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Ginseng roots (Panax ginseng CA Meyer) have been used traditionally for the treatment, especially prevention, of various diseases
in China, Korea, and Japan. Both experimental and clinical studies suggest ginseng roots to have pharmacological effects in patients
with life-style-related diseases such as non-insulin-dependent diabetic mellitus, atherosclerosis, hyperlipidemia, and hypertension.
The topical use of ginseng roots to treat skin complaints including atopic suppurative dermatitis, wounds, and inflammation is
also described in ancient Chinese texts; however, there have been relatively few studies in this area. In the present paper, we describe
introduce the biological and pharmacological effects of ginsenoside Rb1 isolated from Red ginseng roots on skin damage caused
by burn-wounds using male Balb/c mice (in vivo) and by ultraviolet B irradiation using male C57BL/6J and albino hairless (HR-1)
mice (in vivo). Furthermore, to clarify the mechanisms behind these pharmacological actions, human primary keratinocytes and
the human keratinocyte cell line HaCaT were used in experiments in vitro.

1. Introduction

The oral administration of red ginseng root (P. ginseng)
extracts has long been used to treat various diseases, includ-
ing liver and kidney dysfunction, hypertension, non-insulin-
dependent diabetes mellitus, and postmenopausal disorders,
in China, Korea, and Japan. Topical applications have also
been used for atopic suppurative dermatitis, wounds, and
skin inflammation. The materials for Korean red ginseng
products are selected from among ginseng roots (Panax
ginseng CA Meyer) carefully cultivated in well-fertilized
field for 6 years and then steamed and dried in the sun
six times. The red ginseng extract produced by Korea
Ginseng Corporation (Taejon, Korea) is dried and powdered
by freezing prior to use. In this paper, we introduce the
biological and pharmacological effects of ginsenoside Rb1

isolated from red ginseng roots on skin damage in mice.

2. Effects of Ginsenoside Rb1 on
Burn Wound Healing in Mice

Burns and wounds initially induce coagulative necrosis and
cause the formation of a scar. Macrophages migrate to
an injured area to kill invading organisms and produce
cytokines that recruit other inflammatory cells responsible
for the diverse effects of inflammation [1, 2]. Angiogenesis
in the injured area is closely associated with the pro-
cess of wound healing [3]. Moreover, growth factors and
cytokines are central to the wound-healing process [4–6].
Thus, the burn wound-healing process is complex, involving
inflammatory factors, including monocyte migration and
cytokine production, and growth factors and angiogenesis
during reepithelialization. Vascular endothelial growth factor
(VEGF) plays an important role in skin tissue repair
through angiogenesis during the healing of burn wounds
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Table 1: Effects of various ginseng saponins on angiogenesis.

Effects of ginsenoside Rb2 (100 μg/mouse, iv) on tumor-induced angiogenesis in B16-BL6 melanoma-inoculated mice (in vivo)
Ginsenoside Rb2 showed antiangiogenesis [25].

Effects of ginsenoside Rb2 (100 μg/mouse, iv and 300 μg/mouse, po), 20(R)Rg3 (100 μg/mouse, iv and 300 μg/mouse, po), and 20(S)Rg3

(100 μg/mouse, iv and 300 μg/mouse, po) on tumor-induced angiogenesis in B16-BL6 melanoma-inoculated mice (in vivo).
Ginsenoside Rb2, 20(R)Rg3 and 20(S)Rg3, showed antiangiogenesis [40].

Effects of the total saponin fraction (10–100 μg/mL) on tube formation by HUVECs (in vitro).
The total saponin fraction enhanced angiogenesis [22].

Effects of ginsenoside Rg1 (10 μM) and Rb1 (10 μM) on angiogenesis in scaffold implants in mice (in vivo).
Effects of Rg1 (125 nM) and Rb1 (125 nM) on chemoinvasion in HUVEC (in vitro).

Ginsenoside Rg1 enhanced angiogenesis, and ginsenoside Rb1 showed antiangiogenesis in the earliest stage [23].

Effects of ginsenoside Re (10–100 μg/mL) on angiogenesis in HUVECs (in vitro).
Effects of Re (70 μg/extracellular matrix) on angiogenesis in extracellular matrix-implanted rats (in vivo).

Ginsenoside Re showed angiogenesis [41].

Effects of ginsenoside Rg1 (150–600 nM) on angiogenesis in HUVECs (in vitro).
Effects of Rg1 (600 nM/Matrigel) on angiogenesis in Matrigel-implanted mice (in vivo).

Ginsenoside Rg1 promoted angiogenesis [42].

Effects of 20(R)-ginsenoside Rg3(1-1000 nM) on angiogenesis in HUVECs (in vivo).
20(R)-ginsenoside Rg3 showed antiangiogenesis [43].

Effects of Ginsenoside Rg1 (150 nM) on angiogenesis in HUVECs (in vitro).
Ginsenoside Rg1 promoted angiogenesis [44].

Effects of ginsenoside Rg1 (30 μg/mL) and Re (30 μg/mL) on angiogenesis in HUVECs (in vitro).
Effects of Rg1 (50 μg/mL) and Re (50 μg/mL) on angiogenesis in Matrigel-implated mice (in vivo).

Ginsenoside Rg1and Re promoted angiogenesis [45].

Effects of ginsenoside Rg3 (3 mg/kg, ip) on growth and angiogenesis of ovarian cancer (in vivo).
Ginsenoside Rg3 showed antiangiogenesis [46].

Effects of ginsenoside Rb1 (250 nM) on angiogenesis in HUVECs (in vitro).
Ginsenoside Rb1 showed antiangiogenesis [47].

Effects of ginsenoside Rg1 (500 μg/Matrigel) on angiogenesis in Matrigel-implanted mice (in vivo)
Ginsenoside Rg1 promoted angiogenesis [48].

Effects of saponins (0.1–100 μg/mL) isolated from Panax notoginseng and Rg1(10 μg/mL) on angiogenesis in HUVECs (in vitro).
Total saponin and ginsenoside Rg1 promoted angiogenesis [49].

Effects of ginsenoside Rg3 (20 mg/kg, po) on angiogenesis and growth in lung carcinoma-implanted mice.
Ginsenoside Rg3 showed antiangiogenesis [50].

[4, 7, 8]. Furthermore, it has been demonstrated that
chemokines including macrophage inflammatory protein-
1α (MIP-1α) and monocyte chemoattractant protein-1
(MCP-1) are expressed at high levels in murine full-thickness
dermal wounds at times preceding and coinciding with
maximal macrophage infiltration [9–12]. Interleukin 1-β
(IL-1β) is also known to be released from monocyte-
derived macrophages during inflammation and stimulates
VEGF expression in endothelial cells, keratinocytes, synovial
fibroblasts, and colorectal carcinoma cells [13–16]. IL-1β
gene expression was reported to be upregulated in MCP-
1-treated human monocytes [17]. Trautmann et al. [18]
found that the expression of MCP-1 of macrophage and
keratinocyte origin correlated with the accumulation of mast
cells during wound healing. Weller et al. [19] reported that
mast cell activation and histamine release were required for
wound healing. Numata et al. [20] showed that the acceler-
ated wound-repair activity of histamine was mediated by the
activity of basic fibroblast growth factor (bFGF), which leads
to angiogenesis, and macrophage recruitment in the wound-
healing process. Thus, the process of wound repair is thought
to be closely associated with the network systems among

various cells such as keratinocytes, fibroblasts, macrophages
and mast cells, and might be modulated by interactions
among chemokines, cytokines, growth factors, and related
biofactors secreted from these cells.

The genus Panax derives its name from the Greek
words pan (all) and akos (healing). In 1988, Kanzaki et
al. [21] reported that an orally administered red ginseng
root extract stimulated the repair of intractable skin ulcers
in patients with diabetes mellitus and Werner’s syndrome
in clinical trials. Morisaki et al. [22] showed that the
local administration of ginseng saponins markedly improved
wound healing in diabetic and aging rats. Sengupta et al.
[23] reported that ginsenoside Rg1 promoted functional
angiogenesis into a polymer scaffold (in vivo) and the
proliferation and chemoinvasion of tube-like capillary for-
mation by human umbilical vein endothelial cells (HUVECs)
through enhanced expression of nitric oxide synthetase,
phosphatidylinositol-3 kinase, and the Akt pathway (in
vitro). Conversely ginsenoside Rb1 inhibited the earliest
step in angiogenesis, the chemoinvasion of HUVECs [23].
Furthermore, Choi [24] reported that ginsenoside Rb2

improved wound healing through its facilitating effects on
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Figure 1: The structure of various ginsenosides.

Table 2: Effects of ginsenoside Rb1 on angiogenesis from the area
surrounding burn wounds in mice [26].

Treatment
Blood vessel length

(mm/field)
Blood vessel area

(mm2/field)

Untreated burn wounds
(control)

75.6± 24.9 10.5± 3.8

+Ginsenoside Rb1

(100 fg/wound) 228.8± 38.6∗ 46.6± 15.0∗

(10 pg/wound) 203.0± 17.0∗ 37.6± 5.5∗

(1 ng/wound) 274.1± 37.4∗ 49.9± 4.7∗

+bFGF 241.5± 28.3∗ 35.8± 5.9∗

The burn wounds were created on the backs of male Balb/c mice (6 weeks
old) under anesthesia with pentobarbital. A polyethylene filter pellet (about
8 mm in diameter, 3 mm thick) containing the indicated amount of basic
fibroblast growth factor (bFGF) or ginsenoside Rb1 was applied to the burn
wound surface. On day 9, any angiogenesis in the site surrounding the burn
wound was photographed using a stereoscopic microscope, and the area
and length of blood vessels were measured using a Coordinating Area and
Curvimeter Machine (X-PLAN 360 dII, Ushitaka, Tokyo, Japan).
Values are the mean ± SE for six mice. ∗Significantly different from
untreated burn wounds (control), P < 0.05.

epidermal cell proliferation, by upregulating the expression
of proliferation-related factors. However, Sato et al. [25]
found that the intravenous administration of ginsenoside
Rb2 inhibited metastasis to the lung by inhibiting tumor-
induced angiogenesis in B16-BL6 melanoma-bearing mice.
Thus, there are perplexing contradictions in the reported
effects of various ginseng saponins on angiogenic activity as
shown in Table 1.

To clarify these differing effects, we first attempted to
examine the effects of various ginseng saponins on wound

healing. Among six ginseng saponins (ginsenoside Rb1, Rb2,
Rc, Rd, Re, and Rg1) (Figure 1), we found that ginsenoside
Rb1 enhanced burn-wound healing most strongly.

In summary, we reported the promotion of burn-
wound healing by the topical application of ginsenoside
Rb1 at low doses (100 fg, 10 pg, and 1 ng per wound) to be
due to the promotion of angiogenesis during skin wound
repair through stimulation of VEGF production and an
increase in hypoxia-inducible factor (HIF-) 1α expression
in keratinocytes and the elevation of interleukin (IL-) 1β
from macrophage accumulation in the burn wound area
[26]. Furthermore, we found the facilitating effects of
ginsenoside Rb1 at low doses (100 fg, 10 pg, and 1 ng per
wound) to be due to the promotion of angiogenesis via the
activation of basic fibroblast growth factor (bFGF) through
an increase in histamine released from mast cells recruited
by the stimulation of monocyte chemoattractant protein-1
(MCP-1) as another mechanism [27]. We will explain our
experiments regarding the facilitating effects of ginsenoside
Rb1 on burn-wound healing in detail. The burn area in
mice treated with a topical application of ginsenoside Rb1 in
the range of 10−8% to 10−12% was significantly reduced on
days 8–20 compared to that in vehicle-treated burn-wound
control mice (Figure 2).

To clarify the mechanism behind the facilitating effect of
ginsenoside Rb1 on wound healing, we examined levels of
IL-1β and VEGF in exudates of the burn. The levels increased
with time over 9 days. At 1 ng of ginsenoside Rb1 per wound,
the level of IL-1β was increased on days 1, 3, and 5 but
significantly decreased on day 9 compared to that in vehicle-
treated control mice (Figure 3). The topical application of
bFGF (2.5 μg per wound) also increased IL-1β production
on day 3. The VEGF level in the exudates from the wound
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Figure 2: Effects of ginsenoside Rb1 on wound healing in mice [26]. After the burn wound was made by applying a customized soldering
iron to the skin on the backs of male Balb/c mice (6 weeks old) for 10 s at 250◦C, a sterile biopsy punch (8 mm diameter) was used to excise
the burnt skin, leaving the underlying fasciae intact. All surgical treatments were performed under anesthesia with pentobarbital. Indicated
amounts of ginsenoside Rb1 were applied to the burn wounds surface and then covered with a film dressing for 19 consecutive days. The
burn wound site was photographed every other day and burn wound area was measured using a Coordinate Area and Curvimeter Machine
(X-PLAN 360 dII). Values are the mean ± SE for 6–12 mice. ∗Significantly different from vehicle-treated mice, P < 0.05.

Table 3: Effects of Panax ginseng extract on skin aging.

Effects of the total ginseng saponin fraction (100 to 500 μg/mL) on luciferase reporter gene assays in human dermal fibroblast (in vitro).
Effects of the total ginseng saponin fraction (100 to 500 μg/mL) on type I collagen in human dermal fibroblast (in vitro).

The total saponin fraction (100 to 500 μg/mL) increased type I procollagen synthesis [51].

Effects of red ginseng extract (20 and 60 mg/kg, po) on acute UVB-induced skin aging in mice
The extract inhibited the increases in epidermis and dermis thickness induced by UVB [52].

Effects of red ginseng extract (20 mg/kg, ip or topical application of 0.2% cream) on chronic UVB-irradiated skin damage in hairless mice.
The extract reduced wrinkling and tumor incidence [53].

Effects of ginsenoside Rb1 (100 fg, 10 pg, or 1 ng/mouse, topical application) on chronic UVB-irradiated skin aging in hairless mice.
Ginsenoside Rb1 inhibited the increase in skin thickness, wrinkling, and epidermis in UVB-irradiated hairless mice [31].

Effects of red ginseng extract (a diet containing 0.5 and 2.5% red ginseng extract) on UVB-irradiated skin aging in hairless mice.
The extract reduced wrinkling, the mRNA level of procollagen type I, and the MMP-1 level [54].

Healthy female volunteers over 40 years of age were randomized in a double-blind fashion to receive either red ginseng extract (3 g/day) or
placebo for 24 weeks. (Clinical study).

Red ginseng extract caused an improvement in facial wrinkling and increase in type I procollagen synthesis [55].
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Figure 3: Effects of ginsenoside Rb1 and bFGF on IL-1β production
in the exudates of burns in male Balb/c mice [26]. The burn
wounds were created on the backs of male Balb/c mice (6 weeks
old) under anesthesia with pentobarbital. A polyethylene filter pellet
(about 8 in mm diameter, 3 mm thick) containing the indicated
amount of basic fibroblast growth factor (bFGF) or ginsenoside
Rb1 was applied to the burn wounds surface. On days 1, 3, 5, 7,
and 9, the filter pellets were removed and replaced with fresh filter
pellets. For control mice, filter pellets containing saline alone were
applied according to the same schedule. Immediately after removal,
phosphate-buffered saline (PBS, pH 7.0) (200 μl) was added to each
filter pellet and mixed for 10 min. The IL-1β levels in the filter
pellets were measured using a mouse IL-1β ELISA kit. Values are
the mean ± SE for 6 mice. ∗Significantly different from control,
P < 0.05.
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Figure 4: Effects of ginsenoside Rb1 and bFGF on VEGF pro-
duction in the exudates of burns in male Balb/c mice [26]. The
experiments were performed as described in Figure 3, and the VEGF
levels in the filter pellets were measured using a mouse IL-1β ELISA
kit. Values are the mean ± SE for 6 mice. ∗Significantly different
from control, P < 0.05.

Table 4: Effects of ginsenoside Rb1 on the thickness of the
epidermis and extracellular matrix (ECM) of the dermis at week
12 in UVB-irradiated hairless mice [31].

Epidermis (μm)
ECM (μm) in

dermis

Normal mice 14.74± 1.11∗ 332.51± 23.18∗

Vehicle-treated
UVB-irradiated mice
(control)

142.59± 25.37 632.32± 31.96

+Ginsenoside Rb1

(100 fg/mouse) 46.00± 6.26∗ 561.86± 45.22

(10 pg/mouse) 49.24± 4.73∗ 560.67± 44.81

(1 ng/mouse) 39.84± 6.26∗ 585.63± 31.35

The initial dose of UVB was set at 36 mJ/cm2, which was subsequently
increased to 54 mJ/cm2 at weeks 1–4, 72 mJ/cm2 at weeks 4–7, 108 mJ/cm2

at weeks 7–10, and finally to 122 mJ/cm2 at weeks 10–12 in male albino
hairless HOS: HR-1 mice. The frequency of UVB irradiation was set at
three times per week. Ginsenoside Rb1 (100 fg, 10 pg, and 1 ng/mouse)
was applied topically to the dorsal region of each mouse every day for 12
weeks. The dorsal skin samples (about 3 cm2) removed at week 12 were
fixed in 10% buffered formalin, embedded in paraffin, sectioned at 5 μm
thickness, deparaffinized, and stained with hematoxylin-eosin (HE) and
Azan. Four different microscopic fields (×200 magnification) per plate were
photographed. The thickness of the epidermis and dermis thickness were
measured from the samples stained by HE and Azan, using a Digimatic
Caliper.
Values are the mean ± SE for 6 mice. ∗Significantly different from UVB-
irradiated hairless mice (control), P < 0.05.

Table 5: Effects of ginsenoside Rb1 on the numbers of apoptotic
and 8-OHdG-positive cells at week 12 in the skin of UVB-irradiated
hairless mice [31].

Apoptotic cells
(number/field)

8-OHdG-positive
cells (number/field)

Normal mice 0± 0∗ 106± 7∗

Vehicle-treated
UVB-irradiated mice
(control)

102± 10 286± 32

+Ginsenoside Rb1

(100 fg/mouse) 19± 11∗ 150± 24∗

(10 pg/mouse) 11± 11∗ 183± 27∗

(1 ng/mouse) 9± 9∗ 109± 26∗

Ginsenoside Rb1 (100 fg, 10 pg, and 1 ng/mouse) was applied topically to the
dorsal region of each mouse every day for 12 weeks. The expression levels
of apoptotic cells and 8-hydroxy-2′-deoxyguanosine (8-OHdG) (marker of
oxidative DNA damage) in the dorsal skin of UVB-irradiated hairless mice
were examined by the TUNEL method using an apoptosis in situ detection
kit and an immunoperoxidase technique using anti-8-OHdG antibody.
Values are the mean ± SE for 6 mice. ∗Significantly different from UVB-
irradiated mice (control), P < 0.05.

increased until day 5 and then decreased. The application
of ginsenoside Rb1 increased VEGF levels on days 1 and 9
(Figure 4). However, the application of bFGF did not affect
VEGF production.

The application of bFGF (2.5 μg per wound) or ginseno-
side Rb1 (100 fg, 10 pg, and 1 ng per wound) for 9 days
increased the length of blood vessels by 3- to 3.5-fold and
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Untreated burn wound mice (control) Ginsenoside Rb1(100 fg/wound)

Ginsenoside Rb1(10 pg/wound) Ginsenoside Rb1(1 ng/wound)

5 mm

+bFGF (2.5 μg/wound)

Figure 5: Photographs showing neovascularization from the tissue surrounding the burn and the effects of the topical application of
ginsenoside Rb1 [26]. The experiments were performed as described in Figure 3. On day 9, any angiogenesis in the site surrounding the
burn wound was photographed using a stereoscopic microscope.

the corresponding area by 3.5- to 5.0-fold, compared to the
control (Figure 5 and Table 2).

Ginsenoside Rb1 at concentrations from 100 fg/mL to
1 ng/mL enhanced the VEGF production and HIF-1α expres-
sion induced by IL-1β in the human keratinocyte cell line
HaCaT (Figure 6).

These findings suggest the enhancement of wound
healing by ginsenoside Rb1 to be due to the promotion of
angiogenesis during the repair process as a result of the
stimulation of VEGF production caused by the increase in
HIF-1α expression in keratinocytes. Furthermore, the MCP-
1 level in the exudates of vehicle-treated (control) mice
reached a maximum 1 day after the burn treatment and
declined rapidly from day 3. Ginsenoside Rb1 (1 ng per
wound) and bFGF (2.5 μg per wound) significantly increased
the level of MCP-1 on day 1 compared to that in control
mice (Figure 7). Histamine levels in the exudates of the
burn wound area increased until day 7. Ginsenoside Rb1

(1 ng per wound) significantly increased the histamine level
on day 5 compared to that in control mice (Figure 7).
Furthermore, ginsenoside Rb1 (100 fg, 10 pg, and 1 ng per
wound) and bFGF (2.5 μg per wound) significantly increased
histamine production on day 7 (Figure 7). The facilitating

effects of ginsenoside Rb1 may be due to the promotion
of angiogenesis via the activation of bFGF through the
increase in histamine released from mast cells recruited by
the stimulation of MCP-1 production.

Based on these experimental results, the enhancing
effects of ginsenoside Rb1 on burn wound healing are
summarized in Figure 8.

It has been reported that ginsenoside Rb2 as well as
ginsenoside Rb1 promotes wound healing [24].

3. Effects of Ginsenoside Rb1 on
Ultraviolet B (UVB-) Irradiated Skin
Damage in Mice

The symptoms of cutaneous aging, such as wrinkles and
pigmentation, for example, develop earlier in sun-exposed
skin than in unexposed skin, a phenomenon referred to as
photoaging. Ultraviolet B (UVB) radiation is one of the most
important environmental factors because of its hazardous
effects, which include the generation of skin cancer [28],
suppression of the immune system [29], and premature skin
aging [30].
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Figure 6: Effects of ginsenoside Rb1 on VEGF production (a) and HIF-1α expression (b) with or without IL-1β in HaCaT cells [26].
The human keratinocyte cell line HaCaT was treated with the indicated amounts of ginsenoside Rb1 in the presence or absence of IL-1β
(20 ng/mL) for 1 or 2 h. VEGF levels in the medium were measured using a human VEGF kit. The expression of hypoxia-inducible factor
(HIF-) 1α in the nuclear fraction of HaCaT cells was measured by western blot analysis with mouse anti-HIF-1α and anti-β-actin antibodies.
Values are the mean ± SE for six experiments. ∗Significantly different from control, P < 0.05.
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Figure 7: Effects of ginsenoside Rb1 and bFGF on MCP-1 (a) and histamine (b) production in the exudates of burns in male Balb/c mice
[27]. The experiments were performed as described in Figure 3, and then MCP-1 and histamine levels in the filter pellets were measured
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P < 0.05.
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of UVB was set at 36 mJ/cm2, which was subsequently increased
to 54 mJ/cm2 at weeks 1–4, 72 mJ/cm2 at weeks 4–7, 108 mJ/cm2

at weeks 7–10, and finally 122 mJ/cm2 at weeks 10–12 in male
albino hairless HOS: HR-1 mice. The frequency of UVB irradiation
was set at three times per week. Ginsenoside Rb1 (100 fg, 10 pg,
and 1 ng/mouse) was applied topically to the dorsal region of each
mouse every day for 12 weeks. The dorsal skin of the hairless
mice was lifted up by pinching gently under anesthetization with
pentobarbital, and skin-fold thickness was measured using a Quick
Mini caliper. Skin thickness after UVB irradiation was measured
every week. Values are the mean ± SE for 6 mice. ∗Significantly
different from vehicle-treated mice, P < 0.05.

As shown in Table 3, it has been reported that red ginseng
extract prevents skin aging induced by UVB irradiation.
However, the active substance(s) has yet to be identified.
We found that ginsenoside Rb1 isolated from red ginseng
roots inhibited the increases in skin thickness, epidermis, and
wrinkle formation induced by chronic UVB irradiation [31].
In this paper, we will introduce the effects of ginsenoside
Rb1 on chronic UVB irradiation-induced cutaneous aging in
hairless mice.

The topical application of ginsenoside Rb1 at lower doses,
100 fg, 10 pg, and 1 ng/mouse, significantly inhibited the

15

16

17

18

19

20

21

22

23

Week

Sk
in

 e
la

st
ic

it
y 

(m
m

)

1211109876543210

Normal

UVB-irradiated mice 
(control)

+Rb1 (100 fg/mouse)
+Rb1 (10 pg/mouse)
+Rb1 (1 ng/mouse)

∗
∗
∗

∗

∗
∗

∗
∗

∗

∗
∗

∗∗
∗∗

∗

∗
∗

Figure 10: Effects of ginsenoside Rb1 on skin elasticity in chronic
UVB-irradiated male hairless (HRM-1) mice [31]. The experiments
were performed as described in Figure 9. The dorsal skin was lifted
up and skin stretch was measured using a digimatic caliper. Skin
elasticity after UVB irradiation was measured every week. Values
are the mean ± SE for 6 mice. ∗Significantly different from vehicle-
treated mice, P < 0.05.

increase in skin thickness induced by UVB irradiation during
weeks 2 to 12 compared to the skin thickness of vehicle-
treated UVB-irradiated mice (control) (Figure 9).

The reduction in skin elasticity induced by UVB irradi-
ation was significantly inhibited by the topical application
of ginsenoside Rb1 (100 fg, 10 pg, and 1 ng/mouse) during
weeks 6 to 12 compared to that of control mice (Figure 10).

Wrinkling induced by UVB irradiation at week 9 was
inhibited by the topical application of ginsenoside Rb1

(100 fg, 10 pg, and 1 ng/mouse) (Figure 11).
The topical application of ginsenoside Rb1 (100 fg, 10 pg,

and 1 ng/mouse) inhibited the increase in epidermal thick-
ness induced by UVB irradiation but had no effect on the
increase in the extracellular matrix of the dermis (Table 4).
The occurrence of apoptotic cells was localized to the stratum
granulosum of the epidermis and was increased by UVB
irradiation. The increase in apoptotic cell levels induced UVB
irradiation was significantly inhibited by ginsenoside Rb1

(100 fg. 10 pg, and 1 ng/mouse). Furthermore, 8-hydroxy-
2′-deoxyguanosine (8-OHdG, a marker of oxidative DNA
damage) [32] was also localized to the stratum basale and
dermis, and its level was increased by UVB irradiation.
The increase in 8-OHdG-positive cells induced by UVB
irradiation was inhibited by ginsenoside Rb1 (Table 5).
UVB (20 mJ/cm2) irradiation reduced the level of Bcl-2
expression in human primary keratinocytes. Conversely,
UVB irradiation had no effect on Bak or Bax expression.
Ginsenoside Rb1 increased the Bcl-2 levels in UVB-treated
human primary keratinocytes at the lower concentrations of
100 fg, 10 pg, and 1 ng/mL (Figure 12).
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Normal UVB-irradiated mice (control)

(100 fg/mouse) (1 ng/mouse)

100 mm

100 mm

+ Ginsenoside Rb1

(10 pg/mouse)

UVB irradiation at week 9

Figure 11: Photograph showing skin wrinkling induced by chronic UVB irradiation and the effects of topically applied ginsenoside Rb1

[31]. The experiments were performed as described in Figure 9. To evaluate the formation of wrinkles after the UVB irradiation, the UVB-
irradiated dorsal area (site of wrinkles) of each hairless mouse was photographed at 9 weeks.

100 fg 10 pg 1 ng/mLNoneNone

Bax

Bak

Bcl-2

Ginsenoside Rb1

β-Actin

UVB(—) UVB (20 mJ/cm2)

Figure 12: Effects of ginsenoside Rb1 on Bax, Bak, and Bcl-2
expression levels in UVB-irradiated human primary keratinocytes
[31]. Human keratinocytes (3 × 105 cells) were seeded in a 100-
mm culture dish and cultured in KG-2 medium for 48 h. The
cells were irradiated with UVB (20 mJ/cm2) and treated with the
indicated amounts of ginsenoside Rb1 for 24 h in KB-2 medium.
After being washed with phosphate-buffered saline (PBS, pH 7.0),
the cells were treated with lysed buffer. The supernatant obtained
by centrifugation was subjected to a western blot analysis with anti-
Bcl-2, anti-Bax, anti-Bak, and anti-β-actin antibodies.

UVB exposure of skin cells results in several types of DNA
damage such as the formation of the cyclobutane pyrimidine
dimer, pyrimidine pyrimidone photodimers and 8-OHdG
[33–35], and consequently DNA damage induced by long-
term UV exposure leads to skin carcinogenesis. Furthermore,
there are many reports that apoptotic stimuli such as UV
radiation and tumor necrosis factor-α induce cell death by
activating caspases [36]. Bcl-2 is a member of the large Bcl-2
family and protects cells from apoptosis. On the other hand,
it has been reported that Bax and Bak appear to permeabilize
the outer mitochondrial membrane, allowing the efflux
of apoptogenic proteins [37–39]. The protective effect of
ginsenoside Rb1 on UVB-mediated apoptosis may be partly
due to the upregulation of Bcl-2 expression in human ker-
atinocytes. Thus, the protective effect of ginsenoside Rb1 on
skin photoaging induced by chronic UVB exposure may be
due to the increase in collagen synthesis and/or the inhibition
of metalloproteinases expression in dermal fibroblast and
the inhibition of epidermal hyperplasia. Further research is
needed to clarify the mechanism of the protective effect of
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ginsenoside Rb1 on photoaging induced by chronic UVB
irradiation of the skin.

4. Conclusion

The topical application of ginsenoside Rb1 isolated from red
ginseng roots enhances burn wound healing, and ginseno-
side Rb1 prevents chronic UVB-induced skin photoaging,
at very low doses. Further studies will be needed to clarify
the clinical significance of these findings for skin damage
induced by burn wounds or UV irradiation.
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