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The Extract of Acanthopanacis Cortex
Relieves the Depression-Like Behavior and
Modulates IL-17 Signaling in Chronic Mild
Stress-Induced Depressive Mice
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Abstract

Background: Acanthopanacis Cortex (AC) is a valuable Chinese medicine, which exerts beneficial effects on anti-fatigue, anti-
stress, and inflammatory modulation in the periphery. However, the central nervous system (CNS) function of AC has not been
clearly illustrated. As communication between the peripheral immune system and the CNS converges, it promotes a heightened
neuroinflammatory environment that contributes to depression. We investigated the effect of AC against depression through
neuroinflammatory modulation.
Methods: Network pharmacology was used to screen for target compounds and pathways. Mice with CMS-induced de-
pression were used to evaluate the efficacy of AC against depression. Behavioral studies and detection of neurotransmitters,
neurotrophic factors, and pro-inflammatory cytokines were performed. The IL-17 signaling cascade was involved to further
investigate the underlying mechanism of AC against depression.
Results: Twenty-five components were screened by network pharmacology and the IL-17 mediated signaling pathway was
associated with the antidepressant action of AC. This herb had a beneficial effect on CMS-induced depressive mice, including
improvements in depressive behavior, modulation of neurotransmitter levels, neurotrophic factors, and pro-inflammatory
cytokines.
Conclusions: Our results revealed that AC exhibits effects on anti-depression and one of the mechanisms was mediated by
neuroinflammatory modulation.

Keywords
Acanthopanacis Cortex, anti-depression, neuroinflammatory modulation, IL-17

Introduction

Depression, also known as a major depressive disorder, is a
serious mental illness characterized by a constant feeling of
low self-esteem and loss of interest or pleasure. The patho-
genesis of depression is complex and involves multiple ge-
netic and environmental factors, resulting in inadequate
treatment. Currently, mounting evidence indicates that the
stress-induced communication between the peripheral im-
mune system and central nervous system (CNS) converges to
promote a heightened neuroinflammatory environment
causing depression.1-3 The neuroinflammatory environment is
manifested as the release of pro-inflammatory cytokines from
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peripheral immune cells, activation of glial cells, and con-
sequently affecting neurotransmission, neuronal growth and
synaptic plasticity.4 Amongst all the pro-inflammatory cyto-
kines, interleukin-17 (IL-17) secreted by innate immune cells
plays an important role in the neuroinflammatory environ-
ment.5 IL-17 induces macrophage inflammatory protein 1α
(MIP-1α) expression in primary mouse astrocytes by extra-
cellular signal-regulated kinase (ERK) and c-Jun N-terminal
kinase (JNK), mitogen-activated protein kinases (MAPKs)
activation, which activates astrocytes and neuroinflammation
in multiple sclerosis.3 It also causes (glycogen synthase kinase
3β) GSK-3β-dependent phosphorylation of C/EBPβ, which
diminishes C/EBPβ binding to the endothelial locus 1 (Del-1)
promoter and suppresses Del-1 expression in human endo-
thelial cells, which induces pathological inflammation.6

Moreover, CNS-targeted production of IL-17A, one of the
prominent members of the IL-17 family, induces astrocytes
and microglial activation, microvascular pathology, and en-
hanced the neuroinflammatory response to brain diseases.7

Thus, it is likely to develop an antidepressant effect through
neuroinflammatory modulation and this knowledge will
deepen the understanding of preventing depression.

Acanthopanacis Cortex (AC, the dried cortex of Acan-
thopanax gracilistylus W. W. Smith) is a valuable Chinese
herbal medicine, which has the effect of inflammatory
modulation, anti-stress, anti-fatigue, sedation, and analgesia.8

Acanthopanacis Cortex belongs to the species of Eleuther-
ococcus Maxim., and the chemicals of AC mainly consist of
diterpenoids, triterpenoids, phenylpropanoids, and lignans,
which are similar to other herbs in Eleutherococcus Maxim..9

The function of herbs from EleutherococcusMaxim. involves
neuroprotection, anti-fatigue, anti-stress and inflammatory
modulation, and the peripheral function of which is consistent
with AC.10-12 However, the CNS function of AC has not been
clearly elucidated. It is reported that herbs from Eleuther-
ococcusMaxim. present similar chemical composition and the
majority of which are widely used in brain diseases.10-12 The
main active ingredients of AC are terpenoids (lupinane-type
triterpenes, shellacane-type diterpenes), sterols, fatty acids,
phenylpropanoids, and flavonoids.13,14 Chlorogenic acid15

and syringin16 both exist in AC and Acanthopanax sentico-
sus (Rupr.et Maxim.) Harms have been reported with neu-
rological and potential anti-depression function. Chlorogenic
acid could exert neuroprotective effects by inhibiting en-
zymes, like acetylcholinesterase (ACHE) and butyr-
ylcholinesterase (BCHE) as an approach to suppressing
neuronal damage.15 Syringin could upregulate Nrf2 protein
levels and reduce the Aβ deposition which alleviates the AD
progress.16 Thus it is reasonable to suggest that AC may be
able to mediate resistance to brain disorders,17 for example,
anti-depression, through neuroinflammatory modulation.

In this study, we aimed to investigate the effect of AC against
depression as well as the underlying mechanism. Chemical
candidates and their candidate targets in ACwere obtained from
the Traditional Chinese Medicine Systems Pharmacology

Database (TCMSP) and Swiss Target Prediction. Network
pharmacology analysis was carried out to explain the antide-
pressant effect of AC. Chronic mild stress (CMS)-induced
depressive mouse was selected for its similarity with the true
state of depressive patients.18 Thus, the CMS-induced de-
pressive mouse model promises to be a stable and plausible
approach in evaluating the effects of AC, and studies on tissue
samples from depressive mice indicates the underlying
mechanism of depression. We evaluated whether AC had a
beneficial effect on mice with CMS-induced depression, in-
cluding improvements in depressive behavior and modulation
of the levels of neurotransmitters, neurotrophic factors and pro-
inflammatory cytokine levels. We hypothesized that the AC-
suppressed IL-17 signaling cascade was one of the molecular
mechanisms responsible for relieving neuroinflammation and
depression. Therefore, we investigated whether AC exerted an
antidepressant-like effect and modulated IL-17 signaling in
mice with CMS-induced depression. Our results could accel-
erate the development of therapies for depression, which will be
useful for the clinical applications of AC.

Methods

Chemicals and Reagents

HPLC-grade acetonitrile and methanol were purchased from
Merck (Darmstadt, Germany). Ultra-pure water was processed
by a Milli-Q purification system (Millipore, Molsheim,
France). The chemical standards of syringin, chlorogenic acid,
isochlorogenic acid A, isochlorogenic acid B, and kaurenoic
acid were purchased from Weikeqi-Biotech Co., Ltd
(Chengdu, China). All the standards have a purity of at least
98% based on HPLC profile. Imipramine was from Yuanye
Bio-Technology Co., Ltd (Shanghai, China) and other re-
agents came from Sigma-Aldrich (St Louis, MO).

Chemical Candidates and Target Chemicals in
Acanthopanacis Cortex

Chemical candidates in ACwere gathered from TCMSP (https://
tcmspw.com/tcmsp.php) and relevant literature.19 The collected
chemicals were screened according to the SWISS ADME to
illustrate the proposed model. The candidate targets of the
chemicals in AC were obtained from Swiss Target Prediction
(http://www.swisstargetprediction.ch/). After removing dupli-
cates, a total of 340 AC target candidates were collected.

Known Therapeutic Targets in the Treatment
of Depression

The known therapeutic targets in depression were acquired
from GeneCards database (http://www.genecards.org/). After
filtering out low correlative targets (relevance score≤5), a total
of 1589 targets related to depression were collected (as shown
in Supplementary Table 1).
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Network Construction and Analysis

Network construction was made by Cytoscape Software
(http://www.cytoscape.org/). Compound-Target-Disease
(C-T-D) network was established by connecting the tar-
gets with the compounds and depression.20 GO biological
process and KEGG pathway analysis with FDR-adjusted P-
values <0.05 was employed and the data were collected by
RStudio 1.1.463 for R statistical computing (http://www.
rstudio.com/).

Preparation of Acanthopanacis Cortex Extract

Acanthopanacis Cortex was obtained from the BozhouMarket
in Anhui Province, China, and was morphologically au-
thenticated by Dr Min Wei of the Institute of Botany, Jiangsu
Province and Chinese Academy of Sciences. The corre-
sponding voucher specimens were deposited in the Research
Center of Medicinal Plants of the Institute of Botany, Jiangsu
Province and Chinese Academy of Science. The plant ma-
terials were tested for quality according to the requirements of
Chinese Pharmacopeia (2020 Edition). In preparing of the AC
extract, 100 g of the plant material was minced and soaked in
800 mL of water for 2 h and extracted twice. The extract was
combined and spray-dried to obtain the extract of AC. For
chemical analysis, the extract was weighed accurately and
sonicated in 5 mL of 80% methanol for 45 min. After cen-
trifugation (12 000 r/min at 4°C, 5 min), the supernatant was
collected before HPLC analysis.

HPLC Analysis

Agilent rapid analysis LC 1200 series systems (equipped with
a degasser, a binary pump, an auto-sampler, a DAD and a
thermostated column compartment) was applied. A Waters
XBridge C18 column (3.5 μm, 4.6 mm × 150 mm) was
used for separation. For the quantification of syringin,
chlorogenic acid, isochlorogenic acid A and iso-
chlorogenic acid B (277 nm), the mobile phase condition
was acetonitrile (A) and 0.1% phosphoric acid in water
(B), flow rate of 0.8 mL/min, injection volume of 10 μL,
and column temperature was 30°C. 0-10 min, linear gra-
dient 86.0-70.0% (B); 10-15 min, linear gradient 70.0-
60.0% (B); 15-20 min, linear gradient 60.0-5.0% (B). For
the quantification of kaurenoic acid (202 nm), the mobile
phase condition was acetonitrile (A) and 0.1% phosphoric
acid in water (B), flow rate of 1.0 mL/min, injection
volume of 10 μL, and column temperature was 30°C. 0-15
min, isocratic gradient 15.0% (B).21,22

Animal Experiments

Male C57BL/6J mice (8- to 10-week-old at the start of
experiments) were obtained from Changzhou Cavens
Laboratory Animal Co. Ltd (Changzhou, China). Animals

were hosted on a 12 h light/dark cycle (lights on at 6:00 AM

and off at 6:00 PM) under controlled temperature (22 ± 2°C)
and humidity (50 ± 10%), with standard diet and water ad
libitum. Animals were acclimatized for 7 days. The ex-
perimental procedures had been approved by the Animal
Experimentation Ethics Committee of China Pharmaceu-
tical University and under the guidelines of “Principles of
Laboratory Animal Care” (NIH publication No. 80-23,
revised in 1996). All efforts were made to minimize
suffering.

Sucrose adaptation and sucrose consumption assessment
were performed to the CMS procedures at the beginning of the
experiment trial. The CMS procedure was carried out with
some adjustments. Briefly, a series of stressors were applied
onto the animals: (1) water deprivation for 24 h, (2) strobo-
scopic illumination for 2 h, (3) cage tilt (45°) for 15 h, (4) noise
for 2 h, (5) soiled cage (200 mL water in 100 g sawdust
bedding) for 15 h, (6) body restraint for 1 h, (7) forced
swimming at 8°C for 6 min, (8) tail-clipping restraint for
6 min, (9) food deprivation for 24 h, and (10) day and night
reverse. These stressors were randomly arranged in 1 week
and repeated for 6 weeks. At the end of the CMS procedure, a
sucrose preference test was carried out to evaluate the CMS
model.23

The mice were randomly divided into 5 groups (n = 12).
The control and CMS model were given with saline. For the
other 3 groups, AC at low dose (50.0 mg/kg/day), high dose
(150 mg/kg/day), and imipramine (30 mg/kg/day) were
intragastrically given 30 min before stress exposure for 6
weeks. Mouse body weight was recorded twice a week
during CMS and AC treatment. The mice were weighed
using an electronic scale and the average of two mea-
surements was recorded.

Sucrose preference test was conducted out at the end of
the CMS procedure. In brief, mice in each group were
learned to adapt to 2 bottles of 1% sucrose solution (w/v)
72 h before the test, and 24 h later, one bottle of 1%
sucrose solution (w/v) was replaced with tap water for
24 h. Then, mice were deprived of water and food for 24 h.
Sucrose preference test was conducted at 17:00 PM, where
mice were kept in individual cages with 2 bottles, one with
100 mL of 1% sucrose solution (w/v) and the other with
100 mL of water. After 3 h, the volumes of consumed
sucrose solution and water were recorded and the sucrose
preference was calculated by the following formula:
sucrose preference = sucrose consumption/ (water con-
sumption + sucrose consumption) × 100%.24

Forced swimming test was carried out at the end of
CMS procedures. Mice in each group were placed in large
glass cylinders (50 cm height and 20 cm diameter) with
30 cm height water at 22 ± 2°C, so that mice were not able
to support themselves by hind limbs. The test consists of 2
parts: the first 15 min was used for pre-swimming and then
24 h later, swimming behavior was observed for 5 min, and
the latency to float was measured and analyzed.25
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Real-Time Quantitative PCR

Total RNA was separated from mouse hippocampus by
RNAprep pure Tissue Kit (Tiangen, Beijing, China) according
to the manufacturer’s instructions. The concentration of RNAs
was detected by UVabsorbance at 260 nm. cDNAwas reverse
transcribed from 1 μg sample of total RNA using RT SuperMix
for qPCR (Vazyme, Nanjing, China), according to the protocol
provided by the manufacturer. Real-time PCR was performed
using SYBR Green Master Mix (Vazyme). The SYBR green
signal was detected by qTOWER 2.0 (Analytic Jena AG,
Germany). Primers used were: 18S-S: TGT GAT GCC CTT
AGATGT CC; 18S-AS: GATAGT CAAGTT CGA CCG TC;
IL-6-S: TAG TCC TTC CTA CCC CAA TTT CC; IL-6-AS:
TTG GTC CTT AGC CAC TCC TTC; TNF-α-S: CAG GCG
GTG CCT ATG TCT C; TNF-α-AS: CGA TCA CCC CGA
AGT TCA GTA G; COX2-S: CGC ATC CTT TAC ATA ACA
GACG; COX2-AS: TAGGAG TTGAAGATTAGT CCG C;
MMP9-S: CAA AGA CCT GAA AAC CTC CAA C; MMP9-
AS: GAC TGC TTC TCT CCC ATC.

SDS-PAGE and Immunoblotting

The mouse hippocampus was collected, and protein content
was determined by the Bradford method. Proteins (∼20 μg)
were separated on 8% SDS-polyacrylamide gels and trans-
ferred to a PVDF membrane. The PVDF membrane was
blocked with 5% fat-free milk in tris-buffer saline/0.1% tween
20 (TBS-T), and then incubated in the primary antibodies
diluted in 2.5% fat-free milk in TBS-T over night at 4°C. The
primary antibodies were anti-phospho-JNK (Cell Signaling, Ban-
vers, MA), anti-JNK (Cell Signaling), anti-phospho-Erk1/2 (Cell
Signaling), anti-Erk1/2 (Cell Signaling), anti-phospho-GSK-3β
(Cell Signaling), and anti-GSK-3β (Cell Signaling). After that, the
PVDF membrane was rinsed with TBS-T and incubated for 2 h
at room temperature in peroxidase (HRP)-conjugated anti-
rabbit secondary antibody (Sangon, Shanghai, China),
diluted in 2.5% fat-free milk in TBS-T. After intensive
washing with TBS-T, the immune complexes were visu-
alized using the Enhanced Chemiluminescence (ECL)
method (Vazyme). The intensities of bands in the control
and samples runs, both on the same gel and under strictly
standardized ECL conditions, were compared on an image
analyzer, using a calibration plot constructed from a
parallel gel with serial dilutions of one of the samples.

Measurement of Neurotransmitters, Neurotrophic
Factors, and Pro-inflammatory Cytokines

The levels of neurotransmitters, neurotrophic factors, and
pro-inflammatory cytokines were determined by com-
mercial ELISA kits (Lanpaibio, Shanghai, China; Ab-
Frontier, Korea) according to the manufacturer’s
instructions. In brief, the samples were added onto a
96-well plate with coating of anti-mouse serotonin (5-HT)/

norepinephrine (NE)/dopamine (DA)/glutamate/nerve
growth factor (NGF)/brain-derived neurotrophic factor
(BDNF)/glial-cell derived neurotrophic factor (GDNF)/
interleukin-1β (IL-1β)/interleukin-6 (IL-6)/IL-17/tumor
necrosis factor-α (TNF-α) antibody, individually, and
then incubated with HRP-labeled detection antibody at
37°C for 90 min. After washing 5 times with PBS, substrate
solution was added at 37°C for another 15 min. At last, stop
solution was added to stop the reaction and absorbance of
450 nm was measured immediately. Non-specific blinding
absorbance was taken into consideration for sample
analysis and each sample in duplicate was employed to
minimize inter-assay variation.

Statistical Analysis

All data were analyzed using one-way ANOVA or Student’s t-
test method. Differences with values of P < 0.05 were con-
sidered significant.

Results

Chemical Candidates and Targets

As 91 compounds were identified belonging to AC by TCMSP
and relevant literature (as shown in Supplementary Table 2),
16 compounds were selected according to oral bioavailability
≥ 15% and drug-likeness ≥ 0.1. Removing 4 compounds
(gracilistone A, B, C, and linalool) with no target information,
12 compounds with known target information were chosen for
the following analysis. Another 13 compounds including
caffeoylquinic acids, steroids and eleutherosides reported to
have anti-inflammatory, anti-oxidative, anti-fatigue, and
learning-enhancing effects were added additionally, and fi-
nally 25 compounds were analyzed (as shown in Table 1).26-28

These 25 identified active compounds interacted with 340
target proteins (as shown in Supplementary Table 3) based on
a target fishing technique,29 that is, on average, each of the
compounds interacted with 13.6 target genes, which did fully
explain the multiple-target effects of pharmacology by AC.

Network Construction and Analysis

Among the 340 obtained targets and 1589 disease targets, 120
potential targets (as shown in Supplementary Table 4) were
associated with depression, and they were reserved for further
analysis. Network pharmacology provides a visual approach
to understanding the complex relationship between disease
and therapeutic spots.30 In the present study, 120 potential
targets and 25 involved compounds were used to construct the
C-T-D network for further cluster analysis (Figure 1(a)). All
the compounds connected with more than 2 targets and all of
the 120 targets interacted with more than 1 compound, in-
dicating that the effect of AC on anti-depression was a result of
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multi-components, multi-targets, and multi-pathway
interactions.

With the C-T-D network, a macroscopic visualization of the
relationship between AC, targets, and depression was obtained,
but the underlying mechanism of AC against depression

remained unclear. As a result, 120 potential targets for de-
pression underwent GO biological process and KEGG pathway
analysis. GO biological process showed that these targets were
enriched to 10 biological process terms, and regulation of in-
flammatory response and neurotransmitter levels as well as

Figure 1. Network analysis of Acanthopanacis Cortex. C-T-D network (a) was established by connecting the targets with the compounds
and depression. GO biological process (b) and KEGG pathway analysis (c) were performed by RStudio 1.1.463 for R statistical computing,
FDR-adjusted P-values <0.05.
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neuron death may indicate the possible mechanism of AC
against depression (Figure 1(b)). Twelve protein targets were
mapped to IL-17 signaling pathway (Figure 1(c)). Depression is
highly associated with neuroinflammation. IL-17 has a plethora
of effects that could contribute to neuroinflammation, and
consequently affect neurotransmission, neuronal growth, and
synaptic plasticity, which may suggest the underlying mech-
anisms of AC against depression.

Standardization of Herbal Extracts

The AC extract was prepared according to the ancient
preparation of Chinese herbs. In the study, we prepared AC
extract using water, because water has been widely used in
preparation of traditional Chinese medicine for years.31

The extraction efficiency was about 10.07 ± 1.25% (mean ±
SD, n = 3). Five chemicals were chosen to control the

quality of the extract: syringin, chlorogenic acid, iso-
chlorogenic acid A, isochlorogenic acid B, and kaurenoic
acid (Figure 2). The amount was about 0.12 ± 0.03 for
syringin, 6.82 ± 0.46 for chlorogenic acid, 1.52 ± 0.14 for
isochlorogenic acid A, 0.34 ± 0.07 for isochlorogenic acid
B and 21.53 ± 2.07 for kaurenoic acid in mg/g of dried
powder of extract (mean ± SD, n = 3). The established
chemical parameters served as the control for repeatability
of the below animal study.

Acanthopanacis Cortex Relieves the Depression-like
Behavior in CMS-Induced Depressive Mice

Two animal behavior tests including sucrose preference and
forced swimming were employed to evaluate the effect of AC
against depression in mice. After the treatment of herbal
extract for 6 weeks, AC (low dose: 50 mg/kg/day and high

Figure 2. HPLC chromatograms of Acanthopanacis Cortex extract. The chromatographic method was described in method session.
syringing (1, 277 nm), chlorogenic acid (2, 277 nm), isochlorogenic acid A (4, 277 nm), isochlorogenic acid B (3, 277 nm), and kaurenoic acid
(5, 202 nm) was detected by a HPLC couple with a DAD detector. The detected wavelength was indicated. Representative chromatograms
are shown, n = 3.
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dose: 150 mg/kg/day) alleviated sucrose preference of CMS-
induced depressive mice (Figure 3(a)). In forced swimming
test, the CMS-induced depressive mice doubled cumulative
immobility time, while AC restored the cumulative immo-
bility time (Figure 3(b)). In body weight evaluation, CMS-
induced depressive mice showed a decrease of body weight,
while AC relieved the body loss (Figure 3(c)). Imipramine
(30 mg/kg/day) was set as a positive control.

Acanthopanacis Cortex Restores the Levels of
Neurotransmitters, Neurotrophic Factors, and
Pro-inflammatory Cytokines in CMS-Induced
Depressive Mice

According to a previous study, a systematic method was used
to evaluate the anti-depressive efficiency of AC. The de-
tected targets included: 5-HT, NE, DA, glutamate, NGF,
BDNF, GDNF, IL-1β, IL-6, TNF-α, and IL-17. In CMS-
induced depressive mouse hippocampus, the amounts of
5-HT, NE, and DA levels were decreased to ∼50%, ∼30%,
and ∼50%, while glutamate level was increased to ∼300%,
respectively. The treatment of AC (low dose: 50 mg/kg/day
and high dose: 150 mg/kg/day) and imipramine (30 mg/kg/
day) restored the levels of these neurotransmitters (Figure 4).
The amounts of neurotrophic factors (NGF, BDNF, and
GDNF) were reduced to ∼30%, which were up-regulated
under AC and imipramine administration. The levels of pro-
inflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-17)
were increased to ∼200%, which were restored by AC
and imipramine treatment (Figure 5). The stress-induced
neuroinflammation contributes to neuronal dysfunction
and depression, while the modulation of pro-inflammatory
cytokines, neurotrophic factors and neurotransmitters could
prevent the pathological change. In addition, stress-induced
neuroinflammation is related with the activation of astro-
cytes and microglia,32 which is consistent with our result that
AC inhibits the activation of astrocytes and microglia.
(Supplementary Figure 2) These results indicated that AC
might mediate resilience to stress-induced depression
through modulating the levels of pro-inflammatory cyto-
kines, neurotransmitters, and neurotrophic factors.

Acanthopanacis Cortex Regulates the Phosphorylation
of JNK, Erk1/2, and GSK-3β in CMS-Induced
Depressive Mice

For the underlying mechanism of AC against depression, IL-
17 signaling molecules based on KEGG pathway analysis
(Supplementary Figure 1), that is, MAPKs, Erk1/2, and GSK-
3β, were involved. JNK is another subtype of MAPKs and
JUN-AP-1 is involved in intervention on neuro-
inflammation.33 Thus, the phosphorylation levels of JNK,
Erk1/2, and GSK-3β were determined. In CMS-induced de-
pressive mouse hippocampus, the phosphorylation of Erk1/2

Figure 3. Acanthopanacis Cortex relieves the depression-like behavior
in CMS-induced depressive mice. The CMS-induced depressive mice
were randomly divided into 5 groups: control (Con), CMS, imipramine
(Imi, 30mg/kg/day), AC low dose (AC-L, 50mg/kg/day) and AC high dose
(AC-H, 150 mg/kg/day). The Imi, AC-L and AC-H three groups were
given CMS procedure. After drug administration, sucrose preference
tests (a), forced swimming tests (b), body weight c were carried out, as
described in the method session. Data are expressed as mean ± SEM,
where n = 8, *P < 0.05, **P < 0.01, ***P < 0.001 compared with CMS.

Liu et al. 9

https://journals.sagepub.com/doi/suppl/10.1177/15593258221148817
https://journals.sagepub.com/doi/suppl/10.1177/15593258221148817


and GSK-3βwas reduced to ∼60%, while the phosphorylation
of JNKwas increased to∼240%, respectively. The application
of AC (low dose: 50 mg/kg/day and high dose: 150 mg/kg/
day) and imipramine (30 mg/kg/day) restored the pathological
change (Figure 6). These results suggested that AC was able to
suppress IL-17 signaling cascade, which may be one of the
molecular mechanisms for relieving neuroinflammation and
depression.34,35

For the underlying mechanism of AC against depression, the
downstream targets of IL-17 signaling based on KEGG pathway
analysis (Supplementary Figure 1), that is, IL-6, TNF-α, cy-
clooxygenase 2 (COX2) and matrix metallopeptidase 9
(MMP9), were involved. The mRNA levels of IL-6, TNF-α,
COX2, and MMP9 were determined. In CMS-induced de-
pressive mouse hippocampus, themRNA levels of IL-6, TNF-α,
and COX2 were increased to ∼240%, ∼160%, and ∼350%,
respectively. The application of AC (low dose: 50 mg/kg/day
and high dose: 150 mg/kg/day) and imipramine (30 mg/kg/day)

restored the pathological change (Figure 7(a)–(c)). Furthermore,
AC induced the expression ofMMP9 (Figure 7(d)), which could
help tissue remodeling and repair following neuroinflammation.
These results were consistent with our previous results that AC
could modulate neuroinflammation to mediate resilience to
stress-induced depression through IL-17 signaling cascade.

Discussion

Depression is a serious mental illness and has been rec-
ognized as one of the most disabling diseases worldwide.
The stress-induced communication between peripheral
immune activation and CNS inflammation contributes to
the onset of depression.36 Astrocytes are the most abundant
glial cells in CNS, which could sense and respond to IL-17
secreted by innate immune cells, thereby modulating the
responses of neighboring cells throughout the CNS.37

Astrocytes secrete neurotrophic factors to regulate

Figure 4. Acanthopanacis Cortex restores the levels of neurotransmitters in CMS-induced depressive mice. The CMS-induced depressive
mice were randomly divided into 5 groups as described above. The Imi, AC-L and AC-H three groups were given CMS procedure. After
drug administration, the hippocampus was collected. The amounts of 5-HT (a), NE (b), DA (c), and glutamate (d) in the extracts of
hippocampus were detected using ELISA kits. Data are expressed in ng/mg or μg/mg, mean ± SEM, n = 7, *P < 0 .05, **P < 0.01, ***P < 0.001
compared with CMS.
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synaptogenesis, neuronal differentiation, and neuronal
survival and actively modulate synaptic transmission
through the release and clearance of neurotransmitters.38,39

Under inflammatory environment, sustained increased level
of IL-17 activates astrocytes and microglia which con-
tribute to the impairment of microvascular pathology and

enhance the neuroinflammation through JNK, ERK1/2,
GSK-3β inducing depression.

Acanthopanacis Cortex, a valuable Chinese herb, has been
used to treat inflammatory diseases, fatigue, and weakness for
years. In China, Acanthopanax gracilistylus wine, which is
made of AC in liquor, is considered as a health supplement for

Figure 5. Acanthopanacis Cortex restores the levels of neurotrophic factors and pro-inflammatory cytokines in CMS-induced depressive mice.
The CMS-induced depressive mice were randomly divided into 5 groups as described above.The Imi, AC-L and AC-H three groups were given
CMS procedure. After drug administration, the hippocampus was collected. The amounts of NGF (a), BDNF (b), GDNF (c), IL-1β (d), IL-6 (e),
TNF-α (f), and IL-17 (g) in the extracts of hippocampus were detected using ELISA kits. Data are expressed in pg/mg, mean ± SEM, n = 7, *P < 0.05,
**P < 0.01, ***P < 0.001 compared with CMS.
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Figure 6. Acanthopanacis Cortex regulates the phosphorylation of JNK, Erk1/2 and GSK-3β in CMS-induced depressive mice. The CMS-
induced depressive mice were randomly divided into 5 groups as described above. The Imi, AC-L and AC-H three groups were given CMS
procedure. After drug administration, the hippocampus was collected. The phosphorylation of JNK (a), Erk1/2 (b) and GSK-3β c were revealed
by using specific antibodies. Data are expressed as fold of control, and in mean ± SEM, n = 4, *P < 0.05, **P < 0.01 compared with CMS.

Figure 7. Acanthopanacis Cortex regulates the expression of IL-6, TNF-α, COX2 and MMP9 in CMS-induced depressive mice. The CMS-
induced depressive mice were randomly divided into 5 groups as described above. The Imi, AC-L and AC-H three groups were given CMS
procedure. After drug administration, the hippocampus was collected. The mRNA amount of IL-6 (a), TNF-α (b), COX2 (c) and MMP9 (d)
were determined. Data are expressed as fold of control, and in mean ± SEM, n = 4, *P < 0.05, **P < 0.01 compared with CMS.
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the treatment of inflammatory diseases due to its clinical
application.40 As a therapeutic candidate, AC particularly
exerts anti-inflammation and hepatoprotection, showing po-
tential for inflammatory modulation.41 However, current study
on the pharmacological activity of AC has mainly focuses on
peripheral inflammatory regulation, and the effect of AC on
the CNS needs further study.

In the study, the effects of AC on CNS, especially de-
pression, were investigated. Acanthopanacis Cortex had a
plethora of effects against depression, including improve-
ments in depressive behavior and modulation of the levels of
neurotransmitters, neurotrophic factors, and pro-inflammatory
cytokines. It is interesting that AC was able to suppress the IL-
17 signaling cascade and neuroinflammation in depressive
mice. The results were consistent with the network pharma-
cology analysis that AC mediated resilience to depression,
with one of mechanism was mediated by neuroinflammation
modulation via the IL-17 signaling cascade. Furthermore,
much more effort is required to elucidate the underlying
mechanism of AC on IL-17 signaling as well as the chemical
components responsible for neuroinflammatory modulation.

Considering the major ingredients in the AC should be
crucial for neuroinflammatory modulation. The majority of the
identified 25 chemical components exhibit a variety of bio-
logical activities experimentally. In our study, syringin ac-
counts for 0.12 ± 0.03 mg/g of dried powder of extract, which
have anti-inflammatory and sleep-potentiating effect in mice
and human beings.42 The amount of chlorogenic acid was
about 6.82 ± 0.46 mg/g of dried powder of extract, and it is
reported that chlorogenic acid possesses anti-oxidation, in-
flammatory modulation, anti-depression, hepatoprotection,
and cardioprotection.43 These results indicate they might
be potential active components. Moreover, caffeic acid,44

protocatechuic acid,45 eleutheroside B1,46 camphor,47

β-caryophyllene,48 and β-sitosterol49 with neurological
functions have been reported, which indicate these com-
ponents could be potential active targets. In fact, AC is a
multi-component extract and many pathological factors
are involved in the development of depression. In addition,
although AC plays a critical role in anti-depression, the
potent implications for active components or molecular
mechanisms are an important topic that remains to be
revealed. Therefore, a comprehensive study considering
different aspects of systemic regulation is needed to fully
understanding of the anti-depressant role of AC.

Conclusions

In this study, the anti-depressant effect of AC was investigated.
Acanthopanacis Cortex had a beneficial effect on CMS-induced
depressive mice, including improvements in depressive be-
havior and modulation of the levels of neurotransmitters,
neurotrophic factors and pro-inflammatory cytokines. More-
over, AC was able to suppress the IL-17 signaling cascade and

thereby inhibiting neuroinflammation. These findings provide
an insight into depression treatment that will be useful in the
development of clinical application of AC. Further research
should focus on validating the active components of AC in cell
and animal models.
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