieved a
drag reduction rate of 30%. Li et al. [107] manufactured a superhydrophobic aluminum
surface with a drag reduction rate of 19.2%. Rajappan et al. [108] prepared aluminum
substrates with different surface textures and sprayed a mixture of high molecular weight
polymer binder and low surface energy hydrophobic agent on these aluminum substrates to
obtain superhydrophobic surfaces. The maximum drag reduction rate of these surfaces was
26%. Through layer-by-layer coating using adhesive tape and the superhydrophobic paint
made up of H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTES), TiO2 nanoparticles
and ethanol, a robust superhydrophobic surface with a drag reduction rate of 12.7% was
fabricated by Hwang et al. [109]. Liu et al. [110] prepared a multilayer superhydrophobic
organic-inorganic composite film based on the metathesis reactions of disulfide bonds and
hot pressing of fluorinated silicon particles. The composite membrane exhibited excellent
drag reduction property up to 27.7%.

4. Machining Methods for Biomimetic Structures

In general, the biomimetic structure is in the micro-nano scale. Compared with the
macroscopic structures, the micro-nano structures usually present novel physical and
chemical properties. In order to realize the research and application of micro-nano structure
characteristics, it is necessary to strictly control the material growth and machining accuracy.
Therefore, it is indispensable to summarize and develop the existing micro-nano processing
technologies. There are many machining methods that can be used in the processing of
biomimetic structures with the micro-nano size [111]. Furthermore, some methods can be
used in combination to obtain biomimetic structures with higher accuracy. Four typical
bionic micro-nano processing technologies are introduced.

4.1. Photolithography

Photolithography is one of the most efficient methods for fabricating micro-nano
structures. It mainly relies on the photochemical reaction between light and photosen-
sitive substances, as well as the selective removal of materials by physical and chemical
methods to produce complex structures [112]. Chen et al. [113] adopted two successive
steps of UV lithography to fabricate the inclined arc pitted groove that imitated the curved
outline and wedge-shaped holes of nepenthes alata (Figure 11a). Based on moisture
collection of the Namib desert beetle, Moazzam et al. [114] constructed hydrophilic poly-
dopamine bumps on hydrophobic polypropylene films through negative photolithography
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(Figure 11b). Photolithography has the advantage of being able to process micro-nano
structures as small as tens of nanometers. The shape and size of the structure can be pre-
cisely controlled. It is easy to make photo masks which can be used repeatedly. However,
it requires expensive equipment. The operation process is relatively complex and the
processing materials are limited to some extent [115,116].
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4.2. Nanoimprinting

Nanoimprinting is a graphic transfer technology, which applies the traditional mold
replica technique to a micro-nano machining field directly. The realization of original graph
transfer is to make the template with nano structure closely contact with the imprint resist
coated on the substrate through external mechanical force. After demolding, the final graph
transfer is realized by removing the residual imprint resist by etching [117,118]. By applying
nanoimprinting, Saison et al. [119] prepared PDMS masks with microstructures inspired
by the lotus leaf and butterfly wings, and then transferred the micro-nano structures
onto MTEOS films on the surface of silicon or glass substrates. Dickson et al. [120] have
imprinted the nano cylindrical array with different diameters and heights on the PMMA
surfaces through imitating cicada wings (Figure 12). Nanoimprinting is not affected by
the optical diffraction limit, and the highest resolution can be less than 5 nm. The simple
technological process of nanoimprinting also provides the possibility for the large-scale
fabrication of nanostructures. However, the preparation process of the mask is relatively
complex and deformation can easily occur in the processing procedure [121,122].
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4.3. Femtosecond Laser Processing

Femtosecond laser processing is widely concerned in the field of micro-nano struc-
ture preparation because it highly conforms to the environment-friendly and resource-
conserving concept of green manufacturing [123,124]. The energy of the pulse laser is
absorbed when the femtosecond laser acts on the surface of the material. Then, the bound
electrons become high temperature free electrons and accumulate rapidly following the
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nonlinear ionization mechanism. The material in the laser action region is stripped off
the base metal surface in the form of plasma jet after free electrons reaching a certain
density [125,126]. Yong et al. [127] fabricated the micro-nano hierarchical rough structures
inspired by fish scales and lotus leaves respectively on the surfaces of silicon and PDMS by
femtosecond laser processing. A superhydrophilic periodic hierarchical micro-mountains
array was formed on the silicon surface (Figure 13(a1)). The surface of PDMS was covered
with a high number of superhydrophobic bumps decorated with masses of nanoscale
protrusions (Figure 13(a2)). Bai et al. [128] modified the hierarchical micropillar array on
the SMP surface with fluoroalkylsilane (Figure 13b). Moreover, the superhydrophobicity of
SMP surface could be reversibly weakened and recovered due to the macro/microscopic
shape-memory effect in response to heat. On the one hand, femtosecond laser processing
has the characteristics of simple machining processes and non-contact. On the other hand,
it has ultra-short pulse width and ultra-high peak power. Therefore, its processing accuracy
can reach hundreds of nanometers. It can process complex structures with a wide range of
solid materials and the machined sample is difficult to deform. However, Femtosecond
laser processing is working with many interacting parameters, which should be repeatedly
debugged and reduces the processing efficiency [129,130].
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4.4. 3D Printing

3D printing is a rapid prototyping technology which stacks materials from point to
line, line to plane and plane to volume discretely. It obtains a 3D model through computer-
aided design software construction or entity scanning. After optimizing the structure and
printing parameters of the 3D model, it is transmitted to the printing equipment for additive
manufacturing. Finally, the printed product is finished through post-processing [131–133].
Wen et al. [134] constructed the shark skin denticles imitated the shortfin mako on the
flexible membranes by 3D printing, and conducted hydrodynamic tests on it (Figure 14a).
Inspired by salvinia molesta leaf, Yang et al. [135] printed superhydrophobic micro-scale
artificial hairs with eggbeater heads. 3D printing has high processing accuracy up to
tens of nanometers (Figure 14b). It can quickly manufacture products with complex
structures and fabricate whole products, but still not be mass produced due to time and
cost limitation [136]. However, the processing quality is affected by size deviation and
parameter selection, which cannot be observed and characterized in real-time. There are
lots of materials available for 3D printing, but the materials that can be processed by
specific printing equipment are limited. It is difficult to process a variety of composite
material structures at micro and nano scales simultaneously [137].
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5. Summary and Outlook

In this paper, six biomimetic structures in heat transfer and fluid flow fields were
summarized. A series of structural factors were discussed, such as the shape, arrangement,
size and so on. Four typical micro-nano machining technologies were introduced. In gen-
eral, the biomimetic structures could improve the heat transfer and/or flow performance
more or less. The biomimetic structures could be manufactured by the present micro-nano
machining technologies. The prospect of biomimetic structure optimization was proposed
as follows:

(1) It is necessary to consider the synergistic effect of multiple structures on the biological
surface. For example, the fish control the external flow field using the streamlined
body, scales and flexible fins. It is partial to analyze one of the fish structures. In
addition, combining the biomimetic structures with the existing traditional enhanced
heat transfer structures is also worthy of further researches.

(2) It seems that the simplified biomimetic structures show good performance as well
as actual biomimetic structures. The heat transfer enhancement and drag reduction
mechanism is a guide for simplifying biomimetic structures reasonably.

(3) The structural parameters of the biomimetic structure are the most important factors.
We are a long way from establishing the functional relationship between the structural
parameters and heat transfer coefficient or flow resistance of biomimetic structures
for performance evaluation.

(4) The surface force is the dominant instead of volume force on fluid flow for micro
heat sinks. The biomimetic structures are applied in microchannel, which is a major
challenge to research micro heat transfer.

(5) The composite biomimetic micro-nano structure is the main developing trend. It
requires higher precision and quality of micro-nano machining technology. It is worth
exploring the present machining methods used in combinations.

Author Contributions: J.L. and Z.Z. outlined the structure of the paper, Z.Z. wrote the paper, J.L.,
H.P. and D.L. revised the paper. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Nos.51506098
and 51776095), and Natural Science Foundation of Jiangsu Province (Grant No. BK20180936).

Acknowledgments: The authors acknowledge the financial support provided by the National Natu-
ral Science Foundation of China (Nos.51506098 and 51776095), and Natural Science Foundation of
Jiangsu Province (Grant No. BK20180936).

Conflicts of Interest: The authors declare no conflict of interest.



Micromachines 2021, 12, 656 18 of 23

Symbol Description

α Fractal channel aspect ratio
p Interspace of conical column structure
d Tip size of conical column structure
h Height of conical column structure
Dw Departure diameter of droplet
ρw Density of droplet
s+ Dimensionless spacing of groove
h+ Dimensionless height of groove
a+ Dimensionless amplitude of sinusoidal groove
λ+ Dimensionless wavelength of sinusoidal groove
dc Depth of concave structure
s Spacing of concave structure
CAD Computer aided design
SEM Scanning electron microscope
UV Ultraviolet
PDMS Polydimethylsiloxane
MTEOS Methyltriethoxysilane
PMMA Polymethyl methacrylate
SMP Shape-memory polymer
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