
RESEARCH ARTICLE

Validation pipeline for machine learning

algorithm assessment for multiple vendors

Bernardo C. BizzoID
1,2*, Shadi Ebrahimian2, Mark E. Walters1, Mark H. Michalski1,2,

Katherine P. Andriole1,3, Keith J. Dreyer1,2, Mannudeep K. Kalra1,2, Tarik Alkasab1,2☯,

Subba R. Digumarthy2☯

1 MGH & BWH Center for Clinical Data Science, Mass General Brigham, Boston, Massachusetts, United

States of America, 2 Department of Radiology, Massachusetts General Hospital, Harvard Medical School,

Boston, Massachusetts, United States of America, 3 Department of Radiology, Brigham and Women’s

Hospital, Harvard Medical School, Boston, Massachusetts, United States of America

☯ These authors contributed equally to this work.

* bbizzo@mgh.harvard.edu

Abstract

A standardized objective evaluation method is needed to compare machine learning (ML)

algorithms as these tools become available for clinical use. Therefore, we designed, built,

and tested an evaluation pipeline with the goal of normalizing performance measurement of

independently developed algorithms, using a common test dataset of our clinical imaging.

Three vendor applications for detecting solid, part-solid, and groundglass lung nodules in

chest CT examinations were assessed in this retrospective study using our data-prepro-

cessing and algorithm assessment chain. The pipeline included tools for image cohort crea-

tion and de-identification; report and image annotation for ground-truth labeling; server

partitioning to receive vendor “black box” algorithms and to enable model testing on our

internal clinical data (100 chest CTs with 243 nodules) from within our security firewall;

model validation and result visualization; and performance assessment calculating algo-

rithm recall, precision, and receiver operating characteristic curves (ROC). Algorithm true

positives, false positives, false negatives, recall, and precision for detecting lung nodules

were as follows: Vendor-1 (194, 23, 49, 0.80, 0.89); Vendor-2 (182, 270, 61, 0.75, 0.40);

Vendor-3 (75, 120, 168, 0.32, 0.39). The AUCs for detection of solid (0.61–0.74), ground-

glass (0.66–0.86) and part-solid (0.52–0.86) nodules varied between the three vendors.

Our ML model validation pipeline enabled testing of multi-vendor algorithms within the insti-

tutional firewall. Wide variations in algorithm performance for detection as well as classifica-

tion of lung nodules justifies the premise for a standardized objective ML algorithm

evaluation process.

Introduction

Interest in machine learning (ML) algorithms for use in radiology is growing rapidly. As

algorithms become available for clinical use, an objective method for evaluating these tools is

required. ML challenges are one mechanism for assessing algorithm performance, and such
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competitions involving medical images are increasing. Recent examples include the RSNA

Pediatric Bone Age Challenge [1], Data Science Bowl 2017 [2], Ischemic stroke lesion segmen-

tation (ISLES) Challenge [3], Multimodal Brain Tumor Image Segmentation Benchmark

(BRATS) [4], and Lung Nodule Analysis 2016 (LUNA16) challenge [5], among others. Compe-

titions are open and generally provide a public annotated data set for the training and evalua-

tion of participant algorithms.

Such open challenges are an objective way for the research community to develop, test,

compare, and advance state-of-the-art data science and ML techniques. However, a large gap

exists between algorithm performance evaluated on a highly-curated research dataset and a

clinically usable product that provides valuable advice in real-world use. Success of ML algo-

rithms on research datasets from specific site (s), timepoints, imaging equipment and acquisi-

tion parameters, as well as disease type, spectrum, severity, and presentation, is not a

guarantee of its generalizability, explainability, robustness, or performance in clinical environ-

ment. To address these issues, it is important to develop and incorporate objective processes to

validate ML algorithms on representative local clinical data.

There is an urgent need for an objective, standardized evaluation process to compare algo-

rithms on an even clinical plane. For this purpose, we designed, built, and tested an evaluation

pipeline for the use case of lung nodule detection on chest CT studies.

Lung cancer is currently the leading cause of cancer death in the US [6]. There is a substan-

tial economic burden associated with lung cancer care, with an overall cost estimated in 2016

at over $13 billion [7]. Further, a 2015 Centers for Medicare and Medicaid Services mandate

requires a standardized identification, classification, and reporting system to report lung can-

cer screening imaging studies for reimbursement [8]. In this context, CT chest screening

examinations are increasing in number, and many companies have developed nodule detec-

tion software tools in hopes of early lung nodule detection for improved patient outcomes.

Along with the socio-economic reasons, the high vendor interest in systems for automatic

detection of lung nodules makes assessing such tools a valuable use case. However, the hetero-

geneity of existing systems’ capabilities, the substantial variability among radiologists on what

constitutes a lung nodule [9], and the coexistence of other pathologic pulmonary imaging find-

ings highlight the inherent challenges to building an evaluation system. Therefore, our goal

was to normalize clinical assessment of different lung nodule detection machine learning algo-

rithms using a standard evaluation pipeline generalizable to other modalities and clinical

evaluations.

Materials and methods

This retrospective study was approved by Mass General Brigham Institutional Review Board

(Approval number: 2016P000312). The need for consent was waived by the ethics committee.

It was performed at an urban tertiary care academic medical center. Our data-preprocessing

and algorithm assessment chain included the following components 1. an image cohort crea-

tion and de-identification tool 2. report and image annotation tools for ground-truth labeling

3. server partitioning for vendor “black box” algorithms, and model testing on our internal

clinical data within our security firewall 4. model validation and result visualization tool and 5.

assessment of algorithm recall and precision. This section provides a brief description of each

step required for building, implementing, and testing the evaluation pipeline.

Data collection

Cohort selection was made on picture archiving and communication system (PACS) (AGFA

Technical Imaging Systems, Ridgefield Park, NJ). Two thousand four hundred fifty-nine (2459
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CTs) consecutive chest CT studies and reports were reviewed to include 100 CT studies done

for lung nodule surveillance or detection (Fig 1). The CTs were performed on ten different

multi-slice CT scanner models with 16 to 256 channels from three different manufacturers

during the time frame from April 2016 to January 2017. The selected 100 CTs in 100 different

patients (46 male, 54 female: age 19 to 92 years old) were acquired with slice thickness� 3 mm

(18 studies with 1 mm, 23 studies with 1.25 mm, 54 studies with 2.5 mm, and 5 studies with 3

mm), with regular or low dose acquisition, with (46 studies) or without (54 studies) intrave-

nous contrast, and different reconstruction methods (e.g. standard and over-enhancing ker-

nels such as detail, I30f, I31f, B30f and B31f).

Report and image annotation

To select the final cohort of 100 chest CT studies with lung nodules from the larger cohort of

2459 chest CT studies retrieved from our PACS archive, two infrastructure software applica-

tions were built in-house: a report annotation tool and an image annotation-visualization tool

to facilitate the process in a semi-automated fashion.

The web-based interactive report annotation tool consisted of a graphical user interface

that enabled report loading and user-configurable search terms. The tool allows for the assign-

ment of multiple study-level labels per report and keyword or phrase search. The presence of

Fig 1. Flowchart of patient population in the study. It is summarizing the ground-truthing of pulmonary nodules by three

radiologists.

https://doi.org/10.1371/journal.pone.0267213.g001
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specific wording in the study report can be used as an initial filter to select studies likely to

present determinate imaging findings. Specifically, using the tool, a radiologist views a report,

highlights a phrase or keyword of interest, and associates it with a given label. Any report con-

taining this phrase or keyword, and not previously matched to another phrase, is marked with

a “soft label.” This process allows the radiologist to cull many reports and group them effi-

ciently. Next, manual confirmation of the initial soft labels is performed on a study-by-study

basis, and exclusion criteria are applied. This preliminary grouping of reports facilitates and

expedites further processing.

Most current ML algorithms (2/3 assessed AI algorithms) are limited in detecting a single

imaging finding—so-called “narrow AI” (artificial intelligence). Therefore, studies containing

other non-nodule-relevant imaging findings were not included in the final cohort to properly

assess the nodule detection capabilities of the evaluated models. Instead, study-level labels

were created in the report annotation tool, and keyword searches of related terms were used to

identify and consequently exclude reports containing variations of the following excluded cri-

teria: consolidation, moderate/severe pleural effusion, emphysematous change, architectural

distortion, and surgery. After removing study reports containing these findings, the remaining

reports were assessed for a first pass filtering of studies with mention of lung nodules in the

reports (keyword searches for solid, part-solid, and ground glass nodules).

This method was applied to all 2459 study reports, and 100 studies containing nodules of at

least one composition and without keywords or phrases related to the exclusion criteria were

randomly selected. A radiologist reviewed all images to confirm the presence of lung nodule(s)

without significant possible confounding factors (excluding cases that had findings described

in the exclusion criteria that might not have been described in the radiology report text but

were evident on image review) and assessed for quality assurance. Studies with inconsistent

slice spacing, missing slices, or significant artifacts from motion or metal were excluded. All

images were stripped of identifying patient information and re-coded with study-specific

numbers, with the mapping blind to all but the study project manager.

Usable studies were loaded into our image annotation tool. Three radiologists annotated

each CT using the web-based application developed using open-source and commercial tools.

The Cornerstone Javascript library was used to render images and annotation markup, Micro-

soft. NET 4.5 application programming interface for endpoint development, Microsoft’s Inter-

net Information Services for hosting, and Microsoft’s SQL Server Express for application

persistence. The resulting image display tool included window-width/level manipulation,

zoom/pan, study/series navigation, and measurements. The measuring tools allowed bi-direc-

tional measurement (for measuring longest and shortest dimensions of all nodules) and two

sets of measurements for part-solid nodules (independent of the whole nodule and separately

for the solid component) that are automatically recorded and linked to identified nodules.

Associated with each annotation are configurable labels defined by an Extensible Markup Lan-

guage (XML) schema based on the computer-assisted reporting and decision support (CAR/

DS) schema [10] that allows users to assign more nodule attributes details such as composition,

location, and presence of spiculation. In addition, the schema was configured to capture infor-

mation about series/slice numbers, nodule dimensions and coordinates.

Ground-truth was consensus-driven: only nodules accepted by the radiologist majority (at

least 2 out of 3) were eligible for evaluation. Nodules with different compositions (i.e., solid,

sub-solid, and ground glass), size� 4 mm and� 30 mm were annotated. Nodule measure-

ments were performed using the lung window display. We excluded diffusely calcified nodules

from the annotation process and communicated to the vendors that their system should not

detect these nodules. Nevertheless, a total of eight diffusely calcified nodules were detected

(three by vendor 1, four by vendor 2, and five by vendor 3). These detected granulomas were
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not included in the statistical analysis. The radiologists annotated the following data elements

for each nodule in the ground truth data set: size (long- and short-axis diameters in the axial

plane and the average, the latter calculated automatically), presence of spiculation (yes/no),

and laterality and lobar location. The ground truth radiologists did not have access to radiol-

ogy reports before or during annotating the ground truth.

Data workflow process

We received each vendor algorithm wrapped in a Docker container that was loaded on indi-

vidual servers. Our chest CT dataset is input to the vendor algorithms for processing. Vendors

were instructed to provide their output using our defined XML data schema format (Fig 2). All

studies were assessed by each vendor algorithm independently, and the output XML files were

stored for subsequent loading into our image annotation visualization tool for comparison to

ground-truth (Fig 3).

Evaluation process and statistical analysis

Manual evaluation of vendor model output versus ground-truth was performed using the

image annotation visualization tool to navigate ground-truth and vendor-detected nodules

(Figs 4 and 5). Each vendor-detected nodule was assessed for correlation with ground truth. A

nodule was considered a true positive detection within 1 cm (calculated in all three

Fig 2. Infrastructure of validation pipeline for AI algorithms assessed in our study.

https://doi.org/10.1371/journal.pone.0267213.g002

Fig 3. Vendor output data schema defined in Extensible Markup Language (XML).

https://doi.org/10.1371/journal.pone.0267213.g003
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dimensions) of ground-truth nodule locations. In addition, to be considered as true positive,

the vendor predicted nodule and its annotation should overlap or intersect with the ground

truth nodule, otherwise, it was considered as false positive. Otherwise, a vendor-detected nod-

ule was considered a false positive. Each ground-truth nodule without a corresponding ven-

dor-detected nodule was considered a false negative. A confusion matrix was tabulated using

this classification scheme (Table 1).

Statistical analysis was performed in Microsoft Excel and SPSS Statistical Software (Version

26, IBM Inc.) We assessed the performance of individual models with recall and precision for

overall lung nodule detection. In addition, we calculated the receiver operating characteristic

curves (ROC) area under the curve (AUC) with 95% confidence intervals for attenuation-

based stratification of lung nodules.

Results

A total of 243 nodules were annotated on our ground-truth dataset (127 solid, 76 ground glass,

and 40 part-solid). We used medians for lung nodule size due to non-normal distribution of

Fig 4. Algorithm evaluation results viewed using image annotation-visualization tool for comparison to ground-

truth. Note patient protected health information (PHI) is changed for de-identification purposes.

https://doi.org/10.1371/journal.pone.0267213.g004
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data. The mean average nodule size (regardless of nodule type) was 7.00 mm (median 5.65

mm; interquartile range [IQR] 4.00–22.75).

There was a significant difference in sizes of solid (median 4.77 mm, IQR 1.80 mm), part-

solid (8.85 mm, 4.51 mm), and groundglass nodules (6.05 mm, 2.78 mm) (p<0.001). The

detailed distribution of annotated features of the nodules is described in Table 2. Although

automated nodule size calculation was present across all vendors, their models did not have

the same capabilities for detecting all annotated features, such as calculating part-solid compo-

nent long- and short-axis diameters and detecting lung nodule lobar location, laterality, and

the presence of spiculation. Therefore, our analysis assessed only the vendor nodule detection

and classification feature.

Vendor model performance varied widely, as can be seen in Table 1. Algorithms recall and

precision for detecting lung nodules were as follows: Vendor-1 (0.80, 0.89); Vendor-2 (0.75,

0.40); Vendor-3 (0.32, 0.39).

Detection of nodules of different composition was also assessed individually (Table 3).

When examining vendor performance only for solid nodules (n = 127) detection, algorithm

TP, FP, FN, recall, and precision were as follows: Vendor-1 (105, 22, 16, 0.82, 0.86); Vendor-2

(96, 31, 184, 0.75, 0.34); Vendor-3 (53, 74, 82, 0.41, 0.39). When ground glass only nodule

Fig 5. Image annotation-visualization tool showing zoom into features of vendor-detected nodules.

https://doi.org/10.1371/journal.pone.0267213.g005

Table 1. Vendor lung nodules detection performance.

Vendor 1 Vendor 2 Vendor 3

True positives 194 182 75

False positives 23 270 120

False negatives 49 61 168

Recall 0.80 0.75 0.32

Precision 0.89 0.40 0.39

https://doi.org/10.1371/journal.pone.0267213.t001
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Table 2. Lung nodules cohort features distribution.

Variable # of nodules (n = 243) Frequency

Location

RUL 63 25.92%

RLL 52 21.39%

RML 16 6.58%

LUL 45 18.51%

LLL 61 25.10%

Lingula 6 2.46%

Attenuation

Solid 127 52.26%

Ground glass 76 31.27%

Part-solid 40 16.46%

Spiculation

Yes 9 3.70%

No 234 96.29%

�RUL: Right upper lung; RLL: Right lower lung; RML: Right middle lung; LUL: Left upper lung; LLL: Left lower lung

https://doi.org/10.1371/journal.pone.0267213.t002

Table 3. Stratified summary statistics of three AI algorithms for detection of solid (3A, n = 127), ground glass

nodules (3B, n = 76), and part-solid (3C, n = 40) lung nodules.

Vendor 1 Vendor 2 Vendor 3

3A: Solid lung nodules (n = 127)

True positives 105 96 53

False positives 16 184 82

False negatives 22 31 74

True negatives 29 6 14

Sensitivity 0.83 0.76 0.42

Recall 0.82 0.75 0.41

Precision 0.86 0.34 0.39

3B: Ground glass nodules (n = 76)

True positives 53 50 1

False positives 11 154 53

False negatives 23 26 75

True negatives 34 4 17

Sensitivity 0.90 0.90 0.53

Recall 0.69 0.65 0.01

Precision 0.82 0.24 0.01

3C: Part-solid nodules (n = 40)

True positives 36 36 21

False positives 12 107 52

False negatives 4 4 19

Ture Negatives 53 8 31

Sensitivity 0.70 0.66 0.01

Recall 0.90 0.90 0.52

Precision 0.75 0.25 0.28

https://doi.org/10.1371/journal.pone.0267213.t003
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detection was assessed, the same performance indicators were as follow: Vendor-1 (53, 23, 11,

0.69, 0.82); Vendor-2 (50, 26, 154, 0.65, 0.24); Vendor-3 (1, 75, 53, 0.01, 0.01). And finally,

when part-solid nodule detection was assessed, results were as follow: Vendor-1 (36, 4, 12,

0.90, 0.75); Vendor-2 (36, 4, 107, 0.90, 0.25); Vendor-3 (21, 19, 52, 0.52, 0.28).

There were wide variations in the ROC AUCs of different vendor algorithms for classifying

lung nodules based on their attenuation. The ROC AUCs (with 95% confidence intervals) for

detection of solid, groundglass, and part-solid nodules are summarized in Table 4.

Discussion

We were successful in designing, building, and testing a validation pipeline on three vendor

applications with the goal of normalizing the performance measurement of independently

developed algorithms, using a common test dataset of local clinical imaging studies and an

evaluation module. Our evaluation successfully tested our data-preprocessing and algorithm

assessment pipeline of tools from perspective of an image cohort creation and de-identification

tool (DICOM receive and de-identification features from clinical to research environment);

report and image annotation tools for ground-truth labeling (with multi-reader ground-truth-

ing capabilities); server partitioning to receive vendor “black box” algorithm, and to enable

model testing on our internal clinical data from within our security firewall (process local

DICOM data with external ML algorithms without data sharing or upload to external clouds

or software); model validation and result visualization tool (receive and adjudicate model out-

puts within the validation pipeline); and a performance assessment tool for calculating algo-

rithm recall and precision (analyze and compare model outputs with ground-truthing to draw

inference on local performance of individual ML algorithms).

There are several publications on development and evaluation of validation pipelines

reported for both imaging and non-imaging ML algorithms [11–13]. These pipelines tackle

various steps of ML algorithm development, data quality control, and performance from statis-

tical analyses points of view. Versus other pipelines, the strengths of our validation infrastruc-

ture include incorporation and complete evaluation of multiple commercial ML algorithms

from imaging data selection and de-identification, ground-truth labeling, ML processing

within the institutional firewall, and statistical analysis and inferencing on comparative perfor-

mance across multiple algorithms.

Vendor algorithm performance varied greatly, justifying our premise that a standardized

objective ML algorithm evaluation process is needed. One vendor algorithm (vendor 3) was

not able to detect ground-glass nodules, and as a result, their general performance suffered.

However, even when assessing only solid nodule detection, this same vendor’s performance

did not improve greatly. Another possible explanation for poor performance could be due to

overfitting of the vendor model to a limited or homogeneous dataset upon which they trained

their ML algorithm. Moreover, there is an obvious trade-off between sensitivity and specificity

that requires adjustment during each algorithm model design, typically based on specific clini-

cal needs. Vendors were instructed to tune their algorithms to an optimal intermediate

Table 4. Summary of areas under the curve with 95% confidence interval (AUC 95% CI) for detection of solid,

part-solid and ground-glass nodules with the three AI algorithms assessed in our study.

AUC (95% CI)

Vendor 1 Vendor 2 Vendor 3

Solid nodules 0.74 (0.54–0.83) 0.61 (0.54–0.67) 0.74 (0.68–0.80)

Part solid nodules 0.86 (0.78–0.94) 0.52 (0.41–0.62) 0.55 (0.44–0.66)

Groundglass nodules 0.73 (0.63–0.82) 0.66 (0.58–0.74) 0.86 (0.80–0.93)

https://doi.org/10.1371/journal.pone.0267213.t004
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configuration that would allow potential users to “plug and play” their tools without any kind

of sensitivity-specificity calibration, allowing for a fair baseline comparison among the tools.

The major implication of our study included creation of validation pipeline for seamless

processing and integration of AI outputs from multi-vendor AI systems. With an increasing

number of the United States’ Food and Drug Administration (FDA)-cleared AI algorithms

[14], it is important to perform an institutional point-of-use validation of AI algorithms before

their clinical use. Indeed, the available information suggests that an overwhelming majority of

these cleared algorithms (93/130) lacked prospective and/or multisite validation and testing

[15]. Several publications have raised concern over lack of generalizability and robustness data

for both the FDA-cleared as well as research AI algorithms [16]. Our validation pipeline could

help identify potential reasons for under-performance of AI algorithms (such as different scan-

ners, scan parameters, patient demographics, as well as performance with and without dis-

tracting or confounding findings).

Our validation pipeline pertained to the detection and characterization tasks of AI; there-

fore, modifications will be necessary to assess AI systems for triage, quantification, segmenta-

tion, and image processing. Scalability of such pipelines can also aid in evaluation of real-

world surveillance and on-ground clinical performance of AI algorithms. The FDA sets mini-

mum “pass criteria” or performance thresholds for AI algorithm based on their target applica-

tion or predicate devices (AUC >0.95 for triage applications under the QFM product code)

[17]. We recommend that prior to clinical integration and use, institutions should set or use

similar standards on their local datasets so that AI results are trustworthy and reproducible.

Exclusion of purely calcified nodules when assessing performance of nodule detection AI is

important since calcified nodules are common, easier target to detect by both radiologists and

AI, and most often do not result in change in patient care. Although characterization of nod-

ules into calcified and non-calcified nodules is important, for assessing detection performance

of AI algorithm, inclusion of such calcified nodules can “falsely” raise the performance of AI

algorithm and not provide the “true” performance for detecting clinically meaningful non-

calcified nodules.

The most difficult part of the validation pipeline is case selection and ground truthing. The

former requires review of both radiology report, a robust radiology report search engine and

an unbiased radiologist to further confirm appropriateness of selected cohorts both with and

without target and distracting findings. Balancing the number of cases required for validation

across a multitude of scanners, scan parameters with and without distractors, and the ground

truth radiologists could be challenging at non-academic or extremely busy academic sites. The

AI vendors in our study were pliant and cooperated with us to ensure a standardized output.

However, standardization of AI output across multiple vendors from multiple parts of the

world is not easy and might require intervention from the FDA or other stakeholder entities.

Limitations of our study include a data cohort of imaging examinations from one institu-

tion, although multiple scanner vendors, model, and protocol types were included. Exclusion

criteria consisted of studies with findings of consolidation, significant pleural effusion or

emphysematous change, architectural distortion, and post-surgical findings. While these find-

ings can be commonly seen and should not be confounding or limiting factor for automatically

detecting lung nodules, due to limitations of currently available narrow AI systems capable of

detecting only single imaging features or findings, or systems trained using publicly available

data sets that do not commonly contain studies presenting these types of findings, we opted to

exclude studies with these findings. Since our objective was to assess differential detection abil-

ities between solid, part-solid and groundglass nodules, we did not include distracting or con-

founding findings. However, for AI algorithms that target triage and lesion characterization, it

is prudent to have representation of true negative (without any findings), potentially false
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positive (with distracting findings such as pneumonia or atelectasis for lung nodules), and

cases where target findings exist with other imaging findings. In addition, lung nodule detec-

tion performance for diffusely calcified nodules was not assessed on this analysis since these

findings are usually suggestive of benign etiology (e.g., granuloma or hamartoma), although

also seen with metastases [18]. We acknowledge the need for creating data sets with the pres-

ence and different degrees of concomitant pulmonary findings to reflect the expected hetero-

geneity of studies that are seen in clinical practice where these systems will ultimately be used.

Moreover, we envision the need for the creation of non-chest dedicated CT data sets that

include in the field of view at least partially the lung parenchyma such as neck CT, cervical and

thoracic spine CT, and abdominal CT, as well as in “regular” studies performed on dual-energy

and positron emission tomography scanners (i.e., without maps or use of tracer, respectively)

in which lung nodules can be found incidentally. A limitation of our pipeline pertains to man-

ual or visual comparison of AI outputs with the ground truth although this task could be auto-

mated by comparing the intersection or overlap of annotation boxes drawn during ground

truth and by the AI algorithms. However, such automation should ultimately require visual

inspection for subtle nodules where extent of overlap can vary substantially (such as for

groundglass and part-solid nodules), in multiple nodules that are in close proximity to one

another (adjoining nodules could be counted as single nodules), or for bilobed nodules (one

nodule counted could be counted as two nodules). Finally, for estimating model performance,

the United States FDA recommends the estimation of ROC AUCs, which requires the inclu-

sion of control or true negative cases. Although we did not include true negative cases (that is,

cases without any nodules), we estimated ROC AUCs for detection of different nodule types

(solid, ground glass, and part solid).

In summary, evaluation was done on our own clinical images without any data leaving our

institutional firewall and without requiring third-party algorithm disclosure. The machine

learning model validation pipeline we describe was tested in the specific use case of detecting

lung nodules in chest CT examinations, but the developed techniques are easily generalizable

to other types of tools now starting to be available from commercial entities.

Author Contributions

Conceptualization: Bernardo C. Bizzo, Tarik Alkasab, Subba R. Digumarthy.

Data curation: Bernardo C. Bizzo, Mark E. Walters, Mark H. Michalski, Katherine P.

Andriole, Keith J. Dreyer.

Formal analysis: Bernardo C. Bizzo, Shadi Ebrahimian, Mark E. Walters, Mark H. Michalski,

Katherine P. Andriole, Mannudeep K. Kalra.

Investigation: Katherine P. Andriole.

Methodology: Mark E. Walters, Mark H. Michalski, Keith J. Dreyer, Mannudeep K. Kalra,

Tarik Alkasab, Subba R. Digumarthy.

Supervision: Keith J. Dreyer, Mannudeep K. Kalra, Tarik Alkasab, Subba R. Digumarthy.

Writing – original draft: Bernardo C. Bizzo, Shadi Ebrahimian, Mannudeep K. Kalra, Tarik

Alkasab, Subba R. Digumarthy.

Writing – review & editing: Bernardo C. Bizzo, Shadi Ebrahimian, Mark E. Walters, Mark H.

Michalski, Katherine P. Andriole, Keith J. Dreyer, Mannudeep K. Kalra, Tarik Alkasab,

Subba R. Digumarthy.

PLOS ONE Validation pipeline for ML

PLOS ONE | https://doi.org/10.1371/journal.pone.0267213 April 29, 2022 11 / 12

https://doi.org/10.1371/journal.pone.0267213


References
1. RSNA Pediatric Bone Age Challenge. Radiological Society of North America 2017. http://

rsnachallenges.cloudapp.net/competitions/4. Accessed August 23, 2018.

2. Data Science Bowl 2017. Kaggle. https://www.kaggle.com/c/data-science-bowl-2017. Accessed

August 23, 2018.

3. ISLES: Ischemic Stroke Lesion Segmentation Challenge. http://www.isles-challenge.org. Accessed

August 23, 2018.

4. Menze BH, Jakab A, Bauer S, et al. The Multimodal Brain Tumor Image Segmentation Benchmark

(BRATS). IEEE Trans Med Imaging 2015; 34(10):1993–2024. https://doi.org/10.1109/TMI.2014.

2377694 PMID: 25494501

5. Setio AAA, Traverso A, de Bel T, et al. Validation, comparison, and combination of algorithms for auto-

matic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med

Image Anal 2017; 42:1–13. https://doi.org/10.1016/j.media.2017.06.015 PMID: 28732268

6. American Cancer Society. Cancer Facts and Figures 2017. Genes Dev 2017; 21(20):2525–2538.

7. Bradley CJ, Yabroff KR, Dahman B, et al. Productivity costs of cancer mortality in the United States:

2000–2020. J Natl Cancer Inst 2008; 100(24):1763–1770. https://doi.org/10.1093/jnci/djn384 PMID:

19066273

8. Centers for Medicare & Medicaid Services. Decision Memo for Screening for Lung Cancer with Low

Dose Computed Tomography (CAG-00439N). http://www.cms.gov/medicare-coverage-database/

details/nca-decision-memo.aspx?NCAId=274. Published February 5, 2015. Accessed August 23,

2018.

9. Armato SG, Roberts RY, Kocherginsky M, et al. Assessment of Radiologist Performance in the Detec-

tion of Lung Nodules. Acad Radiol 2009; 16(1):28–38. https://doi.org/10.1016/j.acra.2008.05.022

PMID: 19064209

10. Alkasab TK, Bizzo BC, Berland LL, et al. Creation of an Open Framework for Point-of-Care Computer-

Assisted Reporting and Decision Support Tools for Radiologists. J Am Coll Radiol 2017; 14(9):1184–

1189. https://doi.org/10.1016/j.jacr.2017.04.031 PMID: 28648871

11. Yan C, Wang L, Lin J, et al. A fully automatic artificial intelligence-based CT image analysis system for

accurate detection, diagnosis, and quantitative severity evaluation of pulmonary tuberculosis [published

online ahead of print, 2021 Nov 29]. Eur Radiol. 2021;1–12. https://doi.org/10.1007/s00330-021-08365-

z PMID: 34842959

12. Pontoriero AD, Nordio G, Easmin R, et al. Automated Data Quality Control in FDOPA brain PET Imag-

ing using Deep Learning. Comput Methods Programs Biomed. 2021; 208:106239. https://doi.org/10.

1016/j.cmpb.2021.106239 PMID: 34289438

13. Garcia EV, Slomka P, Moody JB, et al. Quantitative Clinical Nuclear Cardiology, Part 1: Established

Applications. J Nucl Cardiol. 2020; 27(1):189–201. https://doi.org/10.1007/s12350-019-01906-6 PMID:

31654215

14. Ebrahimian S, Kalra MK, Agarwal S, et al. FDA-regulated AI Algorithms: Trends, Strengths, and Gaps

of Validation Studies. Acad Radiol. 2022 Apr; 29(4):559–566. https://doi.org/10.1016/j.acra.2021.09.

002 PMID: 34969610

15. Wu E, Wu K, Daneshjou R, Ouyang D, Ho DE, Zou J. How medical AI devices are evaluated: limitations

and recommendations from an analysis of FDA approvals. Nat Med. 2021; 27(4):582–584. https://doi.

org/10.1038/s41591-021-01312-x PMID: 33820998

16. Roberts M, Driggs D, Thorpe M, et al. Common pitfalls and recommendations for using machine learn-

ing to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell 3,

199–217 (2021). https://doi.org/https%3A//doi.org/10.1038/s42256-021-00307-0

17. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/classification.cfm?id=QFM, Accessed Feb-

ruary 22, 2022.

18. Seo JB, Im J-G, Goo JM, et al. Atypical Pulmonary Metastases: Spectrum of Radiologic Findings.

Radiographics 2001; 21(2):403–417. https://doi.org/10.1148/radiographics.21.2.g01mr17403 PMID:

11259704

PLOS ONE Validation pipeline for ML

PLOS ONE | https://doi.org/10.1371/journal.pone.0267213 April 29, 2022 12 / 12

http://rsnachallenges.cloudapp.net/competitions/4
http://rsnachallenges.cloudapp.net/competitions/4
https://www.kaggle.com/c/data-science-bowl-2017
http://www.isles-challenge.org
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1109/TMI.2014.2377694
http://www.ncbi.nlm.nih.gov/pubmed/25494501
https://doi.org/10.1016/j.media.2017.06.015
http://www.ncbi.nlm.nih.gov/pubmed/28732268
https://doi.org/10.1093/jnci/djn384
http://www.ncbi.nlm.nih.gov/pubmed/19066273
http://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAId=274
http://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAId=274
https://doi.org/10.1016/j.acra.2008.05.022
http://www.ncbi.nlm.nih.gov/pubmed/19064209
https://doi.org/10.1016/j.jacr.2017.04.031
http://www.ncbi.nlm.nih.gov/pubmed/28648871
https://doi.org/10.1007/s00330-021-08365-z
https://doi.org/10.1007/s00330-021-08365-z
http://www.ncbi.nlm.nih.gov/pubmed/34842959
https://doi.org/10.1016/j.cmpb.2021.106239
https://doi.org/10.1016/j.cmpb.2021.106239
http://www.ncbi.nlm.nih.gov/pubmed/34289438
https://doi.org/10.1007/s12350-019-01906-6
http://www.ncbi.nlm.nih.gov/pubmed/31654215
https://doi.org/10.1016/j.acra.2021.09.002
https://doi.org/10.1016/j.acra.2021.09.002
http://www.ncbi.nlm.nih.gov/pubmed/34969610
https://doi.org/10.1038/s41591-021-01312-x
https://doi.org/10.1038/s41591-021-01312-x
http://www.ncbi.nlm.nih.gov/pubmed/33820998
https://doi.org/https%3A//doi.org/10.1038/s42256-021-00307-0
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/classification.cfm?id=QFM
https://doi.org/10.1148/radiographics.21.2.g01mr17403
http://www.ncbi.nlm.nih.gov/pubmed/11259704
https://doi.org/10.1371/journal.pone.0267213

