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Abstract: A current trend in automotive research is autonomous driving. For the proper testing and
validation of automated driving functions a reference vehicle state is required. Global Navigation
Satellite Systems (GNSS) are useful in the automation of the vehicles because of their practicality and
accuracy. However, there are situations where the satellite signal is absent or unusable. This research
work presents a methodology that addresses those situations, thus largely reducing the dependency
of Inertial Navigation Systems (INSs) on the SatNav. The proposed methodology includes (1) a
standstill recognition based on machine learning, (2) a detailed mathematical description of the
horizontation of inertial measurements, (3) sensor fusion by means of statistical filtering, (4) an
outlier detection for correction data, (5) a drift detector, and (6) a novel LiDAR-based Positioning
Method (LbPM) for indoor navigation. The robustness and accuracy of the methodology are validated
with a state-of-the-art INS with Real-Time Kinematic (RTK) correction data. The results obtained show
a great improvement in the accuracy of vehicle state estimation under adverse driving conditions,
such as when the correction data is corrupted, when there are extended periods with no correction
data and in the case of drifting. The proposed LbPM method achieves an accuracy closely resembling
that of a system with RTK.

Keywords: machine learning; autonomous vehicles; Inertial Navigation System; Satellite Navigation;
Real-Time Kinematic; indoor navigation; reference state

1. Introduction

Autonomous driving has become a popular trend in automotive research. The motiva-
tion for autonomous driving ranges from comfort or practicality functions to safety critical
applications. Independently of the final use, the fact that the vehicles are machines that can
cause serious harm to humans in the event of a malfunction has to be taken into considera-
tion. Therefore, autonomous driving functions need to be subjected to an extensive process
of testing and validation which requires a highly accurate reference vehicle state.

A common practice to generate such a highly accurate reference vehicle state is the
fusion of data from Inertial Measurement Units (IMU) with measurements from external
sensors. Given the extensive scientific community working on these systems, their practical-
ity, and especially their high accuracy, Satellite Navigation (SatNav) receivers have become
the most common choice of sensor to fuse with IMUs. Even consumer-grade receivers are
capable of acquiring information from various GNSS (such as GPS, GLONASS, Galileo,
Beidou, etc.), which enables the receivers to accurately estimate several state variables.
Unfortunately, there are common driving situations where satellite signals are either absent
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or corrupted to an extent that renders them unusable. Some examples of these driving
situations are tunnels, bridge underpasses, parking structures or testing halls.

The objective of the present work is to reduce the dependency of INSs on external
sensors, while still being able to generate a reference vehicle state. Six key aspects of the
estimation of the vehicle state are addressed: (i) the standstill recognition (Section 2.1),
(ii) the horizontation of IMU measurements (Section 2.2), (iii) sensor fusion (Section 2.3),
(iv) drift detection (Section 2.4), (v) outlier detection for correction data (Section 2.5), and
(vi) highly accurate indoor navigation (Section 2.6). It will be shown that the proposed
methods are able to provide important improvements in the estimation of the vehicle
state even when used individually. Furthermore, if used in combination, the proposed
methods allow for an accurate enough estimation of the vehicle state to test and validate
autonomous driving functions even in indoor environments.

For an adequate estimation of the vehicle state by means of IMUs, it is essential to
ascertain when the vehicle is not moving because it is at this time that both the velocity
over ground and the proper acceleration are equal to zero [1]. Even though, historically,
vehicle speed sensors were designed to measure velocity rather than when a vehicle is at
a standstill [2], they are now able to accurately measure a standstill. Nonetheless, there
could be disadvantages if external devices continuously read the vehicle sensor data in
real time (for example, through the OBDII interface). Even when various methods [3–5]
and tools used by manufacturers [6] theoretically allow a CAN-bus use of ≈80% [7], recent
studies suggest that CAN-bus messages can still miss their deadlines [8–10]. The traffic
within a CAN-bus would increment if an external device continuously accesses the vehicle
sensor data in real time, which could further increase the risk that the CAN-bus messages
miss their deadlines. Consequently, more research is required before considering fusing
the vehicle on-board sensors with external IMUs. Alternative sensors for measuring the
velocity over ground, such as the Wheel Pulse Transducer (WPT) [11] or the Correvit [12,13]
increase testing costs and complexity.

To the best of authors’ knowledge, the only method specifically designed for standstill
detection is patented by Robert Bosch GmbH [14]. This method compares the position of
an object in consecutive frames of a video provided by a camera in the vehicle, and an
algorithm estimates the velocity of the vehicle relative to the object. As with all camera-
based methods, there is a trade-off between the spatial resolution and the distance to the
recorded objects, which negatively affects the standstill recognition.

The method proposed in this work for standstill recognition is based on a machine
learning classifier, and has the key advantage that all required inputs are generated solely
with IMU measurements. No additional sensors or infrastructural elements are required,
which reduces testing complexity, improves the robustness of the method and makes it
highly adequate for indoor navigation.

The state of the vehicle can be estimated once the algorithm has reliably established
that the vehicle is moving. If Gauss-Markov stochastic processes are assumed, the most
computationally efficient method to estimate the optimum state of moving objects is the
Kalman Filter (KF) [15]. The KF algorithm can fuse sensor measurements with the vehicle
state predicted by means of a motion model. Since the aim of this work is to generate a
reference vehicle state for testing and validation of autonomous driving functions, the
motion model used is especially designed for accurate performance under tractive driving.

Two critical parameters for the KF are the measurement noise and the system noise,
because they are required to calculate the Kalman gain. Therefore, two methods are
proposed to monitor both values, and thus to improve the robustness of the KF: a drift
recognition and an outlier detector.

The drift recognition tackles the task of monitoring the vehicle state to detect when
the vehicle is drifting. This information is extremely valuable because the motion model
used in this research work is optimized for tractive-driving situations. When the vehicle
starts to drift, the previously estimated system noise is no longer valid. Knowing when the
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vehicle is drifting enables the possibility of adjusting the system noise or switching to a
better suited motion model.

Other works found in the literature address the issue of drifting too, however, they
tend to limit the scope of their research to simulation environments [16,17] or require
additional parameters that cannot easily be estimated with an IMU [18]. Conversely, the
drift recognition in this work is designed to operate by performing consistency checks
between two estimated state variables: the lateral acceleration and the sideslip angle. As
demonstrated later, these state variables provide enough information to perform a robust
drift detection.

The outlier detector serves as a complement to the drift detector. Although the drift
detector monitors the validity of the motion model, the outlier detector does the same for
the measurements. This is especially beneficial for SatNav measurements due to the multi-
path effect. This effect appears when the signal received from the satellites does not follow
a straight path, but bounces off other objects before reaching the SatNav receiver. The multi-
path effect can occur as the vehicle drives near objects that are able to reflect the SatNav
signal, such as trailers, tall buildings or metallic structures, and causes problems for the
methods that measure the vehicle state (trilateration, carrier-phase measurements, etc.). A
relevant consequence of the multi-path effect is that it reduces the accuracy of the measured
vehicle state. It is quite common to see significant jumps in the measured state variables
while the multi-path effect is present. There are several approaches in the literature to deal
with the multi-path problem, such as [19–23]. However, to implement these approaches
would require access to the pseudo-ranges of the SatNav receivers which is not possible for
most consumer-grade devices. Therefore, the problem is addressed by filtering outliers.
This filtering is achieved by a consistency check of the measurement vector before it is used
as correction data.

In this research work a dynamic low-pass filter is designed to refine the outlier
detection method by means of taking the measurement noise into account. This dynamic
low-pass filter is highly beneficial for all sensors that estimate a quality indicator for
their own measurements, as is the case of the “dilution of precision”, “diminution of
precision” [24,25] or standard deviation of the SatNav receivers. Many sensors can track
the accuracy associated with the measurements that they perform, but are not always
capable of detecting estimation errors of this self-reported accuracy.

The investments made in GNSS [26,27] have provided various advantages, such as
(i) high accuracy [28,29], (ii) a low cost for end users [30], and (iii) an extensive scientific
community that works on refining its measurements and overcoming its limitations [31].
Arguably, these three advantages make the GNSS the best choice for external sensors in
open-sky use-cases. However, there are still situations where the GNSS are not available or
usable, as is the case in tunnels, parking structures or urban canyons. Moreover, there is an
interest in testing in indoor halls because this allows engineers to test sensors, algorithms
and systems under simulated and reproducible weather conditions such as day, night, rain,
fog or even SatNav outages.

Due to the aforementioned reasons, it is necessary to investigate approaches for
acquiring feedback in closed-sky situations. Comprehensive surveys on indoor positioning
systems can be found in [32,33]. These approaches are based on the combination of diverse
methods and sensors, such as WiFi, sonar, radar, or proprietary technologies such as
the iBeacon [34].

The LiDAR-based approach with the best performance is presented on [35] with
a mean localization error of 11.5 cm and standard deviation of 5.4 cm. The accuracy is
evaluated by comparing the outputs of the algorithm to “human-labeled” ground-truth
data. The indoor positioning system with the best performance that was found is the
“Active Bat” [36,37] with a mean localization error of 3 cm, but the evaluation methodology
is not clearly specified [38]. The biggest disadvantage of the Active Bat is the numerous
receivers required which must be placed with separations of 1.2 m and must cover the
complete measurement area. Therefore, the installation of such a system might not be
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practical. Other indoor positioning systems already on the market [39–41] are designed for
applications that do not require a centimeter-precise localization. Alternative navigation
methods that use LiDARs are presented in [42–44]. However, the existing methods still
face a series of challenges, such as the positioning accuracy, the number of state variables
they can measure or the algorithm runtime.

2. Materials and Methods

The present work deals with the measurements provided by different sensors, such
as IMUs, LiDARs, SatNav receivers, etc. For simplification purposes, it is assumed that
all sensors output their measurements in the Local Car Plane (LCP). The LCP is the
vehicle reference frame and is defined analogue to the ISO 8855:2011 norm [45]. The
LCP is composed by the mutually perpendicular xLCP, yLCP, and zLCP axes, with −−→zLCP =
−−→xLCP ×−−→yLCP and origin oLCP at the Center of sprung Mass (CoM) of the vehicle. The xLCP
axis is parallel to the longitudinal axis of the vehicle and points towards the hood, the zLCP
axis points upwards, and the yLCP axis is given according to the right-hand rule. The LCP
is illustrated in Figure 1.

Figure 1. Graphical depiction of the Local Car Plane.

The vehicles move on the Local Tangent Plane (LTP). The LTP is a Cartesian reference
frame, composed by the mutually perpendicular xLTP, yLTP and zLTP axes, with −−→zLTP =
−−→xLTP ×−−→yLTP; and with origin oLTP at an arbitrary location on the surface of the Earth. The
axis orientation of the LTP is similar to the East-North-Up (ENU) reference frame, where
the xLTP × yLTP-plane is perpendicular to the gravitational pull of the Earth, the yLTP axis
points to the true north of the Earth, and the zLTP axis is parallel to the gravitational pull of
the Earth, and points upwards.

2.1. Standstill Recognition

The first step for estimating the vehicle state is the standstill detection. The strategy
to achieve this, is to generate features from the IMU signals that can describe whether
the vehicle is standing still or not. The generated features are then classified by means of
machine learning. The proposed method uses the Random Forest (RF) [46] for classifying
standstill or motion according to the features generated from the IMU signals as inputs. The
classes used are shown in Table 1. False positives are unacceptable because they can affect
greatly the estimation of the vehicle state, especially if they occur at highway velocities.
False negatives can be tolerated because, as shown later, their effect is negligible for the
estimation of the vehicle state. If this holds, the standstill classification is considered robust.

Table 1. Standstill classification.

True State Classified State Standstill Motion

Standstill True positive False negative
Motion False positive True negative

The use of the RF is justified mainly because it is not possible to manually determine
thresholds for the IMU signals that allow a robust standstill classification. This happens
because some driving conditions are almost equal to a standstill, such as cruising on a
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highway or driving at walking velocity. This fact is further strengthened when considering
the numerous configurations possible for the same vehicle chassis (engine, suspension, tires,
etc.), and that even small components, such as the engine mounts, can have a significant
impact on the vibrations and rotations sensed by the IMU.

The RF not only enables the implementation of a robust standstill recognition, but a
10 min dataset is also enough for a robust classification, and the training process is done
within seconds. Also, given that the RF is real-time capable, it allows the online use of
the proposed method. Further details about the RF can be found in [46]. The procedure
to recognize a standstill consists of three steps: (i) generation of the training dataset,
(ii) training of the RF, and (iii) classification of the vehicle state. The specifics applicable to
the present research work is detailed below.

The first step to recognize a standstill, is to generate a training dataset for the RF. The
10 min-long dataset that is required to generate the features for the RF is composed by the
proper acceleration vector aLCP and the composition of rotations θ̇LCP that are measured
by the IMU, these are such that

aLCP =
[
ax,LCP ay,LCP az,LCP

]T, (1)

θ̇LCP =
[
θ̇roll θ̇pitch θ̇yaw

]T. (2)

The training dataset for the RF is equally distributed between three conditions: stand-
still, moving at walking pace and random driving.

For the standstill condition, the vehicle should be as motionless as possible, but ready
to drive off. In the case of vehicles with automatic transmission, “drive” should be selected;
and vehicles with manual transmission should be either in neutral or in gear and with
the clutch engaged. The reason for this, is to let the IMU sense engine and drivetrain
vibrations as well. During the standstill, all dead loads are negligible, and all live loads are
undesirable. Except for engine and drivetrain, all actions that provoke chassis vibration
or motion should be avoided: passenger movement, vehicle loading, opening or closing
doors, trunk or hood, etc.

For the condition of moving at walking pace, the vehicle is driven as slow as possible
and on a straight line. Contact with pedals or steering wheel should be avoided. This
allows one to generate samples with the “motion” label but that are very similar to a
“standstill”, which is highly relevant for differentiating between both.

For the condition of random driving, the vehicle is driven with random accelerations,
velocities and directions. The more diverse, the better for the dataset.

Next, the features for the RF are generated in the time and frequency domain. The
features in the time domain are: (i) a2

x,LCP + a2
y,LCP, (ii) a2

z,LCP, (iii) θ̇2
roll + θ̇2

pitch, and (iv) θ̇2
yaw.

The features in the frequency domain are created from the features in the time domain
by generating the Discrete Fourier Transform (DFT) of each feature in the time domain. In
the present work, the DFT is generated with a MATLAB Toolbox that is based on [47–49].
The frequency range that the DFT uses is given as in Equation (3).[

0 :
Fs

nDFT
: Fs

]
, (3)

where Fs is the sampling frequency and nDFT is the number of samples used for the DFT.
The highest meaningful frequency from the DFT is Fs

2 [50,51], and a 0 Hz frequency (direct
current) is not relevant in this work. Therefore, the used frequency range is given by
Equation (4). [

Fs

nDFT
:

Fs

nDFT
:

⌊
nDFT

2

⌋
· Fs

nDFT

]
. (4)

The IMU sampling rate is set to Fs = 100 Hz, and a time window of τDFT = 170 ms is
used. Therefore, nDFT = 17 samples are used each time for the DFT generation: the latest
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values of the features in the time domain, and their values from the previous nDFT − 1 sam-
ples. Therefore, the used DFT frequencies are (i) 5.8824 Hz, (ii) 11.7647 Hz, (iii) 17.6471 Hz,
(iv) 23.5294 Hz, (v) 29.4118 Hz, (vi) 35.2941 Hz, (vii) 41.1765 Hz, and (viii) 47.0588 Hz. The
single-sided amplitude of these 8 frequencies are the features in the frequency domain
for a total of 36 features: 4 in the time domain and 32 in the frequency domain. It should
be noted that due to the sliding window, it is not possible to generate a DFT for the first
nDFT − 1 samples. In this case, the amplitudes of their frequencies are set to zero.

By analyzing the features of the training datasets of different vehicles, it can be noticed
that the dominant frequencies at standstill can be associated with the vehicle motorization.
For the vehicles with internal combustion engines, to the idling Revolutions Per Minute
(RPM) and the number of cylinders. When the vehicles move at walking velocity, the
dominant frequency can be associated mainly with the vehicle differential. Finally, when
the vehicle moves faster than walking velocity, the dominant frequencies come from the
live loads of the vehicle, such as road imperfections and suspension travel, among others.

As shown in Table 1, “standstill” and “motion” are the two labels used for classifica-
tion. The labeling of the training dataset can be done by using other sensors as reference,
by manually analyzing the IMU signals, or a combination of both. Whichever way, it is im-
portant to notice that the labeling directly affects the classification performance of the RF.

A best practice for labeling the training datasets is to include the jerks that appear
at drive-off into the “motion” class. When the vehicle comes to a stop, the “standstill”
class should start only once the chassis has stopped moving and there are no more jerks
or rotations present in the IMU signals. In case of uncertainty, it is preferable to label a
sample as “motion” rather than “standstill” because, as is shown later, false negatives can
be tolerated, but false positives are unacceptable.

The algorithm initialization and the transition between states are two effects of the
proposed method to keep in mind. As for the initialization, nDFT − 1 samples are needed
for algorithm initialization. This is because, as explained above, the DFT can be generated
only once nDFT samples from the IMU are obtained. The single-sided amplitudes for the
previous samples are set to zero, which might not be representative of the vehicle state.

Regarding the transition between states, as a vehicle goes from one state to the other
(motion to standstill or vice versa), it might happen that the samples used for the DFT
belong to different classes. The smaller the sliding window τDFT, the faster all samples for
the DFT fall within a single class. Otherwise, as the sliding window τDFT gets bigger, more
features can be used for the classification, but this also increases the lapse where samples
from both classes are fed to the RF. The current size of τDFT is found to be adequate for
a robust standstill recognition, and is determined after testing the RF with several hours
of test datasets, and by comparing the classification performance of the RF with different
values for τDFT.

Once the features in time and frequency domain are generated and labeled, the second
step to recognize a standstill, is to train the RF. The training parameters used in this work
are (i) number of trees: 12, (ii) stopping criteria: minimum leaf size, and (iii) minimum leaf
size: 5. These parameters provide a robust classification and can be used for a variety of
land vehicles.

It should be noted that the trained RF is not specific to the vehicle used to generate
the training dataset, but to all vehicles with the same configuration (chassis, engine, trans-
mission, suspension, etc.). This means that the training occurs only once, and the trained
RF can be used for as long as the vehicle configuration remains the same.

Once the RF is trained, the third step to recognize a standstill, is to use the RF for
the standstill recognition on test data. For this, the 36 features required as inputs for
the RF are generated as the vehicle drives. The first step to do so is to buffer nDFT IMU
samples, i.e., the most recent IMU measurements and the previous nDFT− 1. The latest IMU
measurements are the features in the time domain (a2

x,LCP + a2
y,LCP, a2

z,LCP, θ̇2
roll + θ̇2

pitch, and

θ̇2
yaw), and the features in the frequency domain are generated with all nDFT IMU buffered
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samples. When all 36 features (4 in the time domain and 32 in the frequency domain) are
generated, they are used as input for the RF.

If a standstill is recognized, all change rates (velocities, accelerations and rotation rates)
are set to zero. Only the position and orientation are carried forward from the previous
time step. Otherwise, if the vehicle moves, its state is estimated as is detailed later.

2.2. Horizontation of IMU Measurements

The horizontation is understood as the transformation of the IMU measurements, as if
the xLCP × yLCP and xLTP × yLTP planes were parallel, and the zLCP axis had the same ori-
entation and direction as the zLTP axis. The horizontation is required mainly because most
vehicle motion models found in the literature depict the movement of cars from a bird’s-eye
perspective. Also, it is not a practical solution to physically maintain the xLCP × yLCP and
xLTP × yLTP planes parallel when the vehicles are in motion. The horizontation requires
tracking of the LTP axes relative to the LCP, so that the IMU measurements can be projected
on the tracked LTP axes. This process varies depending on whether the vehicle is standing
still or not. Both cases are detailed in what follows.

With exception of the engine vibrations, there are no live loads present in a vehicle
during a standstill. Therefore, the gravitational pull G is the only force sensed by the IMU.
This is given at standstill by

G = ‖aLCP‖ =
√

a2
x,LCP + a2

y,LCP + a2
z,LCP ≈ 9.81

m
s2 . (5)

By using the gravitational pull as reference, the roll and pitch angles are calculated
as follows

θroll = arccos
(

ay,LCP

G

)
, (6)

θpitch = arccos
( ax,LCP

G

)
. (7)

Then, the easiest manner to obtain an initial value of the yaw angle θyaw, is to equip
the vehicle with a sensor that measures the Course Over Ground (COG), such as a SatNav
receiver, and to drive the vehicle on a straight line. This is so because driving on a straight
line results in θyaw = COG.

Two rotations are necessary to transform the LTP to the LCP: one rotation around an
arbitrary axis and one rotation around the zLTP axis. The first rotation aligns the zLCP axis
with the zLTP axis. The second rotation aligns the xLCP axis with the xLTP axis. The two
parameters of the first rotation are the arbitrary axis rh0 and the rotation angle θh. They are
expressed as follows

θh = arccos
( az,LCP

G

)
, (8)

rh0 =
[
ax,LCP ay,LCP az,LCP

]
×
[
0 0 1

]
=
[
rx,h ry,h rz,h

]
. (9)

The rotation matrix RLCP′
LCP that aligns the zLCP axis with the zLTP axis is then given by:

RLCP′
LCP =


r2

x,h+
(

r2
y,h+r2

z,h

)
cos(θh)

rm

rx,hry,hrc−rz,h
√

rm sin(θh)
rm

rx,hrz,hrc+ry,h
√

rm sin(θh)
rm

rx,hry,hrc+rz,h
√

rm sin(θh)
rm

r2
y,h+(r2

x,h+r2
z,h) cos(θh)

rm

ry,hrz,hrc−rx,h
√

rm sin(θh)
rm

rx,hrz,hrc−ry,h
√

rm sin(θh)
rm

ry,hrz,hrc+rx,h
√

rm sin(θh)
rm

r2
z,h+

(
r2

x,h+r2
y,h

)
cos(θh)

rm

, (10)

rc = 1− cos(θh), (11)

rm = r2
x,h + r2

y,h + r2
z,h. (12)

The Equation (10) is known as the “Rodriguez’ Formula”, and its step-by-step deriva-
tion can be found in [52]. A graphical representation of a rotation around an arbitrary
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axis is shown in Figure 2. It should be noted that Equation (10) can present a singularity
if θroll = 0 and θpitch = 0, because in that case rm = 0 as well. However, this would

mean that the zLCP axis and the zLTP axis are aligned. Hence, RLCP′
LCP = I3×3, where I is

the identity matrix.

Figure 2. Shown is a rotation around an arbitrary axis to align the zLCP axis with the zLTP axis. The
axes of the LTP are shown in green, the axes of the LCP are shown in magenta, and the arbitrary axis
rh0 and the rotation angle θh with grey.

The matrix that tracks the LTP with respect to the LCP is then given by

RLCP
LTP =

cos
(
θyaw

)
− sin

(
θyaw

)
0

sin
(
θyaw

)
cos
(
θyaw

)
0

0 0 1

RLCP′
LCP

T

. (13)

Once the vehicle pose at standstill is determined, it must be updated as the vehicle
moves. The update is done primarily with the gyroscopes because even when cruising in a
straight line, random forces act on road vehicles. Some sources of these forces could be
road irregularities, bumps, road joints or the wind. These forces are sensed by the IMU,
which complicates the update of RLCP

LTP with the accelerometers. Therefore, the composition
of rotations is used instead. This is detailed in what follows.

With the instantaneous rotation rates θ̇roll, θ̇pitch and θ̇yaw around the xLCP, yLCP, and
zLCP axes respectively, the instantaneous composition of rotations is expressed as follows

S
(

θ̇
LCP,τ1
LCP,τ2

)
=

 0 −θ̇yaw θ̇pitch
θ̇yaw 0 −θ̇roll
−θ̇pitch θ̇roll 0

, (14)

θ̇
LCP,τ1
LCP,τ2

=
[
θ̇roll θ̇pitch θ̇yaw

]
. (15)

Next, the instantaneous composition of rotations is integrated as if it was a vector and
added to RLCP

LTP . The step-by-step derivation of this procedure is shown below.

R̂LCP,τ2
LTP = RLCP,τ2

LCP,τ1
RLCP,τ1

LTP , (16)

R̂LCP,τ2
LTP =

(
RLCP,τ1

LCP,τ1
+ ∆τṘLCP,τ2

LCP,τ1

)
RLCP,τ1

LTP , (17)

R̂LCP,τ2
LTP =

(
RLCP,τ1

LCP,τ1
+ ∆τS

(
θ̇

LCP,τ2
LCP,τ1

)
RLCP,τ2

LCP,τ1

)
RLCP,τ1

LTP , (18)

R̂LCP,τ2
LTP =

(
RLCP,τ1

LCP,τ1
+ ∆τS

(
−θ̇

LCP,τ1
LCP,τ2

)
RLCP,τ2

LCP,τ1

)
RLCP,τ1

LTP , (19)

R̂LCP,τ2
LTP =

(
I3×3 + ∆τ

(
S
(

θ̇
LCP,τ1
LCP,τ2

))T
I3×3

)
RLCP,τ1

LTP , (20)
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R̂LCP,τ2
LTP =

(
∆τS

(
θ̇

LCP,τ1
LCP,τ2

)T
+ I3×3

)
RLCP,τ1

LTP , (21)

where ∆τ = τ2 − τ1. Equation (21) is used each time that a new IMU measurement is
available to keep updating RLCP

LTP .
To add rotations as vectors is an approximation that is valid only for rotations that

tend to zero [53]. This is because R̂LCP,τ2
LTP is not an orthonormal matrix. Therefore, R̂LCP,τ2

LTP
must be adjusted to make its axes perpendicular to each other. The procedure is shown in
the following.

R̂LCP,τ2
LTP =

[
r′h1

r′h2
r′h3

]
, (22)

r′′h3
= r′h3

, (23)

r′′h1
= r′h2

× r′′h3
, (24)

r′′h2
= r′′h3

× r′′h1
, (25)

RLCP,τ2
LTP =

[
r′′h1∥∥∥r′′h1

∥∥∥
r′′h2∥∥∥r′′h2

∥∥∥
r′′h3∥∥∥r′′h3

∥∥∥
]

. (26)

The next step is to project on the LTP the acceleration vector aLCP and the composition
of rotations θ̇LCP measured by the IMU. This is done by using the tracker matrix RLCP,τ2

LTP
as follows

aLTP,τ2 =
(

RLCP,τ2
LTP

)T
aLCP =

[
ax,LTP,τ2 ay,LTP,τ2 az,LTP,τ2

]
, (27)

θ̇LTP,τ2 =
(

RLCP,τ2
LTP

)T
θ̇LCP =

[
θ̇x,LTP,τ2 θ̇y,LTP,τ2 θ̇z,LTP,τ2

]
, (28)

where aLTP,τ2 is the acceleration vector in LTP at time instance τ2, θ̇LTP,τ2 is the composition
of rotations in LTP at time instance τ2, ax,LTP,τ2 , ay,LTP,τ2 and az,LTP,τ2 are the accelerations
at time instance τ2 along the xLTP, yLTP and zLTP axes accordingly; and θ̇x,LTP,τ2 , θ̇y,LTP,τ2

and θ̇z,LTP,τ2 are the rotations at time instance τ2 around the xLTP, yLTP and zLTP axes
correspondingly.

The acceleration vector and composition of rotations are then projected on the
xLTP × yLTP-plane. The magnitude aOG and direction θaOG of the acceleration over ground

are calculated as follows

aOG =
√

a2
x,LTP,τ2

+ a2
y,LTP,τ2

, (29)

θaOG = arctan2
(
ay,LTP,τ2 , ax,LTP,τ2

)
. (30)

The magnitude θ̇OG and direction θrOG of the composition of rotations over ground
are given by

θ̇OG =
√

θ̇2
x,LTP,τ2

+ θ̇2
y,LTP,τ2

, (31)

θrOG = arctan2
(
θ̇y,LTP,τ2 , θ̇x,LTP,τ2

)
. (32)

Once the accelerations along and rotations around the LTP axes are known, they are
projected on the projection on the xLTP × yLTP-plane of the longitudinal axis of the vehicle,
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i.e., the acceleration vector aLTP,τ2 and composition of rotations θ̇LTP,τ2 are projected on a
vector located on the xLTP × yLTP-plane and with θyaw orientation. Therefore,[

ax,h
ay,h

]
=

[
aOG cos

(
θaOG − θyaw

)
aOG sin

(
θaOG − θyaw

)], (33)

[
θ̇roll

θ̇pitch

]
=

[
θ̇OG cos

(
θrOG − θyaw

)
θ̇OG sin

(
θrOG − θyaw

)], (34)

where ax,h and ay,h are called “horizontal accelerations”. The measurement vector of
the Extended Kalman Filter (EKF) that is designed in this research work (Section 2.3)
includes θ̇z,LTP, ax,h and ay,h as measurement variables. The process from Equation (14)
to Equation (34) is repeated with each new inertial measurement while the vehicle is in
motion to keep updating the values of the measurement vector of the EKF.

2.3. Statistical Filtering

The next step is to estimate the vehicle state. This is done by using a motion model to
predict the vehicle motion and by using exteroceptive sensors to get feedback.

If one assumes Gauss-Markov stochastic processes, the most computationally effi-
cient method to estimate the optimum state of moving objects is the Kalman Filter. The
Kalman Filter fuses the predicted vehicle motion with observed measurements. Its detailed
derivation can be found in [15], and the specifics for the present research work are given in
what follows.

The measurement vector is defined in the present work as

zh =
[
xh yh θz,LTP θ̇z,LTP vh βh ax,h ay,h

]T, (35)

where (xh, yh) are the (x, y) coordinates of oLCP in LTP, θz,LTP is the yaw angle of the vehicle,
vh is the velocity over ground of the vehicle, and βh is the sideslip angle of the vehicle. The
used measurement noise covariance matrix σz and state vector xs are defined as follows

σz = diag
(

σ2
x,h σ2

y,h σ2
θz ,LTP σ2

θ̇z ,LTP
σ2

v,h σ2
β,h σ2

ax ,h σ2
ay ,h

)
, (36)

xs =
[
xs ys θyaw,s θ̇yaw,s vs βsv β̇sv βsp ax,sh ay,sh

]T, (37)

where (xs, ys) are the (x, y) coordinates of oLCP in LTP, θyaw,s is the yaw angle, θ̇yaw,s is the
yaw rate, vs is the velocity over ground, βsv is the first estimation of the vehicle sideslip
angle, β̇sv is the rate of change of the vehicle sideslip angle, βsp is the second estimation
of the vehicle sideslip angle, and ax,sh and ay,sh are the vehicle horizontal accelerations.
Two sideslip estimators are used to improve the prediction of the vehicle motion. The
first sideslip estimator (βsv and β̇sv) is based on the balance of moments of inertia and
provides a better performance for the estimation of the vehicle velocity. The second sideslip
estimator (βsp) is based on a geometrical model under the assumption of tractive driving,
and gives a better performance for the position estimation.

With a distance lr along the longitudinal axis of the vehicle from oLCP to the rear
transaxle, and additive system noise ηs, the used state equations are given by

xτi+1,s = f (xτi ,s) + ηs, (38)
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f1−10(xτi ,s) =



xs+vsc
(
θyaw,s+βsp

)
∆τ+

(
ax,shc

(
θyaw,s

)
−ay,shs

(
θyaw,s

))∆τ2

2
ys+vss

(
θyaw,s+βsp

)
∆τ+

(
ax,shs

(
θyaw,s

)
+ay,shc

(
θyaw,s

))∆τ2

2
θyaw,s + θ̇yaw,s∆τ

θ̇yaw,s
vs +

(
ax,shc(βsv) + ay,shs(βsv)

)
∆τ

βsv + β̇sv∆τ
1
vs

(
ay,shc(βsv)− ax,shs(βsv)

)
− θ̇yaw,s

tan−1
(

lr θ̇yaw,s
vs

)
ax,sh
ay,sh



. (39)

From f7(xs) and f8(xs), one deducts that as the vehicle drives slower than 1.5 m
s , the

sideslip estimators lead to a mathematical indetermination. To solve this, when vs < 1.5 m
s ,

then xs(6), xs(7) and xs(8) are set to zero. Therefore, no sideslip is considered for the ve-
locity or position estimation. However, given the low velocities where the indetermination
happens, the integration error is negligible.

2.4. Drift Recognition

The geometrical model from which f8(xs) is derived, assumes tractive driving. Hence,
the performance of the motion model to predict the vehicle motion decays during a drift.
By recognizing a drift, it is possible to (i) identify when the performance of the motion
model decays, and (ii) take measures such as adjusting the system noise, or switching
to other motion models. Therefore, an objective of this research work is to create a drift
detector. Other approaches achieve this with multiple SatNav receivers or with specific
sensors, such as the Correvit. A drift is recognized in this work by checking the consistency
between state variables to reduce the dependence of INSs on external sensors.

The tire longitudinal and lateral slips are a consequence of the forces that act on the
tires as well as their mechanical properties. As such, both slips indicate how much force
can the tires transmit to the ground. When classified by the tire slips, the driving state of a
vehicle can be classified as either “tractive” or “non-tractive” [54]. The tractive driving is
characterized by high lateral and longitudinal tire tractive forces and by tire slips usually
less than 10◦ sideslip and less than 10% longitudinal slip. The non-tractive driving is
characterized by low tire tractive forces and by high slips that are usually greater than 10◦

sideslip and greater than 10% longitudinal slip.
Hence, the first pair of state variables to compare to detect a drift, are both sideslip

estimators. During tractive driving, βsv ≈ βsp. However, as the vehicle starts drifting,
the difference between both gets bigger because βsp is derived under the assumption of
tractive driving. Therefore, the difference between βsv and βsp is a strong indicator that
shows whether the vehicle is drifting or not.

The second pair of variables that are used for the drift recognition are the estimated
lateral acceleration ay,sh and the expected lateral acceleration ay,sc. The latter results from
assuming a tire sideslip of βt ≈ 0. This would mean that the path of a turning vehicle
describes an arch with constant radius, so that ay,sc = θ̇yaw,svs. Therefore, ay,sh estimates
the lateral acceleration in reality, and ay,sc describes how the lateral acceleration should
ideally be. During tractive driving, ay,sh ≈ ay,sc. And as the vehicle starts drifting, the
difference between ay,sh and ay,sc becomes statistically significant.

In the present work, it is said that the vehicle is drifting if |ay,sh − ay,sc| ≥ 2.1 m
s2 and

|βsv − βsp| ≥ 0.2 rad. These thresholds are determined after comparing the corresponding
state variables as measured during drifting tests, and as estimated during tractive driving
on open roads.

2.5. Outlier Detection

The next step is to fuse the predicted vehicle motion with measurements from external
sensors (correction data). However, the sensor information could be corrupted, which
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would affect negatively the estimation of the vehicle state. To avoid this, the state vector
is used as reference to filter out flawed sensor measurements. This is because, by defini-
tion, the state vector represents the last known optimal state of the vehicle, and because,
assuming that both the motion model and the sensors depict reality with 100% fidelity, the
measurement vector is equal to the predicted vehicle state.

The consistency check is done with two consecutive sensor measurements made
at time instances τ1 and τ2, which are compared to the corresponding predicted state
variable. Therefore, the difference between two consecutive velocity measurements could
be expressed as follows

vτ2,h − vτ1,h =
(
ax,shc(βsv) + ay,shs(βsv)

)
∆τ, (40)

and to consider the inaccuracies of the sensor and the motion model, this can be rewritten as:

vτ2,h − vτ1,h ≈
(
ax,shc(βsv) + ay,shs(βsv)

)
∆τ, (41)

Since the purpose is to filter outliers, an additional margin is given by means of a
factor κ = 3. Also, only the absolute difference is taken to consider both positive and
negative accelerations of the vehicle. Therefore, the measured velocity vτ2,h at time instance
τ2 is used as correction data if∣∣vτ2,h − vτ1,h

∣∣ ≤ ∣∣(ax,shc(βsv) + ay,shs(βsv)
)
∆τκ

∣∣. (42)

The value of κ is determined after analyzing hours of real-world data, where the
behavior of the SatNav measurements during regular operation is compared to the behavior
of the measurements during periods of time where the multi-path effect is present.

Since θyaw ≈ COG during tractive driving, the COG measured by the SatNav receivers
can be used as correction data for θyaw,s when θ̇yaw,s ≈ 0. Analogue to the velocity
measurement, the measured COG θτ2,yaw,h at time instance τ2 is used as correction data if∣∣∣θτ2,yaw,h − θτ1,yaw,h

∣∣∣ ≤ ∣∣θ̇yaw,s∆τκ
∣∣. (43)

Analogue to the velocity and the COG, the SatNav location measurement
(
xτ2,h, yτ2,h

)
at time instance τ2 is used as correction data if√(

xτ2,h − xτ1,h
)2

+
(
yτ2,h − yτ1,h

)2 ≤
∣∣(vs +

(
ax,shc(βsv) + ay,shs(βsv)

)
∆τ
)
∆τκ

∣∣. (44)

The same method to detect outliers can be applied for βsv and βsp if necessary.
Some sensors can compute quality indicators for the own measurements, such as a

dilution of precision or a standard deviation. The problem is that sometimes the sensors
do not recognize when they miscalculate their quality measures, as is the case with the
standard deviation of SatNav receivers.

To address this, the quality measure is modelled as a PT1 element to dampen it over
time. Therefore, let στ1,h and στ2,h be an element of σz at time instances τ1 and τ2, σ′τ1,h and
σ′τ2,h be the values corresponding to στ1,h and στ2,h that the sensor calculates, tsat = 1.5 s
a saturation parameter, tτ1 and tτ2 a timer at time instances τ1 and τ2. The update of the
standard deviation is then modelled as follows

tτ2 =

{
0, στ1,h < σ′τ2,h

tτ1 + ∆τ otherwise
, (45)

στ2,h =

σ′τ2,h, στ1,h < σ′τ2,h

στ1,he−
tτ2
tsat + σ′τ2,h

(
1− e−

tτ2
tsat

)
otherwise.

(46)
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The saturation parameter tsat is optimized for a SatNav receiver by analyzing its
measurements with and without the multi-path effect, and can be optimized for other
sensors as required.

From Equations (45) and (46), it can be deducted that the strategy is to quickly shift
the Kalman gain towards the motion model if the quality of the sensor measurements
decays, and to gradually shift the gain towards the sensor if the quality of its measurements
continuously improve.

2.6. LiDAR-Based Positioning Method

As stated above, there are various situations where no SatNav is available, but where
highly precise correction data is required. A highly precise source of correction data is
generated in this work by means of a Velodyne LiDAR HDL-32E [55], and the method is
detailed in what follows.

The first step is to identify references or “markers” with the LiDAR. Since recognizing
markers by their shape is computationally intensive, they are identified by their reflectivity.
It should be noted that the point cloud resolution decreases (i) as the distance dvelo between
the LiDAR and the measured object increases, and (ii) as the rotational velocity ωvelo of the
LiDAR head increases. The Euclidean distance dhor,velo between two horizontally adjacent
points as a function of dvelo and ωvelo is given by

dhor,velo = dvelo · sin
(

ωvelo ·
360
60
· 0.00004608 ms

)
, (47)

where 0.00004608 ms is the time required for one firing cycle (a single shot of all lasers for
a single LiDAR azimuth). From Equation (47), the relation between dvelo, ωvelo and the
point cloud resolution can be deducted. This relation can be very relevant as the vehicle
velocity increases.

The chosen LiDAR can measure the NIST calibrated reflectivity [56], which ranges
from 0 for a lost reflection to 255 for a reflection with no loses. This allows differentiation of
highly reflective objects from the rest of the world, but not to identify the highly reflective
objects individually.

Once only the points with high reflectivity remain, they are clustered using a time
threshold of Γcluster = 1 ms. Therefore, the points measured within Γcluster one another, are
clustered together. Hence, all points that are within a clustering distance dcluster from each
other are clustered together, so that

dcluster = dvelo · sin
(

ωvelo ·
360
60
· Γcluster

)
. (48)

The value of dcluster is important when defining ωvelo, Γcluster and the spacing be-
tween markers.

The next step is to determine a single set of (x,y) coordinates for the cluster. For this
work, the motion of the vehicle is limited to the xLTP × yLTP-plane. Therefore, the i-th
cluster point pi,velo is defined as

pi,velo =

[
xi,velo
yi,velo

]
=

[
di,velo · cos(θi,velo)
di,velo · sin(θi,velo)

]
, (49)

and the i-th cluster of LiDAR measurements is then defined as

Pi,velo ∈ R2,npts =

[
x1,velo xi,velo ... xnpts,velo

y1,velo yi,velo ... ynpts,velo

]
, (50)

where di,velo and θi,velo are respectively the range and azimuth angle of the i-th measured
point, and npts is the number of points of the cluster.
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The coordinates p′i,m = [x′i,m, y′i,m]T that express the measured position in LCP of the
i-th cluster (marker) are then calculated by means of the mid-range arithmetic mean, so that

p′i,m =

[
x′i,m
y′i,m

]
=

max(Pi,velo(1,:))+min(Pi,velo(1,:))
2

max(Pi,velo(2,:))+min(Pi,velo(2,:))
2

. (51)

The mid-range arithmetic is applied as well to dvelo, θvelo and the timestamp of the
clustered measurements. This allows one to obtain the distance di,m, the azimuth θi,m and
the time instance at which the i-th marker is seen. Next, the true location in LTP of the
markers must be known. This is defined for the i-th marker as follows

pi,map = [xi,map, yi,map]
T. (52)

The true location in LTP of all markers is stored in the marker map, which is assumed
to be available beforehand. This map can be generated, for example, by means of a
tachymeter or by stitching together LiDAR measurements of the test area. The marker map
is then defined as follows

Pmap ∈ R3,npts =

 1 i ... npts
x1,map xi,map ... xnpts,map

y1,map yi,map ... ynpts,map

, (53)

where npts is the total number markers, and the first row is a unique identifier for each marker.
In order to identify which marker is being measured, an approximate position papp and

an approximate orientation θapp of the vehicle in LTP is required. This approximate position
can be, for example, (xs, ys), (xh, yh) or initialization values, and is defined as follows

papp = [xapp, yapp]
T. (54)

The positioning error ηd,app is then defined as follows

ηd,app =
∣∣∣papp − ptrue

∣∣∣, (55)

were ptrue = [xtrue, ytrue]T is the true position of the vehicle in LTP. Since the location of the
vehicle is tracked by means of an EKF, during tractive driving it holds that

ptrue ≈ papp ≈
[

xs
ys

]
. (56)

The approximate orientation can be θyaw,s or an initialization value, and during tractive
driving it holds that

θtrue ≈ θapp ≈ θyaw,s, (57)

were θtrue is the true orientation of the vehicle in LTP. The orientation error ηθ is defined
as follows

ηθ =
∣∣θapp − θtrue

∣∣. (58)

So as to prevent ambiguities in the marker identification, ηd,app and ηθ are constrained
as follows ∣∣∣p′i,m∣∣∣ sin(ηθ) + ηd,app <

min
(
dmap

)
2

, (59)

where dmap is a vector with the Euclidean distance between all possible marker combina-
tions. The markers do not have to be placed in specific patterns, as long as the constraint of



Sensors 2021, 21, 1131 15 of 30

Equation (59) holds. The measured position pi,m = [xi,m, yi,m]T in LTP of the i-th marker is
then given by

pi,m = papp +

[
cos
(
θapp

)
− sin

(
θapp

)
sin
(
θapp

)
cos
(
θapp

) ]p′i,m. (60)

The element of Pmap closest to pi,m is then the measured marker.
Once the markers can be individually identified, the measurement variables are

calculated. The first one is the velocity over ground vh. To calculate it, it is required that
two LiDAR measurements (consecutive or not) point to the same marker. So, let p′τ1,m
and p′τ2,m be the measurements in LCP of one marker done at time instances τ1 and τ2
accordingly, so that

p′τ1,m =

[
x′τ1,m
y′τ1,m

]
=

[
dτ1,m · cos(θτ1,m)
dτ1,m · sin(θτ1,m)

]
, (61)

p′τ2,m =

[
x′τ2,m
y′τ2,m

]
=

[
dτ2,m · cos(θτ2,m)
dτ2,m · sin(θτ2,m)

]
. (62)

From p′τ1,m and p′τ2,m, the geometry of a cone is constructed as shown in Figure 3.

Figure 3. Shown is a graphical depiction of the cone geometry used for the velocity calculation from
two LiDAR measurements that point to the same marker.

Since the sum of the internal angles of a triangle is π rad, the internal angles of the
constructed geometry are calculated as follows

θ1,v =

{
θτ1,m, θτ1,m ≤ π

2π − θτ1,m, θτ1,m > π
, (63)

θ2,v =

{
π − θτ2,m + θ̇yaw,s · ∆τ, θτ2,m ≤ π

θτ2,m + θ̇yaw,s · ∆τ − π, θτ2,m > π
, (64)

θ3,v = π − θ2,v − θ1,v. (65)

The vehicle displacement dcar between the time instances τ1 and τ2 is calculated by
means of the cosine law. In addition, since the LiDAR measurements have a timestamp, the
measured velocity over ground of the vehicle vh between τ1 and τ2 is calculated as follows

vh =
dcar

∆τ
=

√
d2

τ1,m + d2
τ2,m − 2 · dτ1,m · dτ2,m · cos(θ3,v)

∆τ
. (66)

Nevertheless, the cone geometry is not completely defined as it can rotate around the
marker. Therefore, it cannot be used to calculate the vehicle location. Instead, both LiDAR
measurements must point to different markers. Also, to completely define the geometry
shown in Figure 4, p′τ2,m is expressed in the LCP at time instance τ1 as follows

p̃τ2,m=

[
cos
(
θτ2,yaw,s − θτ1,yaw,s

)
− sin

(
θτ2,yaw,s − θτ1,yaw,s

)
sin
(
θτ2,yaw,s − θτ1,yaw,s

)
cos
(
θτ2,yaw,s − θτ1,yaw,s

) ]T

p′τ2,m+

[
xτ2,s − xτ1,s
yτ2,s − yτ1,s

]
=

[
x̃τ2,m
ỹτ2,m

]
. (67)
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Figure 4. Shown is a graphical depiction of the geometry used for calculating the vehicle location.

Next, assuming that p′τ1,m and p′τ2,m point to p1,map and p2,map respectively, the angu-
lar offset Ξθ,LCP from the LTP to the LCP at time instance τ1 is given by

Ξθ,LCP=arctan2
(
ỹτ2,m − y′τ1,m, x̃τ2,m − x′τ1,m

)
−arctan2

(
y2,map − y1,map, x2,map − x1,map

)
. (68)

Afterwards, the marker measurements in LCP at time instance τ1 are rotated as follows

p̃∗τ1,m =

[
cos(Ξθ,LCP) − sin(Ξθ,LCP)
sin(Ξθ,LCP) cos(Ξθ,LCP)

]T

p′τ1,m =

[
x̃∗τ1,m
ỹ∗τ1,m

]
, (69)

p̃∗τ2,m =

[
cos(Ξθ,LCP) − sin(Ξθ,LCP)
sin(Ξθ,LCP) cos(Ξθ,LCP)

]T

p̃τ2,m =

[
x̃∗τ2,m
ỹ∗τ2,m

]
. (70)

Finally, the linear offsets ΞLCP from the LTP to the LCP at time instance τ1 can be
estimated by comparing p̃∗τ1,m and p̃∗τ2,m with the true marker location p1,map and p2,map
from the marker library. Since both measurements have the same accuracy, the average of
both offsets is calculated as follows

ΞLCP =

(
p̃∗τ1,m − p1,map

)
+
(

p̃∗τ2,m − p2,map

)
2

=

[
Ξx,LCP
Ξy,LCP

]
. (71)

The location and orientation measurement variables at time instances τ1 and τ2 are
then given by  xτ1,h

yτ1,h
θτ1,yaw,h

 = −

Ξx,LCP
Ξy,LCP
Ξθ,LCP

, (72)

 xτ2,h
yτ2,h

θτ2,yaw,h

 = −

Ξx,LCP
Ξy,LCP
Ξθ,LCP

+

 xτ2,s − xτ1,s
yτ2,s − yτ1,s

θτ2,yaw,s − θτ1,yaw,s

. (73)

As can be deducted from the previous equations, the measurement variables for two
consecutive time instances are calculated at each iteration, i.e., once the LiDAR measure-
ment from the time instance τ2 is acquired, the vehicle pose for the time instances τ1 and
τ2 is calculated. When the LiDAR measurement from the time instance τ3 is acquired, the
vehicle pose for the time instances τ2 and τ3 is calculated; and so on. Since this creates an
overlap of two pose measurements per time instance, both are averaged. Therefore, let
(xh,a, yh,a) and (xh,b, yh,b) be the measured location of the vehicle at the i-th time instance
that is calculated with the LiDAR measurements from the time instances i− 1 to i + 1. The
measurement variables for the vehicle location at the i-th time instance are then given by

[
xτi ,h
yτi ,h

]
=

[
xh,a
yh,a

]
+

[
xh,b
yh,b

]
2

. (74)
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Analogously, let θyaw,h,a and θyaw,h,b be the measured orientation of the vehicle at the
i-th time instance that is calculated with the LiDAR measurements from the time instances
i− 1 to i + 1. The measurement variable for the vehicle orientation at the i-th time instance
is then given by

θτi ,yaw,h =
θyaw,h,a + θyaw,h,b

2
. (75)

As can be deducted from Equations (74) and (75), to average the measurement vari-
ables that are obtained using different pairs of LiDAR measurements aids to compensate
LiDAR measurement errors, and creates a time-smoothing effect for the measurement
vector. A graphical depiction of this process is shown in Figure 5.

Figure 5. Shown is a graphical depiction of the generation of the measurement variables for the vehicle pose, as computed
from LiDAR measurements.

To ensure that the measured object is a marker and not any other reflective object,
outliers are filtered out. For this, the LiDAR measurements are translated to the LTP
to compare them with the true marker position from the marker library. Therefore, the
locations p̂′τi ,m

and p̂′τi+1,m in LTP of the LiDAR measurements p′τi ,m
and p′τi+1,m made at

the i-th and i + 1-th time instance are expressed as follows

p̂′τi ,m
=

[
cos(Ξθ,LTP) − sin(Ξθ,LTP)
sin(Ξθ,LTP) cos(Ξθ,LTP)

]T

p′τi ,m
− ΞLTP, (76)

p̂′τi+1,m =

[
cos(Ξθ,LTP) − sin(Ξθ,LTP)
sin(Ξθ,LTP) cos(Ξθ,LTP)

]T

p′τi+1,m − ΞLTP. (77)

Assuming that p̂′τi ,m
and p̂′τi+1,m are closest to the i-th and i + 1-th markers respectively,

their measurement errors ηi,m and ηi+1,m are given by

ηi,m =
∣∣∣p̂′τi ,m

− pi,map

∣∣∣ = ηi+1,m =
∣∣∣p̂′τi+1,m − pi+1,map

∣∣∣. (78)

The previous because, as shown in Equations (71) and (75), the angular and linear
offsets are estimated with both LiDAR measurements.

A distance threshold is then used to separate outliers according to the following criteria:inlier, ηi,m ≤
min(dmap)

2

outlier, ηi,m >
min(dmap)

2 .
(79)

If an outlier is detected, both measurements are discarded.
From what is detailed above, the LbPM can be used only in places with known

markers, or an extra effort is needed to place and measure markers in new areas. However,
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traffic signs have a fixed position and are highly reflective as well. Therefore, they too can
be used as markers for Simultaneous Localization and Mapping (SLAM) instead of having
a marker library a priori.

Ongoing work of the present research focuses on evaluating the adequacy of the LbPM
for SLAM purposes. A critical aspect to evaluate an LbPM-based SLAM, is to identify
the sources of error individually. Since the vehicle motion prediction between LiDAR
measurements can be approximated as circular movement, the LbPM does not depend on
the motion model of the EKF. Hence, it is possible to analyze the motion model with no
correction data and the LbPM separately. However, the recursiveness of the prediction-
correction process of the EKF and localization-mapping process of the SLAM complicate
the isolation of the sources of error when the EKF and the LbPM are combined.

To study separately the sources of error, the mapping performance of the LbPM-based
SLAM is inspected under two circumstances: (i) with position, velocity and COG correction
data; and (ii) with only velocity correction data. The first variant excludes all possible
LbPM feedback errors. The second variant excludes only the velocity feedback from the
LbPM as a source of error. The presented method is based on [57–60], and the specifics
applicable to this work are detailed in what follows.

First, some measurement variables are considered instead as inputs to perform the
prediction of vehicle state. An input vector uh and the control covariance matrix Qk are
then defined as follows

uh =
[
ax,h ay,h θyaw,h vh

]T, (80)

Qk = diag
(

σ2
ax ,h σ2

ay ,h σ2
θ̇yaw

σ2
v,h

)
. (81)

With this, the vehicle state process covariance matrix can be updated as follows

Pxx,k = FxPxx,k–1FT
x + FuQkFT

u , (82)

where Fu is the Jacobian matrix of f (xs), derived after the control vector uh.
Next, a measurement vector zM is defined as

zM =
[
di,m θi,m

]T, (83)

where di,m and θi,m are respectively the range and azimuth angle of the i-th cluster.
The task of the observation model is to calculate the estimated measurement z̃M, for a

given vehicle state xs and one specific marker p′i,m. For this, two cases can be distinguished.
If the current marker library is empty, then the marker is added to it with the location
derived from xs and zM. If the marker library is not empty, then an association check is
required to compute the probability that the current observation corresponds to an existing
marker. For this, the Mahalanobis Distance [61] Individual Compatibility (IC) check is
performed for each marker in the library. The one yielding the minimum Mahalanobis
Distance is the marker from the library with the highest probability to be the observed one.
For this, the innovation term yM is calculated as follows

yM = zM − z̃M. (84)

The Mahalanobis Distance is then given by

dM =
√

yT
MS−1

M yM, (85)

with SM being the corresponding covariance matrix for the innovation term yM. Finally, the
marker from the library is associated with the observation according to the following criteria{

associated, dM ≤ ΓM

not associated, dM > ΓM,
(86)
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ΓM = 3. (87)

This is because a threshold ΓM = 3 means a probability of 98.9 % that the sensor
measurement and the estimated measurement refer to the same marker [62].

3. Results

To validate the performance of the From methods that are detailed above, a series
of tests are designed and performed. The From methods are tested with several hours of
real-world data. In what follows, the testing details, the evaluation metrics and the most
relevant results are presented.

3.1. Standstill Recognition

The performance of the standstill recognition is measured in terms of its classification
performance according to Table 1, as well as its robustness against false positives. The four
most relevant tests and their results are detailed in what follows.

The results of the 1st test are shown on the Figure 6. Here, a 3rd generation Smart
ForTwo electric drive is placed on a test track. The INS is mounted in the trunk of the
vehicle. The vehicle is turned on, the front tires are set to point straight ahead, and the gear
selector placed on “D”. Some seconds after the data recording starts, the brake pedal is
released. The car is driven on the test track for approximately 530 s. The accelerator pedal
is not touched at any point, and the brake pedal is used only at the beginning to let the car
roll and at the end to stop it. The steering wheel is used only to realign the vehicle towards
paths that allow prolonged straight-line driving.

0 50 100 150 200 250 300 350 400 450 500
Time (s)

0

0.5

1

1.5
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2.5

m
/s

-S

-M

Figure 6. Shown is the RF output (red, S = standstill, M = motion) and the velocity over ground of the vehicle (blue). Vehicle:
3rd Gen. Smart ForTwo. Motorization: Electric Drive. Power source: Electricity.

What makes this test special is the combination of (i) the low driving velocity, (ii) the
drivetrain of the vehicle (electrical motor and single gear reduction transmission), and
(iii) the prolonged driving moments without rotations.

As can be seen, the RF is able to recognize that the vehicle is in motion, even when
driving several seconds constantly at walking velocity on a straight line: (17.87–92.53 s)
and (434.80–522.00 s). It is seen as well that the RF has no false positives.

The results of the 2nd test are shown on the Figure 7. Here, a 5th generation Audi
A4 3.0L TDI with an S-Tronic 7-gear transmission is driven randomly in a city. The INS is
mounted in the trunk of the vehicle. On three occasions, the gear selector is placed on “N”,
and the car is allowed to roll. On one of those occasions (22.26 s), the vehicle does come to
a brief stop. On the other two occasions (138.10 s and 682.20 s), the car reaches very low
velocities (0.18 m

s and 0.12 m
s respectively), but it does not come to a full stop. A prolonged

standstill (302.10–652.00 s) is also included. During this period of time, the gear selector is
kept in “S”.
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Figure 7. Shown is the RF output (red, S = standstill, M = motion) and the velocity over ground of the vehicle (blue). Vehicle:
5th Gen. Audi A4. Motorization: 6 cylinder, 3.0 L TDI. Power source: Diesel.

This test shows (i) three rolling instances, and (ii) a prolonged standstill. Diesel engines
are known to produce more vibrations than their gasoline counterparts. Also, when the
gear selector is placed on “N”, much less vibrations are transmitted to the vehicle chassis
because the transmission is not engaged, and because the engine idles. Therefore, the
IMU signals when the vehicle rolls closely resemble those when the car is standing still,
especially at low velocities. Contrarily, when the gear selector is on “S” instead of “D”, the
vibrations transmitted to the chassis increase notably.

As can be seen, in the first rolling instance (22.26 s) the RF is able to recognize the
standstill first when the vehicle does come to a stop and not before. Also, the RF can
recognize that the vehicle is still in motion at the other two rolling instances (138.10 s and
682.20 s), despite the velocity over ground almost reaching zero. The RF is also mostly
able to recognize that the vehicle is standing still (302.10–652.00 s), despite the increased
vibrations provoked by selecting “S”. After 720.20 s of true standstill, the estimated total
displacement of the vehicle is 0.008 m (8 mm) and the estimated total rotation of the vehicle
is 0.011 rad (0.6282 deg). It is seen as well that the RF has no false positives.

The results of the 3rd test are shown on the Figure 8. Here, a Suzuki GSX-R750 K2 is
driven on a test track. The INS is mounted by means of a metal plate directly on the chassis
of the vehicle. On four occasions (251.80 s, 327.60 s, 391.20 s and 457.10 s), the “N” gear
is selected, and the vehicle can roll to a full stop. Various instances of several seconds of
standstill are included as well. In two of those instances (43.88–53.75 s and 94.08–108.20 s),
the vehicle was let to rest on its side stand, with the motor idling and the gear “N” selected.
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Figure 8. Shown is the RF output (red, S = standstill, M = motion) and the velocity over ground of the vehicle (blue). Vehicle:
Suzuki GSX-R750 K2. Motorization: 4 cylinder, 749 cc. Power source: Gasoline.

What makes this test special are (i) the chassis-drivetrain configuration, and (ii) the
rolling instances. By design, the engine mounts of motorcycles are not designed to dampen
the engine vibrations as well as the engine mounts of cars. Thus, these vibrations are
transmitted in a much more direct manner to the motorcycle chassis. Also, given that the
INS is mounted on the chassis with no dampening, it senses the engine vibrations in a
much more direct manner. Thus, the INS signals under these conditions, in combination
with the rolling instances, echo the signals that are present at standstill.

As can be seen, on two of the occasions where the motorcycle can roll (251.80 s and
327.60 s), false positives appear. On the other two occasions (391.20 s and 457.10 s), the RF
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detects a standstill first when the vehicle comes to a stop. It is seen as well that the RF has
no false positives under regular driving conditions (driving always on gear).

The results of the 4th test are shown on the Figure 9. Here, a 2nd generation Audi
Q7 is parked on a test track with the engine idling and the gear “P” selected. The INS is
mounted in the trunk of the vehicle. The volume of the sound system is set to the maximum
and music with high bass level is played for 254 s, to induce very strong vibrations for
prolonged periods of time. The objective is to test if the RF can recognize the standstill
regardless of the induced vibrations.
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Figure 9. Shown are the vehicle accelerations along the zLCP (blue), yLCP (green) and xLCP (black) axes. (a) Shows the
vehicle accelerations of the RF training dataset with the label “Standstill”. (b) Shows the vehicle accelerations while the
music is playing and the RF output (red, S = standstill, M = motion). Vehicle: 2nd Gen. Audi Q7. Motorization: 6 cylinder,
3.0 L TFSI. Power source: Gasoline.

What makes this test special is the constant induction of vibrations which by magni-
tude is many times bigger than that of when the vehicle is standing still.

As can be seen, the output of the RF toggles much more than in the other tests. How-
ever, it is often still able to correctly detect a standstill. The maximum period of time where
the vehicle state is wrongly classified as “motion” is 4.20 s, between 190.3 s and 194.50 s. In
this test, after 254.01 s of true standstill, the estimated total displacement of the vehicle is
0.12 m (12.12 cm) and the estimated total rotation of the vehicle is 0.018 rad (1.08 deg).

3.2. Horizontation of IMU Measurements

The performance of this module is measured in terms of its capability to describe
the pose (roll, pitch and yaw angles) of a vehicle. The motorcycle from the 3rd test of
Section 3.1 is used because bigger roll angles can be achieved with it than with a car. The
motorcycle is driven randomly on a test track, including a U-turn (772.70–780.00 s), a slalom
(783.30–791.00 s), and “8” figures (791.00–843.70 s).

What makes this test special is that it serves as a practical demonstration of the
mathematical methods detailed in Section 2.2. The results of the horizontation of the IMU
measurements are shown on the Figure 10. As can be seen, the practical implementation of
the mathematical methods is able to describe the vehicle pose.
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Figure 10. Shown are the roll (blue), pitch (green) and yaw (magenta) angles. Vehicle: Suzuki GSX-R750 K2. Motorization:
4 cylinder, 749 cc. Power source: Gasoline.



Sensors 2021, 21, 1131 22 of 30

3.3. Statistical Filtering

The results of the statistical filtering are shown on the Figure 11. The performance
of this module is measured in terms of its ability to (i) fuse the vehicle path (as estimated
with the motion model) with correction data, (ii) estimate the vehicle path despite SatNav
shortages or with corrupted SatNav measurements, and (iii) estimate the vehicle path
solely by means of the motion model (with no correction data). For this, a vehicle is driven
in various types of roads for 1904.15 s. The test starts at a country road (blue), followed
by an express way (magenta, thick), then in-city driving (magenta, thin) and a parking
structure (green). A standstill instance of 40.00 s inside the parking structure is included
as well. The average velocity of the vehicle during the test, including the 40.00 s standstill
inside the parking structure, is 8.19 m

s .
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Figure 11. Shown is the vehicle position as measured by a SatNav receiver (black) and as estimated by means of statistical
filtering (blue, magenta and green). (a) Shows the statistical filtering when SatNav correction data is used. (b) Shows the
statistical filtering with no correction data.

What makes this test special is (i) the inclusion of various driving conditions, (ii) the
inclusion of extended periods of time without or with corrupted SatNav correction data
(parking structure), and (iii) the dead-reckoning navigation.

As can be seen, the statistical filtering is able to fuse the estimation of the motion
model with the SatNav measurements. It can also be seen that even in total absence of
SatNav correction data, the motion model is able to accurately estimate the vehicle path.
The test shown in Figure 11 is a representative case of the average accuracy of the motion
model because it includes various driving situations. At the end of the test, the cumulative
deviation of the position estimated by the motion model from the position measured by
the SatNav receiver is 130.00 m, which accounts for a deviation of 245.79 m per driven hour
at an average velocity of 8.19 m

s .

3.4. Outlier Detection

The performance of this module is measured in terms of its ability to recognize
corrupted correction data, even when the sensors suggest otherwise. For this, two segments
of the results of Section 3.3 are highlighted.

What makes this test special are the extended periods of time without or with cor-
rupted correction data. As can be seen, the outlier detection recognizes the faulty correction
data, thus dynamically adapting the Kalman gains accordingly. This greatly improves the
estimation of the vehicle state. Some relevant results of the outlier detection are shown on
the Figure 12.
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Figure 12. Shown is the vehicle position as measured by a SatNav receiver (black) and as estimated by means of statistical
filtering (blue, magenta and green). (a) Shows the dataset section of a bridge underpass. (b) Shows the dataset section of a
parking structure.

3.5. Drift Recognition

A representative result of the drift recognition is shown on the Figure 13. The perfor-
mance of this module is measured in terms of its ability to recognize that the vehicle is
drifting. For this, a 3rd generation BMW M5 is driven 51 times on a test track, alternating
between tractive and non-tractive driving. The test vehicle is equipped with an INS and
a Correvit S-Motion. No correction data is used in these tests to test the accuracy of the
motion model under these conditions.
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Figure 13. Shown are (a) the drift bit (green), the estimated (black) and expected (magenta) lateral acceleration, (b) the drift
bit (green), the measured (black) and estimated (magenta solid, magenta dashed) sideslips. Drift bit = 1 means drifting.

The relevance of this test lies in (i) the extended periods of non-tractive driving, and
(ii) the exclusion of correction data. As can be seen, when the vehicle enters the first curve,
the module recognizes that the vehicle is not drifting. It is only when the sideslip starts to
abruptly change (22.98 s) that the module starts to detect a drift. As the vehicle remains
on a steady state drift (23.54–26.05 s), the drift bit stabilizes at “drifting”. During the drift
transition (26.05–26.83 s), when there are moments of tractive driving, the drift bit toggles
between tractive and non-tractive driving. Once the transition is finished, and the vehicle
enters again into a steady state drift, the drift bit does not toggle any more. As the vehicle
ends the drift (34.31 s) the drift bit toggles for a few milliseconds before stabilizing at
tractive driving.

The average deviation of the final position as estimated by the motion model when
compared to the position measured by the SatNav receiver for all 51 tests is ≈24.47 s,
what accounts for a deviation of 2465.30 m per driven hour at 6.35 m

s . However, it should
be noted that (i) the average duration of these tests is ≈35 s, (ii) there is tractive and
non-tractive driving in each test, (iii) around the first 20 s of each test are solely straight-line
driving, and (iv) there is a full reset at the beginning of every test.
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3.6. LiDAR-Based Positioning Method

The accuracy results of the LbPM are shown on the Table 2. The performance of
this module is measured in terms of its accuracy to measure the vehicle state. For this, a
vehicle is equipped with an INS with RTK and a LiDAR. An array of reflective markers
is placed on a test track, and the marker library is generated by measuring the markers
with a SatNav receiver with RTK. Two maneuvers (a slalom and a drive-by) are driven
with various velocities ranging from 5 km

h and up to 40 km
h . The outputs from the LbPM are

then compared to those of the INS with RTK. It should be noted that the INS serves as an
accurate and objective reference, but no correction data is used for the LbPM.

What makes this test special are (i) the exclusion of correction data, and (ii) the
validation with both maneuvers and various velocities. As can be seen, the mean accuracy
of the LbPM is almost the same as that of the INS with RTK for all the state variables that
the LbPM can measure.

Table 2. Accuracy results for the proposed LbPM. Shown are the maneuvers, maneuverer velocity, mean deviation from the
reference and Std. dev. of the corresponding errors.

Manoeuvrers Positioning Accuracy Orientation Accuracy Velocity Accuracy

Drive-by Mean (m) Std. dev. (m) Mean (deg) Std. dev.
(deg) Mean

(m
s
)

Std. dev.
(m

s
)

5 km
h 0.04 0.02 0.73 0.25 0.06 0.08

10 km
h 0.03 0.02 0.19 0.20 0.08 0.10

15 km
h 0.03 0.02 0.26 0.19 0.07 0.09

20 km
h 0.03 0.02 0.37 0.23 0.08 0.09

25 km
h 0.04 0.02 0.58 0.23 0.08 0.10

30 km
h 0.06 0.02 0.51 0.22 0.08 0.10

35 km
h 0.07 0.03 0.44 0.25 0.08 0.11

40 km
h 0.08 0.03 0.41 0.26 0.11 0.13

Slalom Mean (m) Std. dev. (m) Mean (deg) Std. dev.
(deg) Mean

(m
s
)

Std. dev.
(m

s
)

5 km
h 0.04 0.02 0.24 0.29 0.08 0.11

10 km
h 0.04 0.02 0.40 0.29 0.09 0.12

20 km
h 0.04 0.02 0.32 0.36 0.14 0.17

30 km
h 0.05 0.02 0.36 0.40 0.18 0.24

40 km
h 0.10 0.02 0.53 0.43 0.18 0.22

3.7. LbPM Adequacy for SLAM

The adequacy of the LbPM for SLAM is measured in terms of its accuracy to generate
the marker library. For this, the same test setup from Section 3.6 is used. Two tests are
performed. In the first test, the position, velocity and orientation of an INS with RTK is
used as correction data. In the second test, only the velocity from the INS with RTK is used
as correction data. In both tests, the location of the markers is computed with the estimated
vehicle state and the LiDAR measurements. The observed location of the markers is then
compared to their true position from the library.

The relevance of these tests lies in that (i) it allows identify some sources of error,
and (ii) it allows evaluation of the identified sources of error individually. The results
are presented in Table 3. As can be seen, the marker library that is generated when the
INS-RTK correction data is present, closely resembles the marker library that is generated
with the RTK SatNav receiver. As expected, the marker library that is generated with only
velocity correction data is less accurate. However, this inaccuracy is still smaller than that
of SatNav with no correction data.
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3.8. Runtime

The runtime results of the presented methodology are shown on Table 4. These values
are obtained by executing the Matlab code of each module for 1.1+ million cycles on an
Intel i7-6820HQ CPU, and by using the Matlab Profiler to measure the runtime of each
module. Given that the IMU horizontation, the outlier and the drift detectors are embedded
in the statistical filtering module, the runtime of these four modules is considered to be a
single one.

Table 3. Results of the mapping accuracy. Shown are the maneuvers, driving velocity, mean deviation from the observed to
the true marker location, std. dev. of the errors and the maximum deviation. The columns (a) show the results when using
position, velocity and orientation correction data. The columns (b) show the results when using only velocity correction data.

Manoeuvre Mapping Accuracy Manoeuvre Mapping Accuracy

Drive-by Mean (m) Std. dev.
(m) Max (m) Slalom Mean (m) Std. dev.

(m) Max (m)

(a)/(b) (a)/(b) (a)/(b) (a)/(b) (a)/(b) (a)/(b)

5 km
h 0.11/0.90 0.04/0.51 0.19/1.56 5 km

h 0.33/0.93 0.24/0.51 0.81/1.62

10 km
h

0.11/0.13 0.04/0.06 0.19/0.22 10 km
h 0.08/0.27 0.03/0.11 0.14/0.42

15 km
h

0.12/0.18 0.05/0.07 0.22/0.34 15 km
h 0.08/0.53 0.03/0.25 0.16/1.04

20 km
h

0.14/0.29 0.06/0.12 0.28/0.48 20 km
h 0.08/0.78 0.03/0.56 0.14/1.70

25 km
h

0.17/0.11 0.08/0.06 0.32/0.39 25 km
h 0.10/0.30 0.05/0.14 0.23/0.64

30 km
h

0.14/0.16 0.06/0.09 0.28/0.44 30 km
h 0.08/0.67 0.04/0.36 0.21/1.53

35 km
h

0.10/0.20 0.05/0.15 0.20/0.69 35 km
h 0.11/0.96 0.06/0.52 0.25/1.96

40 km
h

0.10/0.38 0.05/0.19 0.23/0.77 40 km
h 0.11/0.26 0.06/0.15 0.25/0.64

Table 4. Shown is the median and the std. dev. of the runtime of the modules presented above.

Module Median (µs) Std. dev. (µs)

Standstill classifier 123 50
Statistical filtering 403 98

LbPM-point clustering 43 20
LbPM-velocity estimation 11 14
LbPM-position estimation 42 54

The relevance of this test lies in that it gives a baseline to estimate the possibility of
using the proposed methodology in real-time applications. As can be seen, the median
runtime of all modules is always in the microsecond area. Even in a worst-case scenario
(median plus 3σ), the runtime for the complete methodology is ≈1.33 ms, which remains
under a typical IMU sampling time of 10 ms.

4. Discussion

As stated in Section 1, the focus of this research is to generate a reference state for
ground vehicles, while reducing the dependency of the INSs on the SatNav. This allows the
INSs to bridge SatNav outages for much longer periods of time, or even to function with
no SatNav at all. Specifically, for the automotive industry, there are various use-cases that
justify the use of SatNav-deprived INSs, such as the navigation in tunnels, underpasses or
parking structures. A highly precise and prolonged navigation in places with no SatNav,
such as testing halls, is also very relevant for the automotive research. As shown in
Section 3, the methods developed in this research work address the aspects where the INSs
profit the most.
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Starting with the standstill recognition, it is shown that it is possible to classify whether
a vehicle is moving or standing still by using only machine learning techniques and IMU
measurements. The fact that no additional sensor is required, clearly implies important
advantages, such as (i) reduced costs, (ii) less testing complexity, (iii) simplified information
processing, and (iv) stand-alone functioning.

The proposed method uses the same features in the frequency domain, regardless of
the vehicle. However, a first glance at the Laplace transformation of the features in the time
domain, suggests that the choice of frequencies can be further refined if one considers them
on a vehicle-specific basis. This could eventually lead to an improvement in the standstill
recognition. Therefore, future work could include a vehicle-specific analysis of the features
in the frequency domain. The use of the on-board vehicle sensors could also help refine
and automate the data labeling.

As for the horizontation of INS measurements, modern INSs do use correction data
(typically from the SatNav) to refine the IMU measurements. However, it is shown that
the pose of the vehicle can be accurately described with the raw IMU measurements. This
implies independence from the SatNav. The inclusion of the detailed mathematics to
horizontate IMU measurements, implies an aid to scientists working on similar topics or
trying to replicate the results presented here.

One challenging aspect of the horizontation of the IMU measurements is to detect the
IMU mounting pose in the vehicle, i.e., it is possible to estimate the pose of the IMU with
respect to the gravity vector and the true north of the Earth. However, it is not an easy
task to relate the pitch and roll of the IMU with that of the vehicle because the IMU could
be mounted in such a manner that its x× y-plane is not parallel to the x× y-plane of the
vehicle. Knowing the offsets between both planes could be highly valuable to recognize
certain driving situations, such as driving inside parking structures, wheelies or stoppies.
Since the acquisition of these offsets on a vehicle-to-vehicle basis is a complicated and
time-consuming task, future work could include the investigation of automated methods
that allow estimation of these offsets.

The KF is a computationally efficient algorithm for fusing data. However, the accuracy
of its output is limited by the accuracy of the information to fuse. Therefore, it is important
to refine the sources of information as much as possible before using them as inputs for the
KF. In this work, the EKF fuses the state vector estimated by the motion model with the
measurements of the vehicle state made with external sensors. Therefore, a lot of effort is
put on refining the motion model for tractive-driving applications. As shown above, the
proposed motion model can accurately estimate the vehicle state for extended periods of
time with no correction data, which implies a high confidence on the vehicle state, even
when navigating by dead reckoning.

Given that the motion model is designed to perform best for tractive driving, its
performance is reduced during non-tractive driving. Also, given that the drifting tests are
designed to test the drift recognition, they are not long enough to objectively determine the
accuracy of the motion model during a drift. Therefore, future work could include a deeper
investigation of the accuracy of the motion model during non-tractive driving. This could
help to estimate adequate values for the system noise, and so improve the performance of
the KF during drifting.

As for the outlier detector, it further helps in refining the sources of information before
they are fed to the KF. Its effect is especially noticeable when the sensors deliver quality
metrics for their own measurements, as is the case of the standard deviation for the SatNav.
As shown above, to include a smart outlier detector implies a very useful consistency check
of the sensor measurements, thus avoiding fusing information that would negatively affect
the estimation of the vehicle state.

This detector uses the latest state vector because it is the last known vehicle state.
However, as time passes, the predicted state without correction data might differ so much
from the true state that the constraints shown in Section 2.5 filter out meaningful sensor
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measurements. Future work could include the combination of the system noise with the
state vector to better adapt the outlier detector.

Yet another step that is taken to improve the KF is the drift detector. Given that
the motion model is designed to function best in tractive driving, it is very useful to
differentiate whether the vehicle is drifting or not. As shown above, the drift recognition
can make this distinction. This implies that the time instance to make changes in the KF is
known. This can be, for example, to adjust the system noise accordingly or to use a more
adequate motion model.

The drift recognition here presented is based on the thresholds of two features: the
magnitude of the sideslip and the difference between the estimated and expected lateral
acceleration. Future work on this method could include the analysis of a bigger dataset
that includes vehicles with different drivetrains (front, rear and all-wheel drive). This
could help to gain a better understanding on the ideal thresholds for vehicles according to
their drivetrain.

One crucial module to reduce the dependency of INSs on the SatNav is the LbPM.
The results clearly show that the accuracy of the vehicle state as measured by this method
closely resembles that of an INS with RTK correction data. Considering the refresh rate of
the LiDAR and the state variables that can be measured by means of the LbPM, this could
already be enough for an accurate vehicle indoor navigation. Future work on this module
could include the implementation of the method on dedicated hardware to analyze the
computing requirements for a real-time implementation.

The results on Table 3, suggest that the LbPM is adequate for SLAM. Given that the
LbPM is capable of delivering RTK-like correction data, it could enable the generation
of an accurate marker library in unknown environments. It is not clear whether or not a
lane-accurate indoor navigation could be possible in places with a reduced marker density.
Future work on this module could include adapting the LbPM algorithm for SLAM,
and implementing it on dedicated hardware for real-world testing. For this purpose,
tailored-made hardware solutions, such as [63,64], could aid in the navigation of complex
environments, as can be parking structures. The use of lightweight artificial intelligence
techniques, as shown in [65,66] could aid in the implementation of the standstill recognition
in hardware with limited computational resources, as are embedded systems. Finally, the
sensor fusion with on-board sensors in the vehicles could improve the dead-reckoning
navigation in indoor environments.

Regarding the methodology runtime, it should be noted that even with high-level
programming code, such as a Matlab, its runtime never exceeded 2 ms. This implies that it
is possible to implement the methodology in real-time applications. Future work could
include the implementation using a more efficient programming language, such as C++,
and the use of dedicated hardware.

5. Conclusions

The objective of generating a reference vehicle state for proper testing and validation
of automated driving functions is achieved in a prototypical manner by developing novel
methods and by adapting existing ones to the problems at hand. This while reducing
the dependency of INSs on external sensors, such as the SatNav. The testing results
demonstrate that the proposed methods greatly improve the accuracy of the estimated
vehicle state. The measured runtime suggests the possibility of real-time implementation
of the proposed methodology.
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