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Abstract: In this work, we show a novel magnetic composite material Fe3O4@HPU-9 (HPU-9 =
{[Cd(L)0.5(H2O)](DMA)(CH3CN)}n) (H4L = 1,1′-di(3,5-dicarbonylbenzyl)-2,2′bimidazoline, DMA =
N,N-dimethylacetamide) constructed by in situ growth of HPU-9 on Fe3O4, which has excellent
absorption of cationic dyes from aqueous solution. The Fe3O4@HPU-9 particle possesses a
well-defined core-shell structure consisting of a Fe3O4 core (diameter: 190 nm) and a HPU-9 shell
(thickness: 10 nm). In the composite, the HPU-9 shell contributes to the capsulation of cationic dyes
through electrostatic attractions between HPU-9 and cationic dyes, while the Fe3O4 core serves as
magnetic particle. The maximum absorption capacity of Fe3O4@HPU-9 for R6G was 362.318 mg·g−1.
The absorption kinetics data were well described by a psedo-second-order model (R2 > 0.99), and the
equilibrium data were also well fitted to Langmuir isotherm model (R2 > 0.99). Our data confirmed
that the proposed magnetic composite could be recycled and reused several times without centrifugal
separation, making it more convenient, economic and efficient than common adsorbents.

Keywords: magnetic composite material; core-shell structure; the capsulation of cationic dyes;
electrostatic attractions

1. Introduction

Dyes are currently widely used in various industries, such as printing, wool, paper, nylon
and silk [1,2]. However, the emission of dyes into the environment has raised widespread public
concern relating to water pollution and human health [3–6]. Numerous conventional porous materials,
such as zeolites, polymeric resins, carbon materials and mesoporous silica, have been considered
for dye absorption but exhibit weak selectivity toward targeted dyes and are not cost-effective for
practical application [7–9]. Previous reports have demonstrated that metal-organic frameworks (MOFs)
show excellent performances in the recognition capability and selectivity toward a variety of organic
dye pollutants because of their tunable chemical functionality, pore microenvironment, structural
diversity and high surface areas [10,11]. Principally, the size dimension and property of the pores
in the MOFs play important roles in the selective absorption of targeted dyes [12,13]. First, MOFs
possessing a relatively large pore size are the necessary prerequisite to selective dye absorption.
Second, the interactions between dye molecules and absorption sites on the pore walls of MOFs, which
could improve the physical and/or chemical absorption capability of targeted dye molecules, are the
guarantee of the success of removing targeted dyes. In this article, we demonstrated that the utilization
of a large vacant pore space with anionic binding sites can improve cationic dye uptake through direct
electrostatic attractions between adsorbent and adsorbate moieties.
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Although MOFs have purely microporous structures that offer high-affinity binding sites for
targeted dyes, they are limited by significant defects, such as powder morphology, difficulty of
separation and poor stability, which reduce the efficiency and recyclability of adsorbents in practice.
To address this problem and maximize the dye absorption capability of MOFs, nanoparticles with
unique magnetic properties could be incorporated into MOFs [14,15]. Magnetic separation based on
Fe3O4 is a considerably convenient, economic and efficient approach [16,17]. Thus, we proposed a
cationic dye absorption method with magnetic anionic MOF composites that can be magnetically
separable and are conveniently reusable. To the best of our knowledge, few studies have reported on
the use of magnetic MOF composites for dye removal from aqueous solution. Herein, we successfully
synthesized a new porous anionic MOF, namely, {[Cd(L)0.5(H2O)](DMA)(CH3CN)}n (HPU-9), with
a large 1D channel along the c axis. The anionic channel enables the encapsulation of cationic dyes
through host-guest interactions. In addition, a magnetic Fe3O4@HPU-9 hybrid was prepared through a
hydrothermal method by in situ growth of HPU-9 on Fe3O4. The crystalline structure and composition
of Fe3O4 and Fe3O4@HPU-9 were identified by TEM, SEM, PXRD, IR and ICP characterization.
The maximum absorption capacity of Fe3O4@HPU-9 for R6G was 362.318 mg·g−1. The absorption
kinetics data were well described by a psedo-second-order model (R2 > 0.99) and the equilibrium
data were also well fitted to Langmuir isotherm model (R2 > 0.99). As a result, the absorption and
reusability of the magnetic Fe3O4@HPU-9 hybrid for dyes suggested that the magnetic hybrid could be
employed as a convenient, economic and efficient adsorbent for the treatment of wastewater containing
cationic dyes.

2. Materials and Methods

All chemicals were commercially available and used as purchased. The detailed information is
listed in Table S1 in the Supplementary Materials. Infrared (IR) data were recorded on a BRUKER
TENSOR 27 spectrophotometer (BRUKER OPTICS, Munich, Bavaria, Germany) with KBr pellets
in the region of 400–4000 cm−1. Elemental analyses (C, H and N) were carried out on a Flash EA
1112 elemental analyzer (Suzhou Orco Metrology instrument Co., Ltd., Suzhou, China). Powder
X-ray diffraction (PXRD) patterns were recorded using CuKα radiation on a PANalytical X’Pert PRO
diffractometer (PANalytical B.V., Almelo, The Netherlands). Thermogravimetric analysis (TGA) was
recorded on a Netzsch STA 449C thermal analyzer (NETZSCH, Selb, Bavaria, Germany) between
30 and 800 ◦C at a heating rate of 10 ◦C·min−1 in atmosphere. The UV spectra were recorded
on a Purkinje General TU-1800 spectropho-tometer (Beijing Purkinje General Instrument, Beijing,
China). The morphologies and microstructures of the as-synthesized samples were characterized by
field-emission scanning electron microscopy (SEM) (S-4800, Hitachi, Chiyoda, Japan) and transmission
electron microscopy (TEM) (JEM-1200EX, JEOL Ltd., Tokyo, Japan). Surface elements of samples were
mapped with electron disperse spectroscopy (EDS) equipped with SEM. The amount of Fe3+ and Cd2+

ions was determined by using an HK-2000 (Beijing Huake-Yitong Analytical Instruments Co., Ltd.,
Beijing, China) inductively coupled plasma.

Synthesis of {[Cd(L)0.5(H2O)](DMA)(CH3CN)}n. HPU-9 was synthesized via a hydrothermal
method. Cd(NO3)2 (9.2 mg) and 4.9 mg of H4L were dissolved in 5 mL of anhydrous DMA, CH3OH
and CH3CN (2:2:2) in a 25 mL Teflon liner and kept at 80 ◦C for 72 h. Colorless HPU-9 was obtained;
yield: 47%. Elemental analysis data calculated (calcd.) for C18H21CdN4O6: C 43.08% H 4.21 % N
11.16%. Found: C 43.77, H 4.16, N 11.32%.

Preparation of Fe3O4 particles. The Fe3O4 particles were synthesized via a conventional solvothermal
reaction. Specifically, 1 g FeCl3·6H2O was dissolved in 30 mL ethylene glycol, mixed with 2.7 g NaAc
and 0.75 g polyethylene glycol at room temperature and stirred for 30 min to obtain a uniform mixture
and then reacted in a Teflon liner at 200 ◦C for 8 h. The obtained solid was washed several times with
C2H5OH and H2O and finally dried at 60 ◦C in vacuo for 24 h.

Preparation of magnetic porous Fe3O4@HPU-9 core-shell particles: 9.2 mg Cd(NO3)2 was
dissolved in 4 mL CH3OH and CH3CN (2:2) and then mixed with 4.9 mg of H4L dissolved in 2 mL of
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anhydrous DMA. The mixture was stirred for 30 min, and 2 mg Fe3O4 was added and then transferred
to a 25 mL Teflon liner and kept at 80 ◦C for 72 h. Subsequently, the reaction mixture was centrifuged,
and the composite materials were collected and washed several times with water.

Crystal Data Collection and Refinement. The crystallographic diffraction data for HPU-9 were
obtained on a Siemens Smart CCD single-crystal X-ray diffractometer (Germany bruker Ltd., Karlsruhe,
Germany) with a graphite monochromatic MoKα radiation (λ = 0.71073 Å) at 293 K. The structure was
solved by direct methods using the SHELXS-2014 program of the SHELXTL package and refined on F2

by full-matrix least-squares techniques with SHELXL-2014. All empirical absorption corrections were
applied using the SADABS program. All non-hydrogen atoms in the crystal structure were refined
with anisotropic thermal parameters. The crystallographic data and structural refinement parameters
of the complex are summarized in Table S2. CCDC 1812922 for HPU-9.

3. Results and Discussion

3.1. Structural Description

Single crystal X-ray diffraction analysis reveals that HPU-9 crystallizes in the orthorhombic space
group Pccn and displays a 3D porous network structure. The asymmetric unit of HPU-9 consists of one
crystallographically independent Cd2+ ion, half H4L ligand, as well as one H2O coordinated molecule,
one CH3CN molecule and one DMA guest molecule. The Cd center is six-coordinated by five oxygen
atoms and one nitrogen atom in a distorted octahedral [CdO5N] geometry. The Cd-O distances are in
the range of 2.258–2.377 Å. Each L4− ligand serves as a µ6− bridge connecting with six Cd2+ atoms, in
which the four carboxylate groups exhibit the same µ1-η1:η1 chelate coordination mode (Figure 1a).
Through the inter-connnection of Cd2+ and L4−, a two dimensional layer is formed, as shown in
Figure 1b. It is interesting to note that there are two different helical chains, left- and right- helical
chains (Figure 1d), and due to the existence of the benzene and trizole ring, the two dimensional layers
are connected with each other, forming a three-dimensional open framework imparting nanoscale
quadrangle, as shown in Figure 1c. As evidenced from the single-crystal X-ray diffraction analyses,
the quadrangle window in HPU-9 shows a pore size of ca. 8.3 × 10.9 Å2 (Figure 1e,f). The PLATON
program indicates that the vacant space in HPU-9 is approximately 40.2% (1446.5/3601.0 Å3). The TG
curve of HPU-9 is shown in Figure S1. A weight loss of 28.06% (calcd, 28.96%) is detected in the
temperature range of 50–180 ◦C, corresponding to the loss of guest molecules and coordinated water
molecules. Finally, the white CdO residue constitutes 26.11% (calcd, 25.36%). The BET surface area of
HPU-9 and Fe3O4@HPU-9 is 312 and 299 m2·g−1.

3.2. The Hybrization of HPU-9 and Fe3O4

Dyes are very widely used in various industries such as cosmetics, printing and paper [18,19].
Dye removal from wastewater has led to tremendous environmental pollution, which has raised public
concern [7–9]. Nonetheless, defects such as the difficulty of separation exist in the dye removal process
when HPU-9 is used as an absorbent. Magnetic hybrid materials used in wastewater treatment are very
practical [20–22]. Magnetic separation based on the superparamagnetic Fe3O4 was obviously more
efficient, economic and convenient [23,24]. Thus, a magnetic Fe3O4@HPU-9 hybrid was synthesized
through the hydrothermal method (Scheme 1). The crystalline structure and composition of Fe3O4 and
Fe3O4@HPU-9 were identified by TEM, SEM, PXRD, IR and ICP characterization.
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Scheme 1. Synthesis of Fe3O4@HPU-9.

The TEM image of Fe3O4@HPU-9 showed that the Fe3O4 particles were wrapped with a HPU-9
layer consisting of numerous small crystals (Figure 2). The Fe3O4@HPU-9 particles possessed a
well-defined core-shell structure consisting of a Fe3O4 core (diameter: 190 nm) and a HPU-9 shell
(thickness: 10 nm). The SEM results revealed that the Fe3O4@HPU-9 had spherical morphology
(Figure 3). The elemental mapping of Fe3O4@HPU-9 revealed the distribution of Fe, Cd, O within the
structures. In particular, Fe and Cd were almost uniformly distributed in Fe3O4@HPU-9. The ICP
result showed that the ratio of Fe:Cd was 1.83:1. The TGA curve of Fe3O4@HPU-9 is also given in
Figure S1. The initial weight loss in the temperature range of 50–180 ◦C is attributed to the release
of CH3CN, H2O and DMA (observed, 21.83, calcd, 22.69%). From 400 ◦C, the framework begins to
collapse. The Fe2O3 and CdO residues of 42.33% (calcd, 41.03%) are observed.
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Figure 3. The SEM images of Fe3O4@HPU-9 and the corresponding elemental mapping of the composite.

The PXRD patterns of Fe3O4, HPU-9 and Fe3O4@HPU-9 are shown in Figure 4a. The diffraction
peaks of Fe3O4 and HPU-9 were observed in Fe3O4@HPU-9, thereby indicating the successful
hybridization of Fe3O4@HPU-9. The IR spectra of Fe3O4, HPU-9 and Fe3O4@HPU-9 are also
provided in Figure 4b. The carboxylate groups in H4L were observed at 1383 and 1409 cm−1.
All of the characteristics peaks of HPU-9 were also observed in Fe3O4@HPU-9, confirming that the
structure of HPU-9 was preserved. Therefore, considering that the results were supported by the
experiments, we concluded that the Fe3O4@HPU-9 composite that consists of Fe3O4 and HPU-9 was
successfully synthesized.
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3.3. Dye Absorption and Separation

Three cationic dyes, namely, MB, RhB and R6G, with different sizes and charges, and three anionic
dyes, namely, MO, OG and NGB, with different sizes and charges were selected. The molecular
structures of dyes are shown in Figure S2. The selected dyes displayed characteristic peaks.
In particular, the main absorption peaks of MB, RhB, R6G, MO, OG and NGB were at 650, 550, 525, 466,
490 and 720 nm, respectively. In brief, 10 mg of freshly prepared Fe3O4@HPU-9 crystals was immersed
in the different aqueous solutions of the dyes (4 mg/L, 5 mL) at room temperature. All mixtures were
placed in the dark and stirred for 24 h. UV-visible (UV-Vis) spectroscopy was performed to determine
the absorption abilities of Fe3O4@HPU-9. As shown in Figure 5, the disappearance absorption peaks
of the cationic dyes indicated that Fe3O4@HPU-9 preferred to absorb the cationic dyes (MB, RhB
and R6G) over a period of time. By contrast, the absorption of the anionic dyes (OG, MO and NGB)
was not detected. So Fe3O4@HPU-9 exhibited different absorption abilities toward different types
of organic dyes (The self-changes of the cationic dye solution after 24 h were unchanged shown
in Figure S3). Moreover, we studied the selective absorption and separation of cationic dyes from
other mixtures, namely, MB & MO, MB & OG, MB & NGB, R6G & MO, R6G & OG, R6G & NGB,
RhB & MO, RhB & OG, RhB & NGB. As shown in Figure 6 and Figure S4, after absorption for 24 h,
the absorption peaks of the cationic dyes at their respective peaks were weakened, whereas those
of the anionic dyes remain unchanged. It is observed that cationic dyes could be separated from
other anionic dyes in aqueous solution by Fe3O4@HPU-9 (Fe3O4 has no selectivity). In addition, the
selective absorption and separation of the different cationic dyes (MB, R6G or RhB) from RhB & MB,
R6G & MB, R6G & RhB were also studied (Figure S5). We found that Fe3O4@HPU-9 did not exhibit a
significant selectivity toward different cationic dyes. Therefore, we concluded that the distinguishing
characteristics of the absorption behavior of Fe3O4@HPU-9 toward dyes were possibly due to the
structural traits of Fe3O4@HPU-9 instead of size effect, specifically, the strong electrostatic affinity
of the anionic channel of Fe3O4@HPU-9 toward cationic dyes. PXRD confirmed that Fe3O4@HPU-9
almost retained its framework structure during dye absorption (Figure 7), implying that the successful
absorption of cationic dyes did not influence the integrity of the crystalline structure of Fe3O4@HPU-9.
Therefore, Fe3O4@HPU-9 can be developed as a potential adsorbent for removing cationic dyes in
aquatic environments.
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(1) HPU-9; (2) HPU-9 absorption after one cycle; (3) HPU-9 desorption after one cycle; (4) R6G/HPU-9
absorption after one cycle; (5) R6G/HPU-9 desorption after one cycle; (6) R6G/HPU-9 absorption after
four cycles.

3.4. Absorption Kinetics and Absorption Isotherms

The absorption experiment was run as follows: 10 mg of Fe3O4@HPU-9 was immersed in 10 mL
of R6G aqueous solutions. The data showed that the absorption capacities of the Fe3O4@HPU-9
increased with the increase in the concentration of R6G (20, 50, 100, 200, 300, 500 M). As shown
in Figure 8a, the absorption capacity for R6G significantly increased in the initial 18 h, gradually
reaching equilibrium. Then, a pseudo-second-order model was explored for further exploration of the
absorption kinetics. The constants were calculated by using the following equation [25]:

t
qt

=
1

q2
e k2

+
t
qe

where qt and qe are the amounts of R6G adsorbed at a given time and at equilibrium, respectively, and
k2 is the rate constant for pseudo-second-order kinetics of R6G. As can be seen in Table 1 and Figure 8b,
the fitting of the experimental results shows that the values obtained from the model fitting agree with
the experimental data. The calculated values of k2 for the absorption of R6G are comparative to the
previously reported MOF-235 (0.000218 g·mg−1·min−1).
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Table 1. Kinetic parameters for the absorption of R6G by Fe3O4@HPU-9 at 293K.

Pseudo-Second-Order 20 M 50 M 100 M 200 M 300 M 500 M

qe (mg·g−1) 19.48 46.18 92.42 175.74 229.35 316.45
R2 0.99504 0.99887 0.99724 0.99825 0.99745 0.99941

K2 (g·mg−1·min−1) 2.43 × 10−4 2.86 × 10−4 9.26 × 10−5 5.45 × 10−5 3.87 × 10−5 3.74 × 10−5

Absorption isotherms are also applied to describe the interaction between R6G and Fe3O4@HPU-9.
Figure 9a shows the absorption isotherms of R6G onto Fe3O4 and HPU-9 and Fe3O4@HPU-9. The
absorption data were analyzed with the Langmuir equation [26]:

Ce

qe
=

Ce

Qm
+

1
KLQm

where Ce, qe, Qm and KL are the equilibrium concentration of R6G, the equilibrium absorption capacity,
the maximum absorption capacity and the Langmuir constant, respectively. Table 2 shows the detailed
data obtained with this analysis. The maximum absorption capacity of Fe3O4@HPU-9 for R6G was
362.318 mg·g−1. Ce/qe plotted against Ce yielded straight lines, as shown in Figure 9b and Figure S6.
The correlation coefficients, R2, of the Langmuir equation were found to be larger than 0.99, indicating
the absorption of R6G follows the Langmuir absorption model.
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A reusability test was performed to analyse the recyclable and reusable properties of Fe3O4@HPU-9
(Figure 10). Under room temperature, the regeneration of Fe3O4@HPU-9 was successfully achieved by
immersing R6G@Fe3O4@HPU-9 in saturated ethanol and NaCl for 12 h. The removal efficiency during
the fourth cycle exhibited an almost similar rate as that of the first absorption cycle, indicating good
regeneration and reusability. In the entire recycling process, the solution was poured directly without
centrifugal separation. Our data confirmed that the proposed magnetic composite could be recycled
and reused several times, making it more convenient, economic and efficient than common adsorbents.Materials 2018, 11, x FOR PEER REVIEW  10 of 12 
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Table 2. Langmuir parameters for the absorption of R6G by HPU-9, Fe3O4 and Fe3O4@HPU-9.

Analyte qexp
Langmuir Constants

Qm KL R2

HPU-9 317.273 384.615 0.025 0.99736
Fe3O4 15.377 25.013 0.0032 0.99159

Fe3O4@HPU-9 304.536 362.318 0.024 0.99151

4. Conclusions

In summary, we successfully synthesized a novel magnetic Fe3O4@HPU-9 hybrid, which shows
excellent absorption of cationic dyes from aqueous solution and could be easily separated and reused
several times without degrading the absorption capacity. The Fe3O4@HPU-9 particle possessed a
well-defined core-shell structure consisting of a Fe3O4 core and a HPU-9 shell. In the composites,
the anionic HPU-9 shell exhibits the selective absorption of cationic dyes by the utilization of the
large pore space with anionic binding sites through direct electrostatic attractions between HPU-9 and
cationic dyes, and the Fe3O4 core serves as a magnetic particle. The maximum absorption capacity
of Fe3O4@HPU-9 for R6G was 362.318 mg·g−1. In the entire recycling process of dye absorption,
the superabundant solution of dye was poured directly without centrifugal separation. Our data
suggested that the magnetic Fe3O4@HPU-9 hybrid has great potential to be employed as a convenient,
economic and efficient adsorbent for the treatment of wastewater containing cationic dyes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/5/744/s1,
Figure S1: The TG curve of HPU-9 and Fe3O4@HPU-9, Figure S2: The molecular structures of dyes, Figure S3:
The self-changes of cationic dye solution after 24 h, Figure S4: The selective adsorption of cationic dye from the
mixtures of cationic and anionic dye solutions by Fe3O4@HPU-9, Figure S5: The adsorption competition between
two kinds of cationic dyes by Fe3O4@HPU-9., Figure S6: Langmuir plots of the isotherms for R6G adsorption
onto Fe3O4 and HPU-9. Table S1: The information of regents, Table S2: Crystal data and structure refinement for
HPU-9 a.
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