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ABSTRACT
The objective of this study was to compare the performance of variance, median absolute deviation, and the square of median absolute 
deviation methods of noise estimation in denoising of 99mTc‑sestamibi parathyroid images using wavelet transform. Sixty‑eight 99mTc‑sestamibi 
parathyroid images including 33 images acquired at zoom 1.0 and 35 acquired at zoom 2.0 were denoised using the wavethresh package in R. 
The image decomposition and reconstruction method discrete wavelet transform, wavelet filter db4, shrinkage method hard, and thresholding 
policy universal were used. The noise estimation in the process was made using var, mad and madmad functions, which use variance, mean 
absolute deviation, and the square of mean absolute deviation, respectively. The quality of denoised images was assessed both qualitatively 
and quantitatively. A nonparametric two‑sample Kolmogorov–Smirnov test was applied to find whether the difference in image quality produced 
by these three noise estimation methods was significant at 95% confidence. Noise estimation using madmad function produced the best quality 
denoised image. Further, the quality of the denoised image using madmad function was significantly better than the quality of the denoised image 
obtained with var or mad function (P = 1). The estimation of noise using madmad functions in wavelet transforms provides the best‑denoised 
image for both zoom 1.0 and zoom 2.0 99m Tc‑sestamibi parathyroid images.
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INTRODUCTION

Nuclear medicine images are noisy. Several approaches have 
been proposed to filter the noise from nuclear medicine 
images.[1‑5] Filtering in spatial domain and frequency domain 
are frequently used in nuclear medicine, which involves a 
trade‑off between reducing the spatial resolution in the 
image and noise reduction. The application of filter also 
causes image blurring or edge removal along with the removal 
of noise from the image.[6] Although image filtering in the 
frequency domain is routinely used in nuclear medicine, 
recently image denoising in the wavelet domain is becoming 
popular.[7‑11]

The wavelet transform of the image  (signal plus noise) is 
very sparse‑the image gets concentrated in a few wavelet 
coefficients  (WCs) but the noise remains spread out. It is 
easy to separate the signal from noise by keeping large 

coefficients  (which corresponds to true image) and delete 
the small ones (which correspond to noise) and then apply 
inverse wavelet transform to get back the image. However, 
this requires some a‑priory information about the noise‑level 
in the image.

Comparison of noise estimation methods used in 
denoising 99mTc‑sestamibi parathyroid images using 
wavelet transform
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bandpass (G) filters and the rows of each of these resultant 
images are again passed through each of G and H, this 
results in four images. Three of them, genioglossus, 
geniohyoid, and hyoglossus correspond to the highest 
resolution WCs. The  HH image is a smoothed version of 
the original and can be further attacked in exactly the 
same. After each attack, the dimension of the images 
is halved due to subsampling.[13] The 8‑levels wavelet 
decomposition of a 256 × 256 99mTc‑sestamibi parathyroid 
image using db4 wavelet filter is shown in Figure 1a

2.	 Estimate the noise level from WCs using var, mad and 
madmad functions: The noise level was estimated from 
3rd level to 8th level of decomposition of details of WCs. 
The estimated value of noise was used for thresholding 
WCs. The universal policy that computes a threshold based 
on Donoho and Johnstone’s “universal thresholds.” The 
threshold is sqrt (2*log (n)) *noise, where noise is equal 
to the noise estimated from the above‑mentioned three 
functions, and n is the number of data points (or number 
of WCs)

3.	 Threshold the WCs  (hard thresholding rule) using 
universal threshold policy: The universal policy uses the 
formula: Sqrt (2*log (n)) *noise, where noise is equal to 
the noise estimated from the above‑mentioned three 
functions, and n is the number of data points (or number 
of WCs), to compute the threshold. Hard threhsolding 
rule compares a WC with the threshold, if WC is larger 
in absolute magnitude it is left alone, if WC is smaller it 
is set to zero

4.	 Apply 2D inverse DWT on the modified WCs to get the 
image in the spatial domain.

The above mentioned procedures were performed using the 
wavethresh package.[12]
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To estimate noise in the image various statistical functions 
such as var (variance), mad (median absolute deviation), and 
madmad  (square of median absolute deviation) functions 
have been proposed.[12] Variance (var) gives the idea about 
how “spread out” the data is. The variance represents the 
average squared deviation from the mean and is calculated 
using the formula:
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The variance is not robust to outliers, that is, a few values that 
are separate from the main body of the data can increase the 
value of the statistic by an arbitrarily large amount. Median 
absolute deviation (mad) is a robust measure of the variability of 
a univariate sample of quantitative data. To compute the mad, 
we first compute the median, and then for each data‑point we 
compute the distance between its value and the median. The 
mad is defined as the median of these distances. Thus mad is 
not sensitive to the presence of outliers. The square of median 
absolute deviation (madmad function) is equal to the square 
of the median absolute deviation (mad) function.

In this study we have estimated noise‑level using var, mad, 
and madmad functions and compared the performance of 
these function in denoising 99mTc‑sestamibi parathyroid image 
in wavelet domain.

METHODS

A total of 68 images acquired between 18  July 2016 and 
09 August 2017 were selected, of which, 33 images were 
acquired with zoom 1.0 and 35 images were acquired with 
zoom 2.0. The images were acquired on Siemens Symbia 
T6  (Siemens Medical Solutions, Illinois, USA). Symbia T6 
is a dual head gamma camera with single photon emission 
computed tomography  (SPECT) computed tomography. 
Planar images  (included in this study) of the neck and 
mediastinum were the images acquired at 2 h post intravenous 
administration of 99mTc‑sestamibi  (500MBq‑700MBq) with 
low‑energy high‑resolution collimator. However, the 
routine protocol used in the department for 99mTc‑sestambi 
images is the acquisition of images at 15  min and 2  h 
postadministration of 99mTc‑sestamibi. The digital data were 
acquired for 700 Kilo counts in a 256 × 256 matrix, with 
zoom 1.0 and zoom 2.0.

The procedure used for denoising 99mTc‑sestamibi image:
1.	 Compute the two‑dimensional  (2D) discrete wavelet 

transform (DWT) of the image: The 2D DWT algorithm 
is essentially the application of many 1D filters. First, 
the columns are passed through the smoothing (H) and 

Figure 1:  (a) Wavelet coefficient,  (b) threshold coefficient using var, (c) 
threshold coefficient using mad, (d) threshold coefficient using madmad
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Performance comparison
The following five methods were used to assess the quality 
of denoised images: (1) nonreference image quality evaluator 
called BRISQUE score.[14] A smaller score indicates better 
perceptual quality. The BRISQUE score is usually in the range 
(0, 100), (2) quantifying the difference between the input and 
denoised image (SumofSquareDiff: Sum of square difference 
between the input image and its corresponding denoised 
image);[15] (3) visual inspection of denoised image and its input 
image placed side by side;  (4) visual inspection of residual 
image and histogram of residual image: The residual image is 
defined as the difference between the original (always slightly 
noisy) image and its denoised version. If a denoising method 
performs well, the residual image must look like a noise even 
with nonnoisy images and should contain as little structures 
as possible.[16,17] and  (5) visual inspection of the image as a 
result of the local Pearson correlation coefficient test between 
the denoised image and its residual image.[17] A 7 × 7 sliding 
windows was used to compute the local correlation.

Statistical analysis
For the purpose of increase in perceptual quality for a given 
test image Xi and its corresponding enhanced image Yi, one 
expects that

BRISQUE�score X � �BRISQUE�score Yi i
i i

� �� � � � �� �
� �

The following hypothesis was evaluated using a non‑parametric 
two‑sample Kolmogorov‑Smirnov (KS) test as:[18]

H � Visual�perception�is�improved0 :

H Visual�perception�is�not�improved1 : � (1)

Software package
For reading, writing, and plotting images we have used 
EBImage[19] and Imager package.[20] Base R functions were used 
for statistical analysis.[21] MATLAB R2019b was used for calculating 
BRISQUE score. The choice of these software packages was based 
on the availability of well debugged built‑in functions for the 
accomplishing the required tasks in this study.

RESULTS

The human eye is the only one able to decide if the quality 
of the image has been improved by the denoising method. 
Figures  2 and 3 show the results of an experiment on 
99mTc‑sestamibi zoom 1.0 and zoom 2.0 images, respectively. 
Visually the quality of denoised image reconstructed using 
madmad method of estimation of noise is superior. The accurate 
reconstruction of edges, texture, and details and absence of 
artifacts can be seen in case of madmad function in comparison 
to the other two methods of noise estimation. Figures 2 and 3 
can be zoomed in to verify these findings. It may be re‑iterated 
that all other variables are same except the method of estimation 
of noise in the images so that one can compare the visual quality 
of the denoised images, the non‑presence of artifacts, and the 
correct reconstruction of edges, texture, and details.

Figure 2: Denoising experience with zoom 1.0 images. (a) noisy image zoom 1.0, Brisque score = 38.19, (b) denoised image reconstructed using var, Brisque 
score = 82.80, (c) denoised image reconstructed using mad, Brisque score = 84.16, (d) denoised image reconstructed using madmad, Brisque score = 43.54. 
The removed or distorted details must be compared with the corresponding residual images shown in Figure 5
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The visual inspection of the residual image helps to 
understand the performance and limitations of the denoising 
algorithm. If the denoising algorithm removes details or 
texture, then the residual image has details and structure 
(i.e., quantitatively large noise). In such case, the blurred or 
degraded structures of the denoised images coincide with the 
noticeable structures of its residual image [compare denoised 
image Figure 3b obtained with var function with residual 
image Figure 4b and also compare denoised image Figure 
3c obtained with mad function with residual image Figure 
4c, where Figure 4a is the input image]. The comparison of 
denoised image [obtained with madmad function Figure 3d] 
and residual image  [Figure  4d] shows that best‑denoised 
image was obtained when madmad function was used to 
estimate the noise because only with this function the residual 
image looks like Gaussian white noise. The comparison of 
denoised image  [Figure 2] with its corresponding residual 
image [Figure 5] also shows that the performance of noise 
estimation using madmad function resulted in the best 
denoised image. We can see in Figure 5 that the residual 
images corresponding to denoised images using var and mad 
function contain details or texture while the residual image 
corresponding to denoised image with madmad function does 
not have any noticeable geometrical structures and most of 
the regions appear as white noise except removal of details 
corresponding to the salivary gland. The histogram of the 
residual image corresponding to madmad function appears 
to follow normal distribution [Figure 6i] however Figure 6c 
and Figure 6f do not follow normal distribution.

Figure 6b, e and h show the result of a correlation coefficient 
test between denoised image and residual image reconstructed 
using the var, [Figure 6a] mad [Figure-6d] and madmad [Figure 6g] 
function. Here “white” represents the rejection of independent 
hypothesis and “black” represents acceptance of independent 
hypothesis at α = 0.05. From the result of the Pearson correlation 
coefficients test also, madmad function was found to be the best 
as the residual image in the case of madmad function were found 
to be independent of the denoised image [Figure 6h].

The residual was quantified by finding the sum of squares 
of the difference between the input image and denoised 
image (named as “SumofSquareDiff ”). Figure 7 displays the 
boxplot of “SumofSquareDiff ” for the residual corresponding 
to var, mad and madmad functions for zoom 1.0 and zoom 
2.0 images. The mean of the “SumofSquareDiff ” for madmad 
function was found to be significantly less than that of both var 
and mad function (at P = 1, KS test) for zoom 1.0 and zoom 
2.0 images. The smallest median value of “SumofSquareDiff ” 
for madmad function also supports the best performance 
of madmad function in estimating noise for denoising 
99mTc‑sestamibi parathyroid images using wavelet transform.

Based on BRISQUE score none of the denoised image series 
were perceptually better than the input image  [Figure 7]. 
The minimum distortions were introduced in denoised 
image, in case of madmad function for both zoom 
1.0 (P = 5.952861e‑09, at α = 0.05 and zoom 2.0 images 
(P = 9.000494e‑10, at α = 0.05.
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Figure  3: Denoising experience with zoom 2.0 images.  (a) noisy image zoom 2.0, Brisque score = 48.61,  (b) denoised image reconstructed using var, 
Brisque score = 89.21, (c) denoised image reconstructed using mad, Brisque score = 93.50, and (d) denoised image reconstructed using madmad, Brisque 
score = 69.10. The removed or distorted details must be compared with the corresponding residual images shown in Figure 4
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DISCUSSION

We have compared the performance of three methods for 
estimation of noise on denoising 99mTc‑sestamibi parathyroid 
images using wavelet transform. The performance comparison 
was based on the quality of the denoised image each method 
produced. Based on the five different methods of image quality 
assessment, the denoised image produced using madmad 
function was found to have the best image quality having 

smoothness with a pleasant visual appearance. The use of var 
and mad function resulted in over‑smooth images with relatively 
large reconstruction error compared to madmad function.

The over‑smooth image is the consequence of universal 
thresholding policy producing large threshold. The 
threshold is sqrt  (2*log(n)) *noise, where noise is equal 
to the noise estimated from the above mentioned three 
functions, and n is the number of data points  (or the 

Figure 4: Denoised image shown in Figure 2. (a) input image Figure 2a, (b) residual image for Figure 2b, (c) residual image for Figure 2c, (d) residual image 
for Figure 2d

dc

ba

Figure 5: Input noisy image zoom 2.0 and residual images for denoised image shown in Figure 3. (a) Input image Figure 3a, (b) residual image for Figure 
3b, (c) residual image for Figure 3c, (d) residual image for Figure 3d
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number of wavelet coefficients). The comparatively large 
value estimated by var and mad function resulted in large 
thresholds.

In zoom 2.0 category images, mad function estimated 
the maximum noise and threshold  [Figure  8a and b], 
and hence yielded overly smoothed images with the 
largest reconstruction error and artifacts  [Figure  3c]. 
A  large threshold value  (for mad function) makes more 

number of coefficients as zero, which leads to smooth 
signal and destroys details that may have caused blur and 
artifacts [Figure 3c]. A small threshold [for madmad function, 
Figure 8a and b] had made very small number of coefficient 
equal to zero [Figure 1d] for madmad function, compared 
to Figure-1b for var, and Figure-1c for mad function 
which resulted in a relatively less smooth image and less 
reconstruction error and artifacts [Figure 3d] in comparison 
to denoised image yielded by var function [Figure 3b] and 

Figure 6: Input image was same for creating both residual and correlation image. (a) Residual image var, (b) Pearson correlation of denoised and residual 
image Figure 6a, (c) Histogram of the residual image Figure 6a, (d) Residual image mad, (e) Pearson correlation of denoised and residual image Figure 6d, 
(f) Histogram of the residual image Figure 6d, (g) Residual image madmad, (h) Pearson correlation of denoised and residual image Figure 6g, (i) Histogram 
of the residual image Figure 6g

Figure‑7: (a) Boxplot of Brisque score for zoom 2.0 images, (b) Boxplot of Brisque score for zoom 1.0 images, (c) Boxplot of SumofSquareDiff for zoom 2.0 
images and (d) Boxplot of SumofSquareDiff for zoom 1.0 images
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mad functions  [Figure  3c]. The same explanation holds 
good for denoised zoom 1.0 images in which var function 
estimated the maximum value of noise [Figure 8c] and 
threshold [Figure 8d] and hence smoothest image, whereas 
madmad function estimated minimum value of noise and 
threshold and hence the least smooth image.

Our result is similar to the results reported.[12] Their 
recommendation is to estimate the noise using madmad 
function as this function provides a better estimate of noise. 
The mad function is the method of noise estimation from 
the finest resolution sub‑band.[22] They have found mad 
function as a robust method for noise estimation. The noise 
estimation is different from Donoho study because we have 
estimated noise from 3rd level to 7th level details sub‑band, 
applied the estimated threshold to the 3rd level to 7th level 
details sub‑band, and also that we have compared the 
performance of the var, mad, madmad function for denoising 
99mTc‑setsamibii parathyroid images.

The medical image denoising using wavelet transform have 
been first attempted by Waver et  al.[23] They performed 
denoising of MRI images, and their results were encouraging 
except that the method eliminates small structures that were 
confused with noise. In nuclear medicine imaging, Ogawa et al.[9] 
performed denoising of Scintigraphic images, the method of 
decomposition and reconstruction were translational invariant 
wavelet transform. They proposed the algorithm to denoise 
scintigraphic images and demonstrated the effectiveness of 
their method by denoising brain phantom, staircase phantom, 
clinical 99mTc‑MDP Bone Scan, and 67Ga‑Scan images.

Nawres et al.[8] performed denoising of scintigraphic images 
on planar bone and heart images acquired over different 

duration of acquisition, consequently increasing count 
levels. A modified version of the Bayesian threshold was 
applied for threshold value estimations. Wavelet‑based 
denoising has also been performed in nuclear medicine 
in the fields of SPECT and PET images. Afef et al.[10] used 
a 2D preprocessing Daubechies wavelet transformed for 
removal of Poison noise in the acquired projections and 
reconstructed the data with Ordered subset expectation 
maximization  (OSEM) algorithm for a tomographic bone 
SPECT image reconstruction. Bal et  al.[11] proposed a 
PET denoising technique on simulated phantom and 
18F-FDG clinical images using wavelet and curvelet 
domains. The performance of the denoising method was 
compared with VisuShrink, BayesShrink, NeighShrink, and 
ModineighShrink. The algorithm efficiently denoised the 
Phantom images and the clinical images of Gaussian noise, 
Poisson noise, and Mixed Gaussian-Poisson noise. 

Methods to reduce Poisson noise have also been proposed by 
many researchers,[24,25] and these methods sometimes work 
well. Various image denoising techniques have been used to 
remove noise from scintigraphic images. These include linear 
filters[26] and order statistic filters such as a median filter in 
the spatial domain,[27] and Butterworth filter[28] and Wiener 
filter in the frequency domain,[29] deep convolution neural 
network,[30] median modified Wiener filter technique,[31] 
a blind‑deconvolution framework after a noise‑reduction 
algorithm based on a nonlocal mean[32] etc.

The significance of this study is that it clearly compares and 
suggests that madmad should be used for best results when 
denoising parathyroid Scintigraphic images, in comparison 
to var and mad.

Figure 8: (a) Boxplot of noise for zoom 2.0 images, (b) Boxplot of estimated threshold for zoom 2.0 images, (c) Boxplot of noise for zoom 1.0 image, and 
(d) Boxplot of estimated threshold for zoom 1.0 image
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There are many variables that affect the success of denoising 
in the wavelet transform domain. Exploration of all for 
different types of Scintigraphic images will be an enormous 
work. We have explored only the effect of method of noise 
estimation in this study.

CONCLUSIONS

The noise estimation using madmad function provides 
best denoised image for both zoom 1.0 and zoom 
2.0 99mTc‑sestamibi parathyroid images.
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