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Abstract

Analysis of health-related texts can be used to detect adverse drug reactions (ADR). The

greatest challenge for ADR detection lies in imbalanced data distributions where words

related to ADR symptoms are often minority classes. As a result, trained models tend to con-

verge to a point that strongly biases towards the majority class and then ignores the minority

class. Since the most used cross-entropy criteria is an approximation to accuracy, the

model focuses more readily on the majority class to achieve high accuracy. To address this

issue, existing methods apply either oversampling or down-sampling strategies to balance

the data distribution and exploit the most difficult samples of the minority class. However,

increasing or reducing the number of individual tokens alone in sequence labeling tasks will

result in the loss of the syntactic relations of the sentence. This paper proposes a weighted

variant of conditional random field (CRF) for data-imbalanced sequence labeling tasks.

Such a weighting strategy can alleviate data distribution imbalances between majority and

minority classes. Instead of using softmax in the output layer, the CRF can capture the rela-

tionship of labels between tokens. The locally interpretable model-agnostic explanations

(LIME) algorithm was applied to investigate performance differences between models with

and without the weighted loss function. Experimental results on two different ADR tasks

show that the proposed model outperforms previously proposed sequence labeling

methods.

Author summary

Post-marketing drug safety surveillance offers the chance to detect serious ADRs resulting

in hospitalization and ADRs occurring in patients, e.g., patients with high comorbidity

and receiving drugs that are administered only in hospitals. This monitoring has tradi-

tionally been accomplished by surveying users. Recently, the automatically recording

ADR of users in social media can greatly help biopharmaceutical enterprises to improve

their products. Previous methods of name entity recognition in natural language process-

ing were usually performed on the corpora with a balanced data distribution. Conversely,

the datasets for ADR detection are extremely imbalanced. As a result, the detector tends

to ignore the ADR symptoms and the related indications, which are more important. In
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this study, we propose a weighted CRF model based on BERT for the detection task of

ADR. A weighted variant of the Viterbi Algorithm is implemented to assign more weight

to the minority class, forcing the model to pay more attention to minority classes to

ensure effective detection. The results suggested that the proposed method provides a sig-

nificant performance boost without changing the model architecture in imbalanced-data

tasks.

Introduction

An adverse drug reaction refers to any injury caused by taking medication, and the incidence

of such injuries is quite high especially in cases of large doses or long duration of medication

use. However, such reactions are unpredictable, and pre-market clinical trials of new drugs are

usually only conducted on samples of 500-3000 people, for a single type of disease, and often

exclude special populations (e.g., the elderly, pregnant women, and children). Therefore, such

trials often fail to identify relatively rare adverse reactions, late-onset reactions, or adverse reac-

tions that occur in special populations, which only become apparent after following after

large-scale use [1]. This raises an urgent need for post-marketing drug safety surveillance after

drug approval [2–5].

This monitoring has traditionally been accomplished by surveying users, but more recent

approaches have focused on automatic identification and extraction of ADR symptoms. These

methods often apply sequence labeling techniques in natural language processing (NLP) to

monitor social media interaction on platforms such as Twitter and Facebook. Traditional

methods for sequence labeling use rule-based or statistic methods, such as support vector

machine (SVM) [6], which are highly dependent on hand-crafted features, such as n-gram.

Conditional random field (CRF) [7] is another commonly used statistical method for sequence

labeling and ADR detection. Compared with classification models, such as SVM and neural

network models with softmax, CRF can extract the dependencies between labels.

Recent advances in deep neural networks (DNN) [8–10] and representation learning [11,

12] have considerably improved the ability of algorithms to process text. Building neural net-

works, such as convolutional neural networks (CNN) [13], recurrent neural networks (RNN)

[14], long short-term memory (LSTM) [15] and BiLSTM-CRF [16, 17] can be an effective

approach for in-depth research. Furthermore, attention mechanisms can be applied to

improve the performance of DNN models to extract more task-specific features between

tokens to provide meaningful information [18]. Other effective approaches apply the pre-

trained language models (PLM), such as BERT [19], RoBERTa [20] and ALBERT [21], to pro-

vide powerful representation to boost the performance of sequence labeling.

One of the biggest stumbling blocks in ADR tasks is data distribution, which often appears

in conventional sequence labeling tasks and corpora. As shown in Table 1, the words of ADR

symptoms in both examples from social media only take respective ratios of 6.23% and 8.3%.

Table 2 presents concrete examples of several sequence labeling tasks, in which most tokens

are annotated as class O, which is about 10 times that of ADR with entity labels. The algo-

rithms tend to produce unsatisfactory classifiers when faced with (even extremely) imbalanced

datasets. Those models may have a bias towards classes and only predict the majority class.

This is because the frequently used loss function in most text mining tasks is categorical

cross-entropy, which approximates the accuracy score. Unfortunately, this is not a suitable

metric for imbalanced-data circumstances since the minority class has less effect on accuracy

than the majority class [22]. For instance, in a ratio of 99:1 between the majority and minority
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classes, the trained model would classify everything to the majority class, since doing so can

achieve 99% accuracy. However, it will be useless for tasks where the minority classes are more

important than the majority class. In most circumstances, false negatives can have higher

importance, while false positives are of course undesirable. As a result, the important minority

classes, i.e., ADRs and indications, will be completely ignored by such a classifier.

In this paper, we propose a weighted pre-trained language model which is both robust to

the strong class imbalance and able to integrate dependencies and syntactical information

between tokens. This model implements a weighted variant of the CRF loss function. By

assigning more weights to the minority class, the model can be forced to pay more attention to

such classes, for effective detection. Furthermore, we introduce an explainable algorithm

which provides a qualitative understanding between the input features and the corresponding

prediction to compare the behavior of models with and without the weighted loss function.

Experiments were conducted on several strongly class-imbalanced ADR corpora. The pro-

posed model is compared against several current sequence labeling models. The results show

that the proposed model provides a better solution to handle the imbalanced-data issue, thus

improving performance. In addition, both visualizations and qualitative results are presented

to demonstrate the effect of the weighted loss function on CRF.

Results

This section presents the experiments conducted on several corpora to evaluate the perfor-

mance of the proposed weighted BERT-CRF model against different neural networks for the

ADR detection task.

Datasets

To evaluated the effectiveness of the proposed weighted BERT-CRF model, the comparative

experiments were conducted on two corpora. Notably, the split strategies for train and test sets

Table 1. The imbalance examples in labeling of adverse drug reactions. The words of ADR symptoms in both exam-

ples from social media only take respective ratios of 6.23% and 8.3%.

Example 1:

Text Thanks1 god2 my3 steady4 stream5 of6 Vyvanse7 is8 wearing9 off10,11 I12 can13 sleep14 now15.16

Label O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 B-ADR14 O15 O16

Ratio 6.25%

Example 2:

Text When1 the2 depression3 is4 coming5 out6 caused7 by8 this9 damn10 levofloxacin11 :)12

Label O1 O2 B-ADR3 O4 O5 O6 O7 O8 O9 O10 O11 O12

Ratio 8.3%

https://doi.org/10.1371/journal.pcbi.1010144.t001

Table 2. Statistic results on the imbalance datasets of adverse drug reactions. Most tokens are annotated as class O, which is about 10 times that of ADR with entity

labels. The algorithms tend to produce unsatisfactory classifiers when faced with (even extremely) imbalanced datasets. Those models may have a bias towards classes and

only predict the majority class.

Datasets Samples Max length Mean length Vocab Tokens O ADR Indication

Tokens Ratio Tokens Ratio Tokens Ratio

Twitter 844 36 19.0 2,843 16,023 13,852 86.5% 1,970 12.3% 201 1.3%

PubMed 4,858 93 21.3 7,950 103.302 89,331 86.5% 13,971 13.5% - -

https://doi.org/10.1371/journal.pcbi.1010144.t002
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were different, for a fair comparison with the performance that were reported in the previous

studies.

• Twitter consists of two datasets, including Twitter ADR datasets (v1.0) [7, 23] and ADHD
datasets [15]. By collecting and annotating user published tweets, the Twitter ADR datasets
(v1.0) contain references to 81 drugs and newly reported terms which can be commonly

found in the US market. ADHD is a supplement of Twitter including at least one ADR or

indication label. According to Cocos et al. [15], the datasets were split into a training set and

a testing set with an 3:1 ratio. For hyper-parameter fine-tuning, we also split a dev set from

the training set with a ratio of 8:2.

• PubMed abstracts [24] is a biomedical text dataset, in which each sentence contains at least

one ADR label. Following a previous study [25], we slightly modified the datasets as follows:

1) ensure that each sentence contains only one related-drug reference and a list of corre-

sponding ADRs caused by the drug; 2) remove 120 sentences which contain the name of

drug which are commonly regarded as the cause of adverse reactions, e.g., theophylline poi-
soning, where theophylline is the cause of poisoning. In addition, the dataset was split into

training/dev/test set with a ratio of 8: 1: 1.

Each sample in both two datasets contains at least one ADR or indication label mentioned.

Details of above corpora are summarized in Table 2.

Evaluations metrics

The performance of ADR detection is evaluated by using approximate matching [24]. For

example, given a tweet the Seroquel gave me lasting sleep paralysis with true ADR labels sleep
paralysis, the prediction of either lasting sleep paralysis or simply paralysis are both regarded as

correct. The corresponding metrics are precision, recall and F1-score, defined as follows

Precision ¼
TPADR

TPADR þ FPADR
ð1Þ

Recall ¼
TPADR

TPADR þ FNADR
ð2Þ

F1� score ¼
2� Precision� Recall

Precsionþ Recall
ð3Þ

where TPADR is the number of the ADR tokens that are approximately matched, and

TPADR + FPADR and TPADR + FNADR are respectively the number of all predicted and real

ADR tokens. A higher F1-score indicate better detection performance.

Baselines

To evaluate the proposed weighted BERT-CRF model, we implement several baselines for

comparison. The details are presented as follows.

Context encoder. For special tasks, different representations may impact the final perfor-

mance. Therefore, we implement different context encoders to produce representations for

the ADR detection tasks.

• BiLSTM [16, 17] is an effective conventional approach for sequence labeling tasks. It

encodes word embeddings into hidden representations for sequence labeling. To address

out-of-vocabulary (OOV) issues, we also introduce char embeddings (BiLSTM-char) [26].
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Each word representation is composed of the embeddings of its constituent characters. To

further improve performance, self-attention was introduced after BiLSTM to align the target

token to its contexts (BiLSTM-attention).

• ELMo [27] is a pre-trained language model based on LSTM, which can be transferred for

NLP tasks. It can be extended by adding a BiLSTM layer (ELMo-BiLSTM) to learn long-dis-

tance dependencies.

• BERT [19] can be used as fixed input features for the following labeling tasks (BERT-fix). In

addition, it can be transferred and fine-tuned for a wide range of tasks by adding a classifier

without any task-specific architectural modification (BERT-finetune). To capture long dis-

tance dependency, a BiLSTM was added for both two models.

Classifiers. Both softmax and CRF were used as the output layers to label tokens in the

sequence. In addition, a weighted variant of softmax (wSoftmax) and the proposed weighted

CRF (wCRF) were also implemented for comparison, to further investigate whether the

weighting mechanism can improve performance.

Hyper-parameters are fine-tuned on the corresponding development set of each dataset.

For BiLSTM, the word vectors were pre-trained using GloVe on the 840B Common Crawl cor-

pus [28]. The dimensionality of the word vectors is 300. Words that don’t appear in GloVe

were initialized with a uniform distribution U(−0.25, 0.25). Char embeddings are initialized

randomly with a dimensionality of 50, and then updated along with model training. To avoid

overfitting, we apply a dropout layer after the context encoder layer, and the dropout rate was

set to 0.1 for all datasets. Pre-trained language models, i.e., ELMo and BERT, are initialized

from a checkpoint. For ELMo and BERT, Original (5.5B) and BERT-base-
uncased pretrained model were respectively used. The Adam optimizer was adopted to train

all models.

Hyper-parameters fine-tuning

Several parameters may impact the final performance of the proposed weighted BERT-CRF

model on both the Twitter and PubMed datasets. Fig 1 shows the hyper-parameter fine-tun-

ing to search for optimal settings according to the final performance on the development set

using the grid-search strategy. That is, we fine-tune each parameter for the optimal value in

turn. When the optimal value of one parameter is obtained, it will be fixed, and the next

parameter will be fine-tuned. As indicated, for Twitter and PubMed, the best performance is

achieved when the number of training epochs are respectively 9 and 12, the batch size is 16

and 16, learning rate is 2e-5 and 2e-5, and the dimensionality of the hidden state in BiLSTM is

256 and 256. Once these parameters exceed the optimal settings, the F1-score declines. The

results indicate that appropriate parameters can ensure that the model obtains the interactive

relationship and syntactic information even when the distribution is imbalanced, thus improv-

ing classification performance.

Once the optimal parameters settings are obtained, they are used for token labeling on the

test sets for both Twitter and PubMed corpora. Comparing the results on the development set

and that on the test set in Table 3 shows that the performance on the test set was very close to

that on the development set for both ADR datasets.

Comparative results

Table 3 shows the experimental results on both the Twitter and PubMed datasets. We further

combined different encoders and classifiers for ADR detection. For conventional models,

BiLSTM-Attention assigns different weights to the contexts according to the contribution to
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the final classification of the target token, thus it outperformed BiLSTM and BiLSTM-char by

about 1.7% and 1.2%. PLMs, such as ELMo and BERT, can further improve performance on

BiLSTM. PLM can provide better contextual representations than conventional word vectors

e.g., GloVe, thus yielding better performance. Instead of using a fixed contextual representa-

tion for tokens, i.e., ELMo and BERT-fix, BERT was also fine-tuned in the training procedure

for the entire model, thus achieving the best performance on both the Twitter and PubMed

datasets. In addition, the weighting strategy on both softmax and CRF can alleviate the imbal-

anced data distribution, and they thus outperformed their conventional versions by about

1.1% and 1.8% on average across the two ADR tasks.

For the output layer, recent studies suggest using the softmax function for token labeling,

which performs well in independent prediction. However, its efficiency decreases when there

is a strong dependency between labels. The grammar rules in the sequence labeling task limit

Fig 1. Hyper-parameters finetuning for the proposed weighted BERT-CRF model. (A) The best performance is achieved when the number of training epochs are

respectively 9 and 12. (B) The optimal settings for the batch size is 16 and 16. (C) The optimal learning rate is 2e-5 and 2e-5. (D) The dimensionality of the hidden state

in BiLSTM is 256 and 256.

https://doi.org/10.1371/journal.pcbi.1010144.g001
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the label between tokens that cannot be predicted independently. For example, <I-ADR> can-

not be connected after <B-Indication>, or after the token that starts with the position. Using

CRF can address this problem. For each generated label sequence, CRF uses a score to repre-

sent the sequence quality, with a higher score indicating that the currently generated label

sequence performs better. The results demonstrate that the proposed BERT-CRF benefits

from both contextual representation of BERT and weighted loss function of CRF, thus it can

achieve the best performance for ADR detection.

Table 4 shows the comparative performance of the proposed BERT-CRF against the state-

of-the-art models on both the Twitter and PubMed datasets. As indicated, the proposed

model outperformed these models by 5.1% and 3.0%, respectively.

Further, the ability of BERT to handle the sequential encoding mainly depends on position

embeddings, which are added with token embeddings and segment embeddings as inputs to

the BERT model. With the increase of the number of layers, the relevant sequence information

will slightly dissipate in the output layer. For the conventional sequence labeling task, the use

of LSTM followed by the BERT encoder can actually enhance the sequential information.

Table 3. Results comparison of different context encoders w/ and w/o weighted mechanism for ADR detection tasks. The proposed weighted CRF significantly outper-

formed several baselines on both the Twitter and PubMed datasets. In addition, the weighting strategy on both softmax and CRF can alleviate the imbalanced data distribu-

tion, and they thus outperformed their conventional versions by about 1.1% and 1.8% on average across the two ADR tasks.

Model Twitter PubMed

Precision Recall F1-score Precision Recall F1-score

BiLSTM Softmax 78.6 82.6 80.5 88.1 87.3 87.6

CRF 77.1 84.7 80.7 89.0 87.6 88.3

wSoftmax 77.2 84.6 80.7 89.6 87.9 88.7

wCRF 77.2 88.4 82.4 89.9 88.1 89.0

BiLSTM-char Softmax 76.9 80.1 78.5 87.5 86.7 87.1

CRF 77.0 82.1 79.4 88.2 87.7 88.0

wSoftmax 76.2 85.1 80.4 87.5 89.2 88.3

wCRF 78.0 84.7 81.2 89.3 90.1 89.7

BiLSTM-Attention Softmax 78.5 83.5 80.9 88.0 86.8 87.4

CRF 79.2 85.8 82.8 87.5 88.6 88.0

wSoftmax 77.0 86.3 81.4 87.2 89.6 88.5

wCRF 79.9 87.7 83.6 91.5 91.8 91.7

ELMo Softmax 78.1 87.8 82.7 90.2 88.7 89.4

CRF 79.9 86.8 83.2 90.6 89.6 90.1

wSoftmax 80.5 86.6 83.4 90.8 90.0 90.4

wCRF 81.8 88.0 84.8 91.1 90.4 90.7

ELMo-BiLSTM Softmax 79.3 86.8 83.2 88.3 90.1 89.2

CRF 79.9 87.5 83.5 91.0 90.6 90.8

wSoftmax 79.9 89.2 84.3 90.5 91.5 91.1

wCRF 79.4 90.4 85.6 91.9 92.6 92.4

BERT-fix Softmax 79.5 88.0 83.5 91.9 91.8 91.9

CRF 81.8 88.0 84.8 92.4 92.0 92.2

wSoftmax 82.1 88.6 85.2 92.4 92.1 92.3

wCRF 83.8 89.9 86.8 93.1 92.4 92.8

BERT-finetune Softmax 82.5 90.7 86.4 91.5 91.8 91.6

CRF 82.9 90.7 86.6 91.9 92.8 92.2

wSoftmax 82.5 91.6 86.8 90.8 92.9 91.8

wCRF 85.4 92.4 88.7 93.6 93.2 93.3

https://doi.org/10.1371/journal.pcbi.1010144.t003
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Especially when the output classifier is CRF, such a combination can provide a better context

information to support the implementation of CRF. To evaluate the effect of BiLSTM, an abla-

tion study was conducted in Table 4. The result show that the removal of BiLSTM will degrade

the performance of the model.

Discussion

This section used an explainable algorithm to present some explanation or speculation on the

empirical results.

The effect of different loss function

The performance of the proposed weighted CRF mainly depends on the weight assignment

strategies. That is, the loss of the minority classes should be assigned a heavier weight than that

of the minority classes. For comparison, we introduce two other strategies. The first one uses

the inverse value of the sample numbers (Strategy-1), and the other uses the inverse ratio of

the sample numbers (Strategy-2). As indicated in Fig 2A, the proposed weights assignment

strategy in Eq 12) (Weighted Loss) outperformed both of the aforementioned strategies, since

the proposed method considers both the number of samples and the ratio of each class.

In addition, recent studies recommended using either focal loss [29] or dice loss [30] for

multi-label classification with imbalanced data distributions. The focal loss can reduce the

weights of the samples of the majority classes, and force the model to focus more on the sam-

ples that are difficult to detect during training. Unlike cross-entropy, dice loss was designed to

fit an approximation of F1-score metric to attach similar importance to the samples of the

minority classes. As shown in Fig 2B, the proposed weighted loss achieved better performance

than both loss functions. Since both focal loss and dice loss use a softmax function as the out-

put layer, the strong dependency between labels will be ignored.

Interpretability analysis

In text classification, the classifier is often a black-box tool, where the internal working mecha-

nisms are completely hidden from the user. By using the deep learning models, the user may

not know which features are most important for the final prediction. To further explore the

effectiveness of the proposed weighted BERT-CRF model, Fig 3 randomly selects two examples

of the test samples from both the Twitter and PubMed datasets and visualizes the contribution

of the contexts for the target token.

To understand the prediction of the ADR detection model for a certain sample, the desired

explanation should be local, i.e., must correspond to how the model behaves in the neighbor-

hood of the token being predicted. Thus, the LIME algorithm was introduced to provide a

qualitative understanding of the relationship between the input tokens and the corresponding

Table 4. Comparative results of the proposed weighted BERT-CRF model against the previously proposed model. The proposed model outperformed the state-of-the-

art models on both Twitter and PubMed datasets by 5.1% and 3.0%, respectively.

Twitter PubMed

Precision Recall F1-score Precision Recall F1-score

Cocos et al. [15] 70.4 82.9 75.5 - - -

Ramamoorthy et al. [25] - - - 88.4 82.4 85.3

Ding et al. [18] 78.5 91.4 84.4 86.7 94.8 90.6

Weighted BERT-CRF 85.4 92.4 88.7 93.6 93.2 93.3

Weighted BERT-CRF w/o BiLSTM 83.4 91.8 87.4 91.8 91.4 91.6

https://doi.org/10.1371/journal.pcbi.1010144.t004
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labels. To use the LIME algorithm, we rephrase the ADR detection task as a simple multiclass

classification problem. To explain the effectiveness of the weighting strategy, the LIME algo-

rithm was applied to explain the classification of tokens with ADR labels.

As indicated, green and red respectively means that the portion contributed positively and

negatively to the classification of the target label. The weights are interpreted by applying them

to the prediction probabilities. For the first example, if tokens go and bed were removed from

the texts, the classifier is expected to predict tired as<B-ADR> with a probability 0.95 − 0.33

− 0.31 = 0.31. Thus, the tokens go and bed could be regarded as indicators of ADR. Compared

with the model without a weighting strategy, the proposed model can accurately predict the

ADR label based on the local information.

For the second example, the proposed model predicted <B-ADR> and<I-ADR> for the

tokens gain and weight. The word pristiq is a strong indicator that those tokens are ADR. This

indicates that, in the dataset, pristiq is often a drug which may cause an ADR. In contrast, the

model without the weighted loss function tends to ignore both the<B-ADR> and<I-ADR>
label for the tokens gain and weight, even though these is a strong indicator pristiq. Since the

model applies cross-entropy as loss function, it tends to predict all<O> labels for all tokens to

achieve the lowest entropy value.

Methods

Fig 4 shows the overall framework of the proposed weighted BERT-CRF model for ADR,

which consists of three parts. The first part is a pre-trained BERT model, the second part is a

bi-directional LSTM and the third part is a weighted CRF output layer. The details of each part

are described as follow.

Fig 2. Comparative results of the proposed weighted BERT-CRF model with different weights assignment and loss function. (A) Different weight assignment. The

performance of the proposed weighted CRF mainly depends on the weight assignment strategies. The green bar shows the proposed weight assignment (Weighted

Loss), as described in Eq 12. For comparison, we introduce two other strategies. The blue bar shows the inverse value of the sample numbers (Strategy-1), and the red

bar shows the inverse ratio of the sample numbers (Strategy-2). (B) Different loss function. Recent studies recommended using either focal loss or dice loss for multi-

label classification with imbalanced data distribution. The green bar shows the performance of the proposed weighted loss function (Weighted Loss). The blue bar shows

the performance of the focal loss, which can reduce the weights of the samples of the majority classes, and force the model to focus more on the samples that are difficult

to detect during training. The red bar shows the performance of the dice loss, which was designed to fit an approximation of F1-score metric to attach similar importance

to the samples of the minority classes.

https://doi.org/10.1371/journal.pcbi.1010144.g002
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Context encoder

The context encoder module in our model is based on BERT, which achieved impressive per-

formance in various NLP tasks. It consists of multilayers of bidirectional transformer encoders

[31], and is pre-trained by unsupervised learning of either masked language model (with a

masked ratio of 15%) or next sentence prediction. The uncased BERT-base model was used,

containing 12 layers of transforms with a hidden size of 768.

We use the sentences from one input sample X as the context input, which can be divided

and transformed as a sequence of token embeddings, denoted as X = [x1, x2, � � �, xN], where N
is the number of tokens in this sample. The model is required to predict the label sequence y =

[y1, y2, � � �, yN] for the tokens. By using the WordPiece [32] tokenizer, a word may be tokenized

as several subwords. For instance, the ADR symptom depression can be tokenized into de,

Fig 3. Interpretability analysis of the selected examples for the proposed weighted BERT-CRF model. Green and red respectively means that the

portion contributed positively and negatively to the classification of the target label. The weights are interpreted by applying them to the prediction

probabilities. (A) Example 1 (target = tired). If tokens go and bed were removed from the texts, the classifier is expected to predict tired as<B-ADR>
with a probability 0.95 − 0.33 − 0.31 = 0.31. Thus, the tokens go and bed could be regarded as indicators of ADR. Compared with the model without a

weighting strategy, the proposed model can accurately predict the ADR label based on the local information. (B) Example 2 (target = weight). The

proposed model predicted<B-ADR> and<I-ADR> for the tokens gain and weight. The word pristiq is a strong indicator that those tokens are ADR.

This indicates that, in the dataset, pristiq is often a drug which may cause an ADR. In contrast, the model without the weighted loss function tends to

ignore both the<B-ADR> and<I-ADR> label for the tokens gain and weight, even though these is a strong indicator pristiq. Since the model applies

cross-entropy as loss function, it tends to predict all<O> labels for all tokens to achieve the lowest entropy value.

https://doi.org/10.1371/journal.pcbi.1010144.g003
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##press and ##ion, where the symbol ## means the token is not at the front of a word. In the

implementation, the BOI tagging scheme was introduced to each label, and the model was

trained only on the tag labels for the first subword of a split token. If the label for depression is

<B-ADR>, only de will be set to<B-ADR> while the labels ##press and ##ion will be set to a

special ignored token [IGN].

Using BERT, we add a special symbol x0, i.e. [CLS], in front of each input sample. By

concatenating with both position embeddings [33] and segmentation embeddings, the token

embeddings were fed into the BERT model to get the output representation, ti 2 <
dt , denoted

as,

½t0; t1; . . . ; tN � ¼ BERTð½x0; x1; . . . ; xN �; yBERTÞ ð4Þ

where θBERT is the trainable parameters of the BERT model which is fine-tuned during model

training, and dt = 768 is the dimensionality of the local representation. The contextualized sen-

tence-level representation [t1, t2, � � �, tN] are used as the input embeddings of bi-directional

LSTM layer, denoted as,

½h1; h2; . . . ; hN � ¼ BiLSTMð½t1; t2; . . . ; tN �; yBiLSTMÞ ð5Þ

where θBiLSTM is the corresponding trainable parameters of the BiLSTM model. Notably,

BERT was fine-tuned in the training phase of the whole model.

Conditional random fields

CRF is a type of undirected discriminative graph model [23] defined as a Markov random

field. Since CRF outperforms softmax in capturing the relationship between neighboring

information, it is selected to encode known relationships between the hidden representation

H = [h1, h2, � � �, hN] in the BiLSTM layer and the output label for each token in sentence. For a

Fig 4. System architecture of weighted BERT-CRF model. It consists of three parts. The first part is a pre-trained

BERT model, the second part is a bi-directional LSTM and the third part is a weighted CRF output layer.

https://doi.org/10.1371/journal.pcbi.1010144.g004
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sequence of label,

y ¼ ½y1; y2; . . . ; yN � ð6Þ

we define the score of the i-th token as,

sðxi; yiÞ ¼ Ayi� 1 ;yi
þ Pi;yi ð7Þ

where A is a transition matrix, and its element Ai,j represents the score of a transition from

label i to label j. We manually add the start and end labels of a sentence as y0 and yN+1, which is

also added to the set of possible labels. A is therefore a square matrix of size K + 2. It can be

inferred from Eq 7 that the total score of the sequence is equal to the sum of the score of each

token, which is mainly decided by two parts. One is the emission matrix P which is the output

H by the previous BiLSTM layer, and the other is the transition matrix A which is associated

with CRF layer. Then, a softmax over all possible label sequence yields a probability for the

sequence y,

pðyjXÞ ¼
expðsðX; yÞÞ

X

y02YX

expðsðX; y0ÞÞ ð8Þ

The CRF can be trained by maximizing the log-likelihood, defined as,

max logðpðyjXÞÞ

¼ max sðX; yÞ � log
X

y02YX

expðsðX; y0ÞÞ

 !

¼ min � sðX; yÞ � logadd
y02YX

expðsðX; y0ÞÞ

 !
ð9Þ

where YX denotes the possible path to all labels for the input sentence X. It is evident that we

encourage our network to produce a valid sequence of output labels. The item log add s(X, y0)

is defined as a summation over all possible label sequences. The computation cost will be O
(KN), where the number of possible label sequences grows exponentially with the sequence

length. Here, we apply a dynamic programming method, the forward-backward algorithm, to

solve it effectively and reduce the computation cost to O(NK2).

Weighted loss function

The idea of the imbalanced learning approach is to design a weighted loss function that

includes a distinct cost for each class. The main difficulty in Eq 10 is writing the last logadd

item as a sum over observations. In the context of the hidden Markov model (HMM), Rabiner

[34] has shown that the computation of a logadd item can be rewritten as a product over obser-

vations as,

logadd
y02YX

expðsðX; y0ÞÞ ¼
Xn

i¼1

log exp
y02Yi

sðX; y0Þ ð10Þ
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Therefore, the weighted CRF objective function becomes,

max logðpðyjXÞÞ

¼ min �
XK

k¼1

wk

X

fijy¼kg

 
Xn

i¼0

Ayi� 1 ;yi

þ
Xn

i¼1

Pi;yi
� log exp

y02Yk
i

sðX; y0Þ

!
ð11Þ

where Yk
i is all possible paths to the label of the k-th class for the i-th token, and wk is the cost

parameter to weight the terms associated with the k-th class, given by,

wk ¼
N

K � nk
ð12Þ

where N is the number of all tokens, k is the total number of classes, and nk is the number of

tokens in the k-th class.

Related works

An adverse drug reaction is an injury resulting from the use of a drug. People suffering from

such reactions frequently recount their experiences in social media texts. This section presents

a brief review of existing methods for detecting ADR by using sequence labeling techniques.

Adverse drug reaction detection

Existing methods for ADR detection can be broadly divided into two categories: conventional

models and deep neural networks. ADRMine [2] manually transforms the input texts and aug-

ments them with additional features, such as ADR lexicons, word contexts, cluster features of

word embeddings and part-of-speech (POS) tags, in order to increase the effectiveness of the

resulting CRF model [35]. Here, CRFs are a class of statistical modeling methods often applied

in machine learning and used for structured prediction. Whereas a classifier predicts a label

for a single sample without considering neighbouring samples, a CRF can take context into

account. To do so, the predictions are modelled as a graphical model, which represents the

presence of dependencies between the predictions. Unfortunately, Such a model heavily

depend on feature engineering, which is time consuming and label intensive.

Recent studies have shown that deep neural network models perform well on several

sequence labeling tasks. Deep learning algorithms can automatically identify features in raw

data as the neural network learns. Taking word embeddings as input, Cocos et al. [15] applied

a LSTM classifier to label the ADRs in tweets. They also investigated the effect of different

word representations on the final performance. Gupta et al. [36] proposed a semi-supervised

RNN model to address the labeled data scarcity problem. For unsupervised learning, a

BiLSTM was used to predict the drug name with its context, and was also trained to predict

ADRs with supervised learning in the tweet. Similarly, Lee et al. [37] proposed a semi-super-

vised CNN to automatically extract features for ADR labeling. Li et al. [38] proposed a joint

BiLSTM model to extract adverse drug events between drug and disease entities, and their resi-

dent relations between bacteria and location entities from biomedical texts. Deep neural net-

works can also be extended by stacking multiple layers. One viable option is to stack a CRF on

a BiLSTM layer, so that the BiLSTM-CRF model [16, 17] can learn both long dependency and

constraints between labels.

PLOS COMPUTATIONAL BIOLOGY Adverse drug reaction detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010144 June 15, 2022 13 / 17

https://doi.org/10.1371/journal.pcbi.1010144


In addition to word embeddings alone, several studies have incorporated extra embeddings,

such as character embeddings [39, 40], POS embeddings [41], and some other embeddings

[42]. To further improve detection performance, an attention mechanism was introduced to

align the target token to its context words and to pay additional attention to the contexts

which contributes more to the final detection result. The self-attention can interact with the

tokens in the sequence, and force them to learn the dependency of the classifier on different

parts of the sequence [18, 25, 43].

Imbalanced learning

Machine learning for imbalanced data distribution poses a challenge for classification models

since most of the learning algorithms used for classification implement an accuracy approxi-

mation function as the objective, i.e., cross entropy. These algorithms are designed around the

assumption of equal examples numbers for each class. When the distribution of examples

across the known classes is biased or skewed, the minority classes may be covered by the

majority classes and thus will be ignored by the classifier, resulting in poor predictive perfor-

mance, specifically for the minority class. Several previous works have sought to address the

data imbalance issue at either the data or algorithm level.

Data-level methods. To address the data imbalance issue, several previous works applied

either down-sampling [44] or up-sampling strategies [44, 45] to balance the data distribution

and exploit the most difficult examples of the minority class. In their simplest form, a down-

sampling strategy discards random samples from the majority classes while an up-sampling

strategy duplicates from minority classes. Unfortunately, the former reduces the total amount

of the training data while the latter provides a large number of repeated samples, which has

been shown to cause over-fitting.

To strengthen class boundaries and reduce over-fitting, Chawla et al. [46] proposed the syn-

thetic minority over-sampling technique (SMOTE) to produce artificial minority samples by

the margin between existing minority samples and their nearest neighbors with the same

labels. However, these methods are useless in sequence labeling tasks, since increasing or

reducing the number of individual tokens in a text-sequence alone will result in the loss of the

syntactic relations of the sentence.

Algorithm-level methods. Instead of handling the training data distribution, the algo-

rithm-level methods consider a class penalty or weight to reduce bias towards the minority

classes [47–50]. For cost-sensitive learning, penalties or weights are assigned to each class

through a cost matrix. Obviously, increasing the cost of the minority samples is equivalent to

increasing their importance or decreasing the likelihood that the model will incorrectly mis-

classify the sample.

Another line of data resampling is to applied alternative objective function instead of cross

entropy to control the weights of examples in training procedures. For examples, focal loss

[29] applies a modulating term to the cross entropy loss to focus learning on hard negative

samples. It can automatically reduce the weight for easy samples and thus force the model

focus on hard samples. Dice loss [30] applies an approximate function of F-measure to attach

similar importance to false positives and false negatives. Boosting algorithms such as AdaBoost

[51] select and weight hard examples to train classifiers.

Conclusions

In this study, a weighted conditional random field is proposed for imbalanced-data ADR

detection tasks. It applies a pre-trained language model as a context encoder which is both

robust to strong class imbalanced datasets and can integrate dependencies and syntactical
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information between tokens. To address the data imbalance issue, a weighted variant of the

CRF loss function is implemented to assign more weight to the minority class, forcing the

model to pay more attention to such classes to ensure effective detection. Furthermore, we

introduce an explainable algorithm which provides a qualitative understanding between the

input features and the corresponding prediction to compare the behaviors of the models with

and without the weighted loss function.

Experimental results show that the proposed weighted variant of CRF provides a significant

performance boost without changing the model architecture in imbalanced-data tasks. Future

work will attempt to adjust the weights of training samples based on target metrics or to build

a separate network for weight prediction.
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