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Abstract
Advances	in	understanding	avian	nesting	ecology	are	hindered	by	a	prevalent	lack	of	
agreement	between	nest-	site	characteristics	and	fitness	metrics	such	as	nest	success.	
We	posit	this	is	a	result	of	inconsistent	and	improper	timing	of	nest-	site	vegetation	
measurements.	Therefore,	we	evaluated	how	the	timing	of	nest	vegetation	measure-
ment	 influences	 the	estimated	effects	of	vegetation	structure	on	nest	 survival.	We	
simulated	phenological	changes	in	nest-	site	vegetation	growth	over	a	typical	nesting	
season	and	modeled	how	 the	timing	of	measuring	 that	 vegetation,	 relative	 to	nest	
fate,	creates	bias	in	conclusions	regarding	its	influence	on	nest	survival.	We	modeled	
the	bias	associated	with	four	methods	of	measuring	nest-	site	vegetation:	Method	1—
measuring	at	nest	initiation,	Method	2—measuring	at	nest	termination	regardless	of	
fate,	Method	3—measuring	at	nest	termination	for	successful	nests	and	at	estimated	
completion	for	unsuccessful	nests,	and	Method	4—measuring	at	nest	termination	re-
gardless	of	fate	while	also	accounting	for	initiation	date.	We	quantified	and	compared	
bias	for	each	method	for	varying	simulated	effects,	ranked	models	for	each	method	
using	AIC,	and	calculated	the	proportion	of	simulations	in	which	each	model	(measure-
ment	method)	was	selected	as	 the	best	model.	Our	 results	 indicate	 that	 the	risk	of	
drawing	an	erroneous	or	spurious	conclusion	was	present	in	all	methods	but	greater	
with	Method	2	which	is	the	most	common	method	reported	in	the	literature.	Methods	
1	and	3	were	similarly	less	biased.	Method	4	provided	no	additional	value	as	bias	was	
similar	to	Method	2	for	all	scenarios.	While	Method	1	is	seldom	practical	to	collect	in	
the	field,	Method	3	is	logistically	practical	and	minimizes	inherent	bias.	Implementation	
of	Method	3	will	facilitate	estimating	the	effect	of	nest-	site	vegetation	on	survival,	in	
the	least	biased	way,	and	allow	reliable	conclusions	to	be	drawn.
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vegetation	structure

1  | INTRODUCTION

Nest	 success	 has	 been	 identified	 as	 a	 crucial	 population	 parameter	
for	birds	(DeMaso	et	al.,	2011;	Hoekman,	Mills,	Howerter,	Devries,	&	

Ball,	2002;	Wisdom	&	Mills,	1997).	The	prevailing	paradigm	suggests	
that	birds	select	nest	sites	based	on	proximate	cues	such	as	vegetation	
structure	 that	 are	 linked	 to	ultimate	 factors	 that	 confer	fitness	 (e.g.	
nest	 success)	 (Block	&	Brennan,	 1993;	Hilden,	 1965;	Martin,	 1993;	
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Wiens,	 1989).	As	 such,	much	 of	 the	 literature	 on	 nest	 success	 has	
focused	on	 relationships	 between	nest-	site	 characteristics	 and	nest	
fate	 (Chalfoun	&	Schmidt,	 2012).	These	 studies	 assume	 that	 identi-
fication	 of	 habitat	 correlates	 of	 nest	 success	 will	 elucidate	 mecha-
nisms	such	as	predation	and	resource	availability	that	shape	adaptive	
resource	 selection.	 Furthermore,	 characterization	 of	 relationships	
among	vegetation	structure,	patch	characteristics,	landscape	context,	
and	nest	 fate	will	 inform	our	understanding	of	 the	evolutionary	and	
ecological	 influences	 that	 shape	 life	 history	 strategies	 (Lack,	 1968;	
Southwood,	1977)	and	subsequently	that	of	species	abundance	and	
persistence	(Martin,	1993;	Pimm,	Jones,	&	Diamond,	1988).

Nest	predation	is	the	most	pervasive	cause	of	nest	failure	in	birds	
(Martin,	1995;	Ricklefs,	1969),	and	the	nest	concealment	hypothesis	
suggests	that	denser	foliage	reduces	predator	efficiency,	thus	increas-
ing	the	probability	of	nest	survival	 (Martin,	1992).	Previous	research	
indicates	 that	nest	sites	providing	greater	visual	obstruction	or	con-
cealment	 (e.g.	 taller	 grass,	 denser	 grass,	 greater	 canopy	 cover)	 can	
lower	predation	risk	of	ground	nesting	species	(Davis,	2005;	DeLong,	
Crawford,	&	DeLong,	1995).	However,	 copious	 literature	exists	 that	
fails	 to	 establish	 congruence	 between	 habitat	 use	 and	 fitness.	 This	
ambiguity	in	research	conclusions	could	be	because	of	a	multitude	of	
factors	associated	with	the	complex	process	of	predation.	It	also	has	
been	attributed	to	the	wide	variety	of	anthropogenic,	methodological,	
and	ecological-	evolutionary	explanations	(Chalfoun	&	Schmidt,	2012).

We	posit	a	simple	methodical	explanation	for	the	lack	of	detected	
congruence	between	nest	vegetation	and	nest	success.	We	hypothe-
size	that	habitat	variables	at	nest	sites	are	measured	at	improper	times	
to	properly	capture	ecological	phenomena.	Furthermore,	inconsistent	
timing	 of	 habitat	 measurement	 among	 studies	 likely	 contributes	 to	
a	non-	unified	theory	on	nesting	ecology.	Ideally,	we	should	measure	
nest-	site	vegetation	 at	 the	 temporal	 scale	 that	 aligns	with	 adaptive	
selection	 processes,	 if	 selection	 is	 indeed	 adaptive	 (Hilden,	 1965).	
Given	 that	 nests	 are	 typically	 located	 during	 laying	 or	 incubation	
stages	and	vegetation	structure	may	not	be	reliably	measured	without	
influencing	nest	fate	(Götmark,	1992),	many	researchers	delay	vege-
tation	measurement	until	nest	fate	(success	or	failure)	 is	determined	
(Martin	&	Guepel,	1993;	 Lusk,	 Smith,	Fuhlendorf,	&	Guthery,	2006;	
Dion,	Hobson,	&	Lariviere,	2000;	Pleasant,	Dabbert,	&	Mitchell,	2006;	
Arredondo	et	al.	2007).	Assuming	vegetation	changes	in	a	predictable	
fashion,	 structurally	 and	 compositionally	 throughout	 the	 breeding	
season,	conventional	vegetation	sampling	protocols	might	contribute	
to	bias	 in	analyses	and	could	 lead	to	spurious	conclusions	regarding	
relationships	between	nest	vegetation	characteristics	and	nest	fate.

To	illustrate,	consider	two	nests,	with	a	28-	day	nesting	period,	ini-
tiated	on	the	same	day	in	structurally	identical	vegetation.	If	nest	#1	
is	depredated	on	day	12,	conventional	protocol	would	be	to	measure	
nest-	site	vegetation	on	this	day.	In	contrast,	if	nestlings	in	nest	#2	sur-
vive	to	completion,	conventional	protocol	would	be	to	measure	nest-	
site	vegetation	after	nestlings	have	left	the	nest	(day	28	or	29).	During	
the	 2	weeks	 between	 nest	 #1	 failing	 and	 nest	 #2	 completing,	 con-
siderable	changes	 in	vegetation	structure	 (height,	visual	obstruction,	
etc.)	and/or	composition	might	have	occurred,	especially	in	grassland	
systems.	However,	based	on	 terminal	vegetation	measurements	 the	

researcher	would	have	concluded	that	the	nest	that	hatched	occurred	
in	taller,	denser	vegetation.	Therefore,	the	risk	of	drawing	an	errone-
ous	 conclusion	 regarding	 the	 effects	 of	 surrounding	 vegetation	 on	
nest	fate	might	exist	(i.e.	shorter	vegetation	of	nest	#1	reduced	nest	
concealment	and	made	it	more	vulnerable	to	predation	than	nest	#2),	
when	the	effect	of	shorter	vegetation	is	really	an	artifact	of	the	tim-
ing	of	vegetation	sampling.	Had	nest	#2	also	been	sampled	on	day	12	
(but	 still	 hatched	on	day	28),	 a	 similar	measurement	between	nests	
may	have	been	observed,	perhaps	discounting	 the	previous	 conclu-
sion.	However,	such	an	approach	is	often	logistically	impractical	due	
to	concerns	for	observer	effects	because	the	collection	of	nest	vege-
tation	measurements	while	a	nest	 is	still	active	could	 influence	nest	
fate.	A	potentially	less	biased	comparison	would	require	an	alternative	
protocol	where	sampling	occurs	at	a	consistent	point	 in	 the	nesting	
period	for	both	nests,	regardless	of	fate,	for	example	sample	nest	#2	
after	completion	and	sample	nest	#1	on	the	estimated	(expected)	day	
of	completion	(i.e.	day	28),	 therefore	permitting	a	direct	comparison	
between	nests	that	were	successful	and	unsuccessful.	This	approach	
could	also	elucidate	structural	or	compositional	differences	in	vegeta-
tion	between	nests	that	are	not	confounded	by	predictable	vegetation	
growth	over	time.

The	 peer-	reviewed	 literature	 contains	many	 examples	 of	 papers	
using	 the	 conventional	 protocol	 (Arrendondo,	 Hernandez,	 Bryant,	
Bingham,	&	Howard,	2007;	Dion	et	al.,	2000;	Lusk	et	al.,	2006;	Martin	
&	Guepel,	1993;	and	Pleasant	et	al.,	2006)	and	is	largely	depauperate	
of	the	alternative	protocol	(notable	exceptions	include	Sveum,	Edge,	&	
Crawford,	1998;	Watters	et	al.	2002).	The	published	research	clearly	
illustrates	the	lack	of	an	accepted	timing	for	measuring	nest-	site	veg-
etation	(Borgmann	2010,	Borgmann	&	Conway,	2015).	Borgmann	and	
Conway	(2015)	conducted	a	review	of	106	published	studies	regarding	
the	nest	concealment	hypothesis.	Thirty-	seven	studies	measured	veg-
etation	1	week	after	fate	(successful	or	failed),	51	after	being	inactive	
(vague	description	of	timing	 in	 the	published	 literature),	 and	19	not	
reported—indicating	a	wide	discrepancy	in	reporting	of	methodology.	
They	also	found	a	relationship	between	the	timing	of	foliage	density	
estimates	and	support	 for	 the	nest	 foliage	density	hypothesis;	 thus,	
methodology	is	obfuscating	the	potential	underlying	mechanisms	driv-
ing	adaptive	selection	and	survival	for	birds.	Borgmann	and	Conway	
(2015)	also	discussed	possible	 solutions	 to	 the	timing	of	vegetation	
measurements,	but	quantifiable	solutions	were	beyond	the	scope	of	
their	work.

Our	 goal	was	 to	 estimate	 the	bias	 associated	with	 conventional	
and	novel	methods	for	measuring	nest-	site	vegetation	in	an	effort	to	
build	a	consensus	on	when	nest	vegetation	should	be	measured.	The	
methods	explored	were	as	follows:	Method	1—measuring	at	nest	ini-
tiation;	Method	2—measuring	at	nest	termination	regardless	of	fate;	
Method	 3—measuring	 at	 nest	 completion	 for	 successful	 nests	 and	
at	 estimated	 completion	 for	 unsuccessful	 nests	 [a	 possible	 solution	
offered	by	Borgmann	and	Conway	(2015)];	and	Method	4—measuring	
at	nest	termination	regardless	of	fate	and	incorporating	nest	initiation	
date	as	a	covariate	(ad	hoc	approach).	We	acknowledge	that	Method	1	
is	likely	impractical	for	researchers	to	collect	due	to	observer	effects,	
but	we	included	this	method	to	compare	nest	measurements	collected	
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at	a	consistent	time	in	the	nesting	cycle	(Methods	1	and	3)	and	mea-
surements	with	inconsistent	timing	(Methods	2	and	4).	We	used	a	sim-
ulation	approach	to	estimate	and	compare	bias	among	methods	when	
modeling	daily	nest	survival,	basing	our	simulations	on	common	effects	
of	vegetation	on	nest	survival	and	a	common	life	history	strategy.

2  | METHODS

2.1 | Vegetation growth simulation

We	simulated	phenological	changes	in	grass	structure	across	a	typical	
nesting	season	for	grassland	nesting	birds	 (e.g.	~60	days).	Simulation	
allowed	us	to	illustrate	scenarios	while	controlling	for	other	confound-
ing	 variables,	 whereas	 using	 real	 nests	 to	 collect	 vegetation	
	measurements	with	the	three	methods	(at	initiation,	at	failure,	and	at	
completion)	would	likely	compromise	nest	survival	estimates	through	
observer	 effects.	 Simulation	 also	 permits	 comparing	 known	 “true”	
effects	to	estimated	effects	from	each	method.	We	modeled	average	
canopy	 height	 (ACH)	 for	 the	 study	 period	 using	 empirically	 derived	
growth	data	from	native	warm	season	grass	fields	monitored	every	two	
days	and	simulated	this	growth	structure	with	multiple	growth	curves	
using	 the	 Michaelis–Menten	 equation	 (Figure	1).	 The	 Michaelis–
Menten	function	is	widely	used	in	ecological	 investigations	to	model	
plant	 growth	 (Harper,	 O’Neill,	 Fielder,	 Newsome,	 &	 DeLong,	 2009;	
Pacala,	Canham,	Silander,	&	Kobe,	1994).	This	equation	is	a	monotonic	
function	that	asymptotically	approaches	saturation	(Bayliss,	1985)	and	
is	appropriate	for	modeling	vegetation	growth	which	is	rapid	and	linear	
early	in	the	growing	season	when	plants	are	allocating	more	energy	to	
vertical	growth,	and	then	reaches	an	asymptote	as	growth	slows	and	
more	energy	is	used	for	inflorescence	production	(Garnier,	1992).	We	
used	the	Michaelis–Menten	function	as	our	deterministic	equation	to	
simulate	ACH	for	each	nest	i	as	a	function	of	time	t:

where a	is	the	asymptote	height	at	which	vegetation	growth	is	maxi-
mized,	b	is	the	slope	value	when	a	is	half	its	value,	and	t	is	the	indepen-
dent	variable	“day.”	We	simulated	ACHit	using	the	Michaelis–Menten	
equation	with	a	normal	error	structure	on	parameters	a	and	b	to	gen-
erate	a	variety	of	growth	curves	to	approximate	stochasticity	associ-
ated	with	vegetation	growth.	All	simulations	were	performed	in	R	(R	
Development	Core	Team	2014).

2.2 | Nest survival simulation

Species	 respond	differently	 to	nest	 vegetation	height	based	on	dif-
ferences	in	nesting	ecology	and	life	history	strategies.	Therefore,	we	
modeled	the	bias	associated	with	each	method	when	modeling	daily	
nest	 survival	by	fixing	 the	coefficient	of	ACHit	 (β1)	 at	3	 levels,	 each	
with	positive	and	negative	effects,	and	at	0	(i.e.	±0.1,	±0.2,	±0.3,	and	
no	effect).	These	fixed	coefficients	represent	the	“true”	effect	of	ACH	
on	nest	survival	probability	 in	our	simulated	datasets.	We	therefore	
calculated	bias	in	our	models	as	the	absolute	difference	between	the	

estimated	 effect	 of	 ACH	 and	 the	 simulated	 “true”	 fixed	 effect.	 For	
example,	 consider	 a	 model	 with	 a	 user-	defined	 “true”	 effect	 (+0.1)	
of	ACH	on	daily	 nest	 survival	 probability.	 This	 value	 is	 on	 the	 logit	
scale	and	equates	to	a	10%	increase	in	daily	survival	rate.	If	the	logis-
tic	exposure	model	 estimates	 an	effect	of	0.3,	 then	 the	bias	would	
be	calculated	as	the	absolute	difference	between	the	two	values	[i.e.	
|(0.1–0.3)|	=	0.2)].	These	simulated	effects	cover	a	range	of	relation-
ships	for	species	that	show	positive	 (e.g.	northern	bobwhite	Colinus 
virginianus;	Taylor,	Church,	&	Rusch,	1999;	Lusk	et	al.,	2006;	greater	
sage-	grouse	 Centrocercus urophasianus;	 DeLong	 et	al.,	 1995)	 and	
	negative	 effects	 of	 ACHit	 (e.g.	 grasshopper	 sparrow	 Ammodramus 
savannarum;	Patterson	&	Best,	1996;	red-	winged	blackbirds	Agelaius 
phoeniceus;	Caccamise,	1977;	Adams,	Burger,	&	Riffell,	2013).	In	addi-
tion,	 nests	 initiated	 earlier	 in	 the	 breeding	 season	 may	 experience	
greater	 success	 compared	 to	 nests	 initiated	 later	 (Perrins,	 1970);	
however,	species	often	exhibit	a	distribution	of	nest	initiations	over	a	
breeding	season	with	differential	effects	on	nest	fate.	Therefore,	we	
simulated	nests	with	“Early”	and	“Late”	nesting	strategies	by	skewing	
the	distribution	of	initiation	dates	across	the	60-	day	season.	As	such,	
“Early”	 nests	were	 normally	 distributed	 around	 the	 first	 half	 of	 the	
season	(with	mean	initiation	15	days	before	the	middle	of	the	season,	
or skew	=	–15)	and	“Late”	nests	were	normally	distributed	around	the	
last	half	of	 the	season	 (skew	=	15)	 (Appendix	1).	Nesting	studies	 for	
precocial	birds	(e.g.	northern	bobwhite,	grouse	(Centrocercus spp.),	and	
turkeys	(Meleagris spp.))	typically	estimate	survival	for	the	incubation	
periods	only,	whereas	survival	is	usually	estimated	for	the	combined	
laying	and	incubation	periods	for	altricial	birds.	To	minimize	ambigu-
ity,	we	modeled	survival	over	the	“nesting	period”	which	could	include	
incubation	 for	precocial	birds	and	 incubation	plus	 laying	 for	altricial	
birds.	We	modeled	a	28-	day	nesting	period	to	cover	the	range	of	incu-
bation	and	laying	periods	for	multiple	species	(Conover,	Dinsmore,	&	
Burger,	2011;	Lituma,	Morrison,	&	Whiteside,	2012;	Williams,	Austin,	
&	Peoples,	1980).	For	each	nest	survival	analysis,	we	simulated	600	
nests	over	the	study	period	with	an	intercept	(β0)	corresponding	to	a	
mean	nest	success	rate	35%	for	a	28-	day	nesting	period,	before	incor-
porating	effects	of	ACH.

ACHit=
at

b+ t

F IGURE  1 Simulated	average	canopy	height	(ACH)	measurements	
across	typical	grassland	bird	nesting	season
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Our	 simulation	 began	 by	 generating	 a	 random	 initiation	 date	
for	 each	 nest	 i	 as	 datei	~	N(μdate,	 σdate),	where	 μdate	=	30+	 skew	 and	
σdate	=	30/7.	This	date	was	restricted	to	positive	values	and	rounded	
to	an	integer.	For	each	nest,	we	randomly	simulated	an	ACH	growth	
curve	 (ACHit; see	Vegetation	Growth	 Simulation),	 and	 the	 nest	was	
randomly	initiated	at	some	time	t	along	this	growth	curve.	Once	initi-
ated,	nest	survival	from	t	–	1	to	t	was	modeled	as	a	Bernoulli	process	
with	 probability	φit,	 given	 that	 the	nest	was	 active	 at	 t	 –	 1,	 that	 is,	
yit	~	Bern(φit|yit–1	=	1).	We	included	covariate	effects	on	survival	as:

where	additional	 error	 for	 each	nest	was	modeled	as	εi ~ N(0,	0.05).	
Nests	were	considered	successful	 if	 they	 survived	until	fledging	age	
(28	days	 old).	 To	 simulate	 the	 encounter	 history,	 for	 each	 nest	 we	
randomly	assigned	an	age	of	entry	as	agei	~	N(μage,	σage),	where	mean	
age	(μage)	was	the	middle	of	the	nesting	cycle	(L/2)	and	σage	=	L/6.	If	a	
nest	 failed	before	 their	entry	age,	 they	were	not	 represented	 in	 the	
final	sample	of	simulated	nests.	Thus,	although	600	nests	were	initially	
simulated,	 <600	 nests	were	 available	 in	 each	 scenario	 for	modeling	
nest	survival.	We	then	generated	an	encounter	history	for	each	nest,	
assuming	3-	day	intervals	between	each	visit	beginning	on	the	day	of	
entry.	For	each	nest,	we	recorded	ACHit	when	the	nest	was	initiated	
(Method	1),	ACHit	when	the	nest	became	inactive	(Methods	2	and	4),	
and	ACHit	at	fledging	age	(Method	3).	As	such,	ACHit	for	Methods	2	and	
4	was	always	less	than	ACHit	for	Method	3	for	failed	nests	but	equal	for	
fledged	nests.	We	created	14	scenarios,	one	for	each	β1	coefficient	for	
ACH,	and	generated	100	random	datasets	for	each	scenario.

We	 used	 the	 logistic	 exposure	method	 (Shaffer,	 2004)	 to	model	
daily	nest	survival	probability	for	each	simulated	dataset	and	created	
five	models,	including	one	model	for	each	method	and	a	null	(intercept-	
only)	model.	We	also	used	Akaike’s	information	criterion	(Burnham	&	
Anderson,	2002)	 to	 rank	models	 for	each	dataset	and	calculated	 the	
proportion	 of	 simulations	 in	 which	 each	 model	 (nest	 measurement	
method)	was	 selected	as	 the	best	model	 (i.e.	 lowest	AIC	score).	This	
approach	allowed	us	to	determine	how	often	the	most	biased	model	is	
considered	the	“best”	model,	thus	illustrating	the	potential	for	drawing	
erroneous	conclusions.	All	modeling	and	simulations	were	performed	in	
R	(R	Development	Core	Team	2014),	and	example	code	for	simulation,	
nest	survival	modeling,	and	summary	output	is	provided	in	Appendix	1.

3  | RESULTS

Of	the	600	nests	initially	simulated	in	each	dataset,	the	number	of	nests	
used	in	survival	analysis	varied	(mean	=	340.3;	range:	310–371).	ACH	
measurements	for	successful	and	failed	nests	varied	by	method,	effect	
sign	and	size,	and	mean	nest	initiation	date	(Figure	2).	Methods	1	and	
3,	 where	 nest-	site	 vegetation	 was	 measured	 at	 a	 consistent	 timing	
regardless	of	nest	 fate	 (initiation	 for	Method	1	and	completion/esti-
mated	completion	for	Method	3),	produced	similar	ACH	measurements	
between	hatched	and	failed	nests.	Methods	2	and	4,	where	vegetation	
was	measured	at	inconsistent	periods	(hatch	or	failure),	produced	the	

greatest	difference	in	ACH	between	hatched	and	failed	nests	because	
vegetation	at	failed	nests	was	measured	earlier	than	hatched	nests.	The	
absolute	difference	in	ACH	measurements	between	hatched	and	failed	
nests	with	Method	2	increased	as	the	positive	effect	of	ACH	increased		
but	not	with	greater	negative	effects	of	ACH	(Figure	2).

3.1 | Bias

Methods	2	and	4	were	the	most	biased,	while	Methods	1	and	3	were	
equally	the	least	biased	across	all	scenarios	(Figures	3	and	4).	The	only	
exception	was	for	a	+	0.3	effect	of	ACH	on	daily	nest	survival	prob-
ability,	where	Method	2	was	the	least	biased	for	Late-	initiated	nests.	
In	 this	 scenario,	Method	 3	was	 the	most	 biased	method	 (Figure	4).	
Across	 all	 methods,	 bias	 was	 less	 for	 Late-	initiated	 nests.	 Overall,	
bias	was	 relatively	constant	 for	Methods	1	and	3	across	all	nesting	
scenarios.	However,	bias	decreased	with	an	increasing	positive	effect	
and	increased	with	increasing	negative	effect	of	ACH	on	nest	survival	
probability	for	Methods	2	and	4.

3.2 | Model selection

Method	 2	was	 overwhelmingly	 selected	 as	 the	 best	 approximating	
model	with	greater	frequency	across	all	scenarios	with	the	exception	
of	−0.3	effect	of	ACH	on	daily	nest	survival	probability	where	Method	
3	was	selected	in	the	majority	of	scenarios	(Figures	5	and	6).	For	all	
Early-	initiated	nests,	the	Method	4	was	the	second	most	often	chosen	
model.	The	null	model	was	generally	the	second	most	often	chosen	
model	for	Late-	initiated	nest	when	Method	2	was	the	most	often	cho-
sen,	 and	 vice	 versa.	One	 exception	 to	 this	 trend	 occurred	 for	 −0.2	
effect	of	ACH	on	nest	survival	probability	where	Method	3	was	the	
second	most	often	chosen	model	after	the	null	model.	These	results	

logit(φit)=β0+β1ACHit+εi

F IGURE  2 Effect	size	(as	the	absolute	difference	between	
ACH	measurements	for	successful	and	unsuccessful	nests)	in	
average	canopy	height	and	standard	error	between	successful	and	
unsuccessful	nests	with	varying	coefficients	for	average	canopy	
height	for	four	nest	vegetation	measurement	methods	(Method	
1	=	measurement	at	nest	initiation;	Methods	2	and	4	=	measurement	
at	nest	attempt	completion	(fledge	or	fail);	Method	3	=	measurement	
at	estimated	fledge	date).	†User-	defined	coefficient	for	effect	of	
average	canopy	height	on	nest	success
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illustrate	the	preponderance	of	risk	of	drawing	spurious	or	erroneous	
conclusions	regarding	nest-	site	vegetation	and	nest	fate.

The	 risk	of	drawing	erroneous	or	 spurious	 conclusion	 is	present	
in	all	approaches	to	measuring	nest-	site	vegetation;	however,	overall	
Methods	2	and	4	were	the	most	biased	approach	in	93%	of	modeling	
scenarios.	Interestingly,	Method	2	was	also	selected	as	the	best	model	
in	10	of	those	scenarios	(71%).	For	scenarios	with	no	simulated	effect	
of	ACH	on	nest	fate,	Method	2	estimated	a	bias	>0.5	for	Early-	initiated	
nests,	 indicating	 a	 strong	 positive	 or	 negative	 effect	when	 the	 true	
effect	was	0	(i.e.	no	effect).	Furthermore,	Method	2	was	selected	as	
the	best	competing	model	for	this	scenario.	Therefore,	not	only	was	
a	spurious	effect	found	with	this	method	but	model	selection	analysis	
indicated	this	method	as	the	best	model.	This	would	lead	to	errone-
ous	conclusions	regarding	the	effect	of	vegetation	structure	on	nest	
survival	probability.	Similarly,	for	the	overwhelming	majority	of	other	
effects	 of	ACH,	Method	2	or	 4	was	 the	most	 biased	 and	most	 fre-
quently	 chosen	 best	 model	 for	 all	 Early-		 and	 Late-	initiated	 nesting	
scenarios.	Bias	was	 less	for	all	Late-	initiated	scenarios,	 regardless	of	
method.	Unfortunately,	the	least	biased	Methods	(1	and	3)	for	these	
scenarios	were	rarely	selected	as	best	models.

4  | DISCUSSION

Our	objective	was	 to	 evaluate	 and	demonstrate	 how	different	tim-
ings	of	nest	vegetation	measurement	methods	influence	conclusions	
regarding	effects	of	nest	vegetation	structure	on	daily	nest	 survival	
probability.	Our	simulation	approach	provides	conclusive	evidence	of	

inherent	bias	associated	with	each	of	these	vegetation	measurement	
methods;	however,	the	magnitude	of	bias	varied	with	changes	in	the	
effect	and	sign	of	simulated	ACH	effect	and	nest	initiation	date.	For	
most	nesting	scenarios	simulated,	the	most	biased	method	(Method	
2)	was	chosen	as	the	best	competing	model,	whereas	the	least	biased	
methods	 (1	 and	 3)	 were	 seldom	 selected	 as	 the	 best	 model.	 This	
result	was	unexpected	considering	the	bias	associated	with	Method	

F IGURE  3 Bias	(absolute	difference	between	the	simulated	
effect	of	ACH	and	the	estimated	coefficient	from	each	model)	in	the	
effect	of	average	canopy	height	(ACH)	across	a	range	of	simulated	
coefficients	[β	=	±0.3,	±0.2,	±0.1,	0]	for	four	nest	vegetation	
measurement	methods	(Method	1	=	measurement	at	nest	initiation;	
Method	2	=	measurement	at	nest	attempt	completion	(fledge	or	
fail);	Method	3	=	measurement	at	estimated	fledge	date;	Method	
4	=	measurement	at	nest	completion	(fledge	or	fail)	plus	covariate	
for	Initiation	date)	for	Early-	initiated	nests	with	28-	day	incubation	
periods	and	35%	nest	success.	Error	bars	represent	95%	confidence	
intervals

F IGURE  4 Bias	(absolute	difference	between	the	simulated	effect	
of	ACH	and	the	estimated	coefficient	from	each	model)	in	the	effect	
of	ACH	across	a	range	of	simulated	coefficients	[β	=	±0.3,	±0.2,	
±0.1,	0]	for	four	nest	vegetation	measurement	methods	(Method	
1	=	measurement	at	nest	initiation;	Method	2	=	measurement	at	
nest	attempt	completion	(fledge	or	fail);	Method	3	=	measurement	at	
estimated	fledge	date;	Method	4	=	measurement	at	nest	completion	
(fledge	or	fail)	plus	covariate	for	Initiation	date)	for	Late-	initiated	
nests	with	28-	day	incubation	periods	and	35%	nest	success.	Error	
bars	represent	95%	confidence	intervals

F IGURE  5 Proportion	of	simulations	that	four	nest	measurement	
methods	(Method	1	=	measurement	at	nest	initiation;	Method	
2	=	measurement	at	nest	attempt	completion	(fledge	or	fail);	Method	
3	=	measurement	at	estimated	fledge	date;	Method	4	=	measurement	
at	nest	completion	(fledge	or	fail)	plus	covariate	for	Initiation	date)	
and	null	model	were	chosen	as	the	top	ranked	model,	based	on	
lowest	AIC	value	across	seven	effects	of	average	canopy	height	on	
nest	survival	ACH	[β	=	±0.3,	±0.2,	±0.1,	0]	for	Early-	initiated	nests	
with	28-	day	incubation	periods	and	35%	nest	success
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2.	 Further	 investigation	 revealed	 a	 correlation	 between	 ACH	 and	
nest	exposure	length	when	using	Methods	2	and	4	that	did	not	occur	
when	using	Methods	1	and	3.	This	correlation	is	representative	of	the	
fact	that,	on	average,	failed	nests	have	shorter	exposure	periods	and	
shorter	vegetation,	when	using	Method	2.	When	vegetation	is	meas-
ured	at	the	time	of	failure	 instead	of	consistently	across	all	nests,	a	
positive	relationship	between	vegetation	height	and	exposure	length	
is	 created.	We	hypothesize	 this	 correlation	operates	 as	 a	proxy	 for	
some	other	time-	varying	process	(i.e.	survival	time),	therefore	explain-
ing	a	greater	amount	of	variation	and	being	selected	as	the	top	com-
peting	 model.	 This	 inherent	 correlation	 provides	 further	 evidence	
that	Method	2	can	lead	to	a	spurious	conclusion	based	on	correlative,	
rather	than	causal	relationships.

The	timing	of	vegetation	measurement	and	 its	 impacts	on	 inter-
pretation	 of	 selective	 processes	 is	 well	 documented	 (Burhans	 &	
Thompson,	1998;	Rivera	et	al.	2009).	Burhans	and	Thompson	(1998)	
recommended	measuring	nest-	site	vegetation	when	nest-	site	 selec-
tion	occurs	but	acknowledge	the	risk	of	influencing	nest	fate	with	this	
approach.	However,	 they	 found	 that	measuring	nest-	site	vegetation	
later	in	the	season	did	not	affect	the	relationship	between	nest	con-
cealment	and	nest	fate.	Rivera	et	al.	(2009)	found	that	measurements	
of	vegetation	structure	in	highly	seasonal	ecosystems	could	be	delayed	
until	the	end	of	the	reproductive	cycle.	We	found	decreased	bias	 in	
all	Late-	initiated	scenarios	which	is	likely	a	result	of	the	relatively	flat	
slope	of	the	vegetation	growth	curve	during	the	Late	nesting	season	
where	 differences	 in	ACH	 are	minimal	 between	 hatched	 and	 failed	
nests.	As	grasses	reallocate	more	energy	to	inflorescence	production	
and	less	to	growth,	ACH	becomes	relatively	stable;	thus,	the	disparity	
in	ACH	between	hatched	and	failed	nests	 is	reduced.	Therefore,	the	
inherent	bias	associated	with	timing	of	vegetation	measurement	could	

be	minimized	for	Late	season	nesting	attempts	in	grasslands	but	not	in	
other	environments	(Rivera	et	al.	2009).

Whereas	the	validity	of	the	nest	concealment	hypothesis	is	not	in	
question,	inherent	methodological	inconsistencies	in	field	studies	can	
hinder	the	ability	to	impartially	investigate	such	and	related	hypothe-
ses	regarding	avian	habitat	selection	and	nest	survival	 (Borgmann	&	
Conway,	2015).	Multiple	researchers	have	found	a	lack	of	congruence	
between	 factors	 that	 influence	 selection	 and	 those	 that	 affect	 nest	
success.	 For	 example,	Davis	 (2005)	 found	 that	 grassland	 passerines	
selected	nests	with	taller	and	denser	vegetation,	but	these	variables	
did	 not	 influence	 nest	 success.	 Similarly,	 Clark	 and	 Shutler	 (1999)	
found	complete	 incongruence	between	nest-	site	characteristics	and	
nest	 fate	 for	blue-	winged	teal	 (Anas discors),	gadwall	 (Anas strepera),	
and	northern	shoveler	(Anas clypeata),	but	found	some	congruence	for	
American	wigeon	 (Anas Americana)	 and	 mallard	 (Anas platyrynchos).	
Considering	the	paucity	of	our	understanding	regarding	the	relation-
ship	between	nest-	site	selection	and	fitness	and	the	multiple	hypoth-
eses	for	the	discordance	therein	(Chalfoun	&	Schmidt,	2012),	a	more	
formal	experimental	investigation	into	methodological	inconsistencies	
is	warranted.	Our	results	provide	two	primary	contributions	to	nest-
ing	ecology	 research:	 (1)	an	additional,	plausible	explanation	 for	 the	
scarcity	of	consistent	published	effects	of	vegetation	structure	on	nest	
fate	 (see	Chalfoun	&	Schmidt,	2012),	and	(2)	an	alternative	protocol	
for	future	nesting	studies.	We	demonstrated	the	prevalence	and	mag-
nitudes	of	bias	associated	with	conventional	protocols	and	illustrate	a	
method	that	minimizes	bias	and	thus	provides	more	reliable	estimates.	
Our	 results	offer	 future	 studies	a	methodological	 standardization	 to	
evaluate	alternative	hypotheses	without	temporal	bias	 in	vegetation	
measurements.	We	 also	 provide	 a	method	 to	 reduce	 the	 ambiguity	
regarding	timing	of	nest-	site	vegetation	measurements	that	 is	wide-
spread	in	the	literature	(Borgmann	&	Conway,	2015).

While	we	provide	some	evidence	of	potential	risks	associated	with	
measuring	hazard	process	covariates	at	time	of	failure,	more	work	is	
needed	 in	 this	field.	Such	 risks	may	become	more	apparent	 in	 rap-
idly	changing	environments	or	environments	that	change	at	a	faster	
rate	than	can	be	measured.	Modeling	effects	of	changing	vegetation	
on	daily	nest	survival	probability	 is	another	advance	that	should	be	
explored,	but	currently	remains	unfeasible	due	to	observer	effects.	An	
alternative	would	be	to	include	a	model	for	latent	vegetation	growth	
in	conjunction	with	the	nest	survival	model,	informed	by	appropriate	
vegetation	data,	to	more	directly	estimate	the	effects	of	vegetation	
structure	on	daily	survival	probability	(N.	T.	Hobbs,	personal	commu-
nication).	 Converse,	 Royle,	Alder,	Urbanek,	 and	Barzen	 (2013)	 pro-
vided	a	template	for	this	approach	by	modeling	a	temporally	varying,	
nest-	specific	 covariate	 (biting	 insect	 counts)	 on	 daily	 nest	 survival.	
They	used	incomplete	data	to	spatially	interpolate	an	index	of	daily	
insect	abundance	and	its	effect	on	nest	success.	Their	approach	pro-
vides	a	methodological	model	that	could	be	adjusted	for	vegetation	
growth	data	at	the	nest	site.	Modeling	temporally	varying	individual	
covariates	with	incomplete	data	could	provide	increased	understand-
ing	of	factors	affecting	both	nest-	site	selection	and	nest	fate.

We	 did	 not	 model	 all	 possible	 effects	 of	 vegetation	 structure	
on	daily	nest	survival	nor	did	we	attempt	to	model	every	functional	

F IGURE  6 Proportion	of	simulations	that	four	nest	measurement	
methods	(Method	1	=	measurement	at	nest	initiation;	Method	
2	=	measurement	at	nest	attempt	completion	(fledge	or	fail);	Method	
3	=	measurement	at	estimated	fledge	date;	Method	4	=	measurement	
at	nest	completion	(fledge	or	fail)	plus	covariate	for	Initiation	date)	
and	null	model	were	chosen	as	the	top	ranked	model,	based	on	
lowest	AIC	value	across	seven	effects	of	average	canopy	height	on	
nest	survival	ACH	[β	=	±0.3,	±0.2,	±0.1,	0]	for	Late-	initiated	nests	
with	28-	day	incubation	periods	and	35%	nest	success
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relationship	between	vegetation	structure	and	fate.	We	also	only	used	
a	 single	 life	 history	 to	 demonstrate	 the	 phenomena.	We	 chose	 our	
model	parameters	from	the	available	literature	and	use	them	only	as	a	
conceptual	model	to	illustrate	the	inherent	bias	in	conventional	meth-
odology.	However,	we	acknowledge	that	potential	bias	could	be	vari-
able	among	other	life	history	strategies.	For	example,	nesting	period	
length	could	result	in	differential	bias.	Shorter	nesting	periods	would	
reduce	 the	 disparity	 between	vegetation	measurements	 of	 hatched	
and	 failed	 nests	 therefore	 possibly	 reducing	 bias,	 and	 vice	 versa.	
Similarly,	 bias	 could	 be	 affected	 by	 the	magnitude	 of	 nest	 success,	
strength	of	relationship	(±)	with	vegetation	metrics,	and	any	interac-
tion	of	these	variables.	We	encourage	researchers	to	build	upon	our	
base	model	to	answer	more	specific	questions	regarding	methods	in	
nesting	ecology.	Finally,	we	acknowledge	that	our	results	may	produce	
uncertainty	regarding	previous	research	findings.	However,	our	inten-
tion	is	not	to	disregard	any	published	estimates	but	rather	to	provide	a	
quantifiable,	reproducible,	and	realistic	approach	to	aid	researchers	in	
choosing	the	best	field	methods	for	future	research.

We	 can	 conclude	 the	 risk	 of	 estimating	 spurious	 relationships	
between	nest	vegetation	and	daily	nest	survival	is	greater	when	using	
Method	2,	measuring	at	nest	termination	regardless	of	fate;	Method	2	
also	is	a	common	method	reported	in	the	literature.	We	can	also	con-
clude	that	the	risk	of	drawing	erroneous	conclusions	is	prevalent	for	
Early-		and	Late-	initiated	nests,	but	the	risk	is	greater	for	Early	nests.	
Methods	1	and	3	are,	on	average,	similarly	 less	biased	than	Method	
2.	However,	Method	1,	measuring	at	nest	initiation,	is	usually	logisti-
cally	 impractical	for	many	field	studies	where	nesting	individuals	are	
susceptible	to	abandonment	if	disturbed	near	the	onset	of	initiation.	
Therefore,	implementing	Method	3	where	nest-	site	vegetation	is	mea-
sured	 at	 a	 consistent	 point	 in	 the	 nesting	period	 regardless	 of	 nest	
fate	will	facilitate	modeling	effects	of	nest	vegetation	on	daily	survival	
probability	 in	 the	 least	biased	way	and	allow	 reliable	conclusions	 to	
be	drawn.
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APPENDIX 1

The	following	R	code	simulates	the	latent	state	of	nests,	given	effects	
of	average.
canopy	height	(vegetation),	generates	an	encounter	history	based	

on	observed	nests,	and	then	models
daily	nest	survival	according	to	three	measures	of	nest	vegetation:	

ACH	at	initiation	(Method	1),
ACH	upon	end	of	nest	attempt	(fledged	or	failed,	Method	2),	ACH	

at	actual	or	expected	fledging
date	 (Method	3),	and	ACH	upon	end	of	nest	attempt	+	 Initiation	

date	(Method	4).	We	also	included
a	null	(intercept-	only	model),	compared	models	with	Akaike’s	infor-

mation	criterion	(AIC),	and
evaluated	bias	in	parameter	estimates	compared	with	known	(simu-

lated)	values	for	effect	of	ACH.

logit<-function(x){log(x/(1-x))}	#	Function	for	logit	transformation	 
invlogit<-function(x){1/(1+exp(-1*x))}	#	Function	for	inverse	logit	
transformation	 
library(&#x201C;truncnorm&#x201D;)	 
library(&#x201C;plyr&#x201D;)	 
#	Logistic	exposure	link	for	glm	 
logexp	<-	function(exposure	=	1)	 

{	 
linkfun	<-	function(mu)	qlogis(mu^(1/exposure))	 
linkinv	<-	function(eta)	plogis(eta)^exposure	 
mu.eta	<-	function(eta)	exposure	*	plogis(eta)^(exposure-1)	*	 
.Call(stats:::C_logit_mu_eta,	eta,	PACKAGE	=	
&#x201C;stats&#x201D;)	 
valideta	<-	function(eta)	TRUE	 
link	<-	paste(&#x201C;logexp(&#x201C;,	
deparse(substitute(exposure)),	&#x201C;)&#x201D;,	 
sep=&#x201C;&#x201C;)	 
structure(list(linkfun	=	linkfun,	linkinv	=	linkinv,	 
mu.eta	=	mu.eta,	valideta	=	valideta,	 
name	=	link),	 
class	=	&#x201C;link-glm&#x201D;)	 
}	 
seasonLength=60	#	Number	of	days	in	a	season	when	nests	could	be	
initiated	 
Beta1_ACH<-0.1	#	Effect	of	average	canopy	height	(nest	site	
vegetation);	other	values	used	included	 
#	0,	+/-	0.1,	+/-	0.2,	and	+/-	0.3	 
survMin<-0.963	#	Mean	survival	(intercept),	for	35%	survivorship	
over	28	days	 
timeToFledge=28	#	Length	of	nesting	period	 
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numNests=600	#	Number	of	nests	simulated	 
skewInitiation=15	#	Mean	initiation	date	(0	is	middle	of	season);	also	
simulated	skew	=	15	for	Late	nesting	 
skewEntry=0	#	Mean	age	at	entry	(detection)	of	nests	(0	is	middle	of	
nesting	period)	 
epsilonSD=.05	#	Variation	in	daily	nest	survival	 
lastPossibleDate<-seasonLength+timeToFledge	#	Length	of	season	
under	study	 
expos	<-	3	#	Nest	visit	interval	(days)	 
#	Function	to	simulate	vegetation	growth	based	on	the	
Michaelis&#x2013;Menten	equation	 
ach.fun<-function(N){	 
days<-seq(1:lastPossibleDate)	 
ach<-matrix(NA,nrow=N,ncol=lastPossibleDate)	 
for	(i	in	1:N){	 
a<-122	+	rnorm(1,0,15)	 
b<-6	+	rnorm(1,0,0.5)	 
ach[i,]=(a*days)/(b+days)	 
}	 
return(ach)	 
}	 
#	Function	to	simulate	encounter	history	 
encHist<-function(checkPeriod=expos,nestData){	 
eh<-data.frame(ID=NA,expos=NA,vegFail=NA,vegEnd=NA,vegStart=
NA,survive=NA,Age=NA,Day=NA,Initiation=NA,trials=1)	 
numNests<-dim(nestData)[1]	 
for	(i	in	1:numNests){	 
nestCheck<-nestData$dayOfEntry[i]+checkPeriod	 
while	(nestCheck	<	nestData$nestEndDay[i]){	 
ID<-nestData$ID[i]	 
vegStart	<-	nestData$vegStart[i]	#	Method	1	 
vegFail	<-	nestData$vegFail[i]	#	Method	2/4	 
vegEnd	<-	nestData$vegEnd[i]	#	Method	3	 
survive	<-	1	 
Day	<-	nestCheck-expos/2	 
Age	<-	nestData$ageAtEntry[i]	+	Day	-	nestData$dayOfEntry[i]	 
Initiation	<-	nestData$initiationDates[i]	#	Method	4	 
trials	<-	1	 
dat<-cbind(ID,expos,vegFail,vegEnd,vegStart,survive,Age,Day,Initiati
on,trials)	 
eh<-rbind(eh,dat)	 
nestCheck<-nestCheck+checkPeriod	 
}	 
ID<-nestData$ID[i]	 
vegFail	<-	nestData$vegFail[i]	 
vegEnd	<-	nestData$vegEnd[i]	 
vegStart	<-	nestData$vegStart[i]	 
Initiation	<-	nestData$initiationDates[i]	 
if	(nestData$Fail[i]==&#x201C;Yes&#x201D;){	 
survive	<-	0	 
}	else	{survive	<-1}	 
Day	<-	nestCheck-expos/2	 
Age	<-	nestData$ageAtEntry[i]	+	Day	-	nestData$dayOfEntry[i]	 

trials	<-	1	 
dat<-cbind(ID,expos,vegFail,vegEnd,vegStart,survive,Age,Day,Initiati
on,trials)	 
eh<-rbind(eh,dat)	 
}	 
return(eh[-1,])	 
}	 
#	Simulation	code	for	latent	state,	then	apply	encounter	history	and	
run	candidate	models	 
simulation<-function(z){	 
initiationDates<-as.data.frame(floor(rtruncnorm(numNests,1,seasonL
ength,mean=(seasonLength/2)+skewInitiation,sd=seasonLength/7)))	 
colnames(initiationDates)<-&#x201D;x&#x201D;	 
#ageAtEntry<-as.data.frame(floor(rtruncnorm(numNests,1,timeToFle
dge,mean=(timeToFledge/2)+skewEntry,sd=timeToFledge/6)))	 
ageAtEntry<-as.data.frame(floor(runif(numNests,1,timeToFledge)))	 
colnames(ageAtEntry)<-&#x201D;x&#x201D;	 
dayOfEntry<-initiationDates+ageAtEntry-1	 
fail<-as.data.frame(rep(x=NA,times=numNests))	 
nestEndDay<-as.data.frame(rep(x=0,times=numNests))	 
possiblyObserved<-as.data.frame(rep(x=NA,times=numNests))	 
ach.dat<-ach.fun(numNests)	#	Simulate	ACH	for	each	nest,	over	
length	of	the	season	 
ach.mean	<-	mean(ach.dat)	#	Mean	ACH	in	dataset	 
ach.sd	<-	sd(ach.dat)	#	SD	of	ACH	in	dataset	 
ach.dat	<-	(ach.dat-ach.mean)/ach.sd	#	Scale	ACH	for	modeling	 
ID<-factor(seq(1:numNests))	 
nestDates<-cbind(ID,initiationDates,dayOfEntry,ageAtEntry,fail,nest
EndDay,possiblyObserved)	 
colnames(nestDates)<-c(&#x201C;ID&#x201D;,&#x201D;initiationD
ates&#x201D;,&#x201D;dayOfEntry&#x201D;,&#x201D;ageAtEntr
y&#x201D;,	&#x201C;Fail&#x201D;,	&#x201C;nestEndDay&#x201
D;,&#x201D;possiblyObserved&#x201D;)	 
rm(ID,initiationDates,dayOfEntry,ageAtEntry,fail,nestEndDay,possibl
yObserved)	 
#	Simulate	latent	state	of	each	nest	 
for(k	in	1:numNests)	 
{	 
for(m	in	1:timeToFledge)	 
{	 
if((nestDates$dayOfEntry[k])>(nestDates$nestEndDay[k]))	 
{	 
nestDates$possiblyObserved[k]<-&#x201D;F&#x201D;	 
}	else{	 
nestDates$possiblyObserved[k]<-&#x201D;T&#x201D;	 
}	 
if(runif(1,0,1)	>	(invlogit(logit(survMin)+ach.dat[k,nestDates$initiation
Dates[k]+(m-1)]*Beta1_ACH)+rnorm(n=1,mean=0,sd=epsilonSD))){	 
nestDates$Fail[k]<-&#x201D;Yes&#x201D;	 
nestDates$nestEndDay[k]<-(nestDates$initiationDates[k]+(m-1))	#	
Date	of	completion	of	nest	attempt	 
nestDates$vegFail[k]<-ach.dat[k,nestDates$nestEndDay[k]]	#	
Vegetation	on	completion	date	nest	failed	 
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nestDates$vegEnd[k]<-ach.dat[k,nestDates$initiationDates[k]+timeT
oFledge-1]	#	Vegetation	on	completion	date	(fledge	or	fail)	 
nestDates$vegStart[k]<-ach.dat[k,nestDates$initiationDates[k]]	#	
Vegetation	on	initiation	date	 
nestDates$vegFail.us[k]<-ach.dat[k,nestDates$nestEndDay[k]]*ach.
sd+ach.mean	#	Unscaled	estimate	of	ACH	 
nestDates$vegEnd.us[k]<-ach.dat[k,nestDates$initiationDates[k]+ti
meToFledge-1]*ach.sd+ach.mean	#	Unscaled	estimate	of	ACH	 
nestDates$vegStart.us[k]<-ach.dat[k,nestDates$initiationDates[k]]*
ach.sd+ach.mean	#	Unscaled	estimate	of	ACH	 
nestDates$vegFail.diff[k]<-nestDates$vegFail.us[k]-
nestDates$vegStart.us[k]	#	Vegetation	difference	 
nestDates$vegEnd.diff[k]<-nestDates$vegEnd.us[k]-
nestDates$vegStart.us[k]	#	Vegetation	difference	 
break	 
}	else	{	 
nestDates$Fail[k]<-&#x201D;No&#x201D;	 
nestDates$nestEndDay[k]<-(nestDates$initiationDates[k]+(m-1))	#	
Date	of	completion	of	nest	attempt	 
nestDates$vegEnd[k]<-nestDates$vegFail[k]	#	Vegetation	on	
completion	date	(fledge	or	fail)	 
nestDates$vegFail[k]<-ach.dat[k,nestDates$nestEndDay[k]]	#	
Vegetation	on	completion	date	(fledge	or	fail)	 
nestDates$vegStart[k]<-ach.dat[k,nestDates$initiationDates[k]]	#	
Vegetation	on	initiation	date	 
nestDates$vegFail.us[k]<-ach.dat[k,nestDates$nestEndDay[k]]*ach.
sd+ach.mean	#	Unscaled	estimate	of	ACH	 
nestDates$vegEnd.us[k]<-ach.dat[k,nestDates$initiationDates[k]+ti
meToFledge-1]*ach.sd+ach.mean	#	Unscaled	estimate	of	ACH	 
nestDates$vegStart.us[k]<-ach.dat[k,nestDates$initiationDates[k]]*
ach.sd+ach.mean	#	Unscaled	estimate	of	ACH	 
nestDates$vegFail.diff[k]<-nestDates$vegFail.us[k]-
nestDates$vegStart.us[k]	#	Vegetation	difference	 
nestDates$vegEnd.diff[k]<-nestDates$vegEnd.us[k]-
nestDates$vegStart.us[k]	#	Vegetation	difference	 
}	 
}	 
}	 
nestDates<-subset(nestDates,	possiblyObserved==&#x201C;T&#x2
01D;)	#	Retain	nests	actually	observed	in	study	 
veg.fail<-subset(nestDates,Fail==&#x201C;Yes&#x201D;)	 
veg.fledge<-subset(nestDates,Fail==&#x201C;No&#x201D;)	 
mean.vegend.fail<-mean(veg.fail$vegEnd.us)	 
sd.vegend.fail<-sd(veg.fail$vegEnd.us)	 
mean.vegend.fledge<-mean(veg.fledge$vegEnd.us)	 
sd.vegend.fledge<-sd(veg.fledge$vegEnd.us)	 
mean.vegfail.fail<-mean(veg.fail$vegFail.us)	 
sd.vegfail.fail<-sd(veg.fail$vegFail.us)	 
mean.vegfail.fledge<-mean(veg.fledge$vegFail.us)	 
sd.vegfail.fledge<-sd(veg.fledge$vegFail.us)	 
mean.vegstart.fail<-mean(veg.fail$vegStart.us)	 
mean.vegstart.fledge<-mean(veg.fledge$vegStart.us)	 
mean.diff.fail<-mean(veg.fail$vegFail.diff)	 

mean.diff.fledge<-mean(veg.fail$vegEnd.diff)	 
#	Simulate	encounter	history	 
nesteh<-encHist(nestData=nestDates)	 
#	Scale	initiation	date	for	Method	4	 
nesteh$Initiation<-as.numeric(scale(nesteh$Initiation))	 
#	Formulas	for	four	models:	Method	1,	Method	2,	Method	3,	Method	
4,	and	the	null	 
formulas	<-	list(survive/trials	~	vegStart,	survive/trials	~	vegFail,	
survive/trials	~	vegEnd,	 
survive/trials	~	vegFail	+	Initiation,	survive/trials	~	1)	 
aic<-form	<-	vector(&#x201C;list&#x201D;,	length	=	
length(formulas))	 
beta	=	matrix(NA,	nrow=length(formulas),ncol=3)	 
bias1	=	bias2	=	numeric(length(formulas))	 
for	(i	in	1:4)	{	 
LM	<-	glm(formulas[[i]],data=nesteh,family=binomial(link=logexp(nest
eh$expos)))	 
beta[i,1:length(coef(LM))]<-	coef(LM)	 
aic[[i]]	<-	AIC(LM)	 
bias1[i]	<-	abs(Beta1_ACH-coef(LM)[2])	#	Absolute	difference	
between	simulated	and	estimated	effect	 
#	of	ACH	 
bias2[i]	<-	Beta1_ACH-coef(LM)[2]	#	Relative	bias	(positive	means	
underestimated	effect,	negative	 
#	means	overestimated	effect)	 
}	 
beta[5,1]<-	coef(glm(formulas[[5]],data=nesteh,family=binomial(link=l
ogexp(nesteh$expos))))	 
aic[[5]]<-AIC(glm(formulas[[5]],data=nesteh,family=binomial(link=log
exp(nesteh$expos))))	 
colnames(beta)<-names(coef(LM))	 
colnames(beta)[2]<-&#x201D;ACH&#x201D;	 
#	Compare	models	by	Akaike<!--apos-->&#x2019;<!--/apos-->s	
Information	Criterion	(AIC)	 
test.1v2<-aic[[1]]	<	aic[[2]]	 
test.1v3<-aic[[1]]	<	aic[[3]]	 
test.1v4<-aic[[1]]	<	aic[[4]]	 
test.2v3<-aic[[2]]	<	aic[[3]]	 
test.2v4<-aic[[2]]	<	aic[[4]]	 
test.3v4<-aic[[3]]	<	aic[[4]]	 
test.1vnull<-aic[[1]]	<	aic[[5]]	 
test.2vnull<-aic[[2]]	<	aic[[5]]	 
test.3vnull<-aic[[3]]	<	aic[[5]]	 
test.4vnull<-aic[[4]]	<	aic[[5]]	 
mod.names<-c(&#x201C;mod1&#x201D;,&#x201D;mod2&#x201D;,
&#x201D;mod3&#x201D;,&#x201D;mod4&#x201D;,&#x201D;mod
5&#x201D;)	 
aic.vls<-c(aic[[1]],aic[[2]],aic[[3]],aic[[4]],aic[[5]])	 
aic.df<-data.frame(mod.names=mod.names,aic.vls=aic.vls)	 
aic.df$rank<-rank(aic.df$aic.vls)	 
out.sim[[z]]	<<-	list(nNests=dim(nestDates)[1],beta=beta,AIC.1v2=tes
t.1v2,AIC.1v3=test.1v3,	 
AIC.1v4=test.1v4,AIC.2v3=test.2v3,AIC.2v4=test.2v4,AIC.3v4=test.3v4,	 
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aic=aic,bias1=bias1,bias2=bias2,AIC.1vnull=test.1vnull,AIC.2vnull=te
st.2vnull,	 
AIC.3vnull=test.3vnull,AIC.4vnull=test.4vnull,rank.mod=aic.df,	 
mean.vegend.fail=mean.vegend.fail,sd.vegend.fail=sd.vegend.
fail,mean.vegend.fledge=mean.vegend.fledge,	 
sd.vegend.fledge=sd.vegend.fledge,mean.vegfail.fail=mean.vegfail.
fail,sd.vegfail.fail=sd.vegfail.fail,	 
mean.vegfail.fledge=mean.vegfail.fledge,sd.vegfail.fledge=sd.vegfail.
fledge,mean.diff.fail=mean.diff.fail,	 
mean.diff.fledge=mean.diff.fledge,mean.vegstart.fail=mean.vegstart.
fail,mean.vegstart.fledge=mean.vegstart.fledge,	 
initiationDates=mean(nestDates$initiationDates))	 
}	 
out.sim<-	list()	#	List	to	store	output	 
n.sim<-100	#	Number	of	simulated	datasets	 
set.seed(5)	 
l_ply(seq(1,n.sim),simulation,.progress=&#x201C;text&#x201D;)	 
setwd(&#x201C;W:/Home/mmcconnell/public/Meghan/
PositiveEffect/ACH=0.1/Tests/Round3&#x201D;)	 
save(out.sim,file=&#x201C;R3_Late_28_35.RData&#x201D;)	 
#	Function	to	summarize	simulation	output	 
sum.true<-function(x){	 
n.sim<-length(x)	 
test.1v2<-test.1v3<-test.1v4<-test.2v3<-test.2v4<-test.3v4<-
test.1vnull<-test.2vnull<-test.3vnull<-test.4vnull<-numeric(n.sim)	 
bias1<-mbias1v1<-mbias1v2<-mbias1v3<-mbias1v4<-n.Nests<-
numeric(n.sim)	 
sdbias1v1<-sdbias1v2<-sdbias1v3<-sdbias1v4<-numeric(n.sim)	 
bias2<-mbias2v1<-mbias2v2<-mbias2v3<-mbias2v4<-numeric(n.sim)	 
sdbias2v1<-sdbias2v2<-sdbias2v3<-sdbias2v4<-numeric(n.sim)	 
rnk_m1<-rnk_m2<-rnk_m3<-rnk_m4<-rnk_m5<-numeric(n.sim)	 
vegstart.fledge<-vegstart.fail<-vegend.fail<-vegend.fledge<-vegfail.
fail<-vegfail.fledge<-Initiation<-numeric(n.sim)	 
for	(i	in	1:n.sim){	 
test.1v2[i]<-sapply(x[[i]]$AIC.1v2,	function(x)
sum(grepl(&#x201C;TRUE&#x201D;,	x)))	 
test.1v3[i]<-sapply(x[[i]]$AIC.1v3,	function(x)
sum(grepl(&#x201C;TRUE&#x201D;,	x)))	 
test.1v4[i]<-sapply(x[[i]]$AIC.1v4,	function(x)
sum(grepl(&#x201C;TRUE&#x201D;,	x)))	 
test.2v3[i]<-sapply(x[[i]]$AIC.2v3,	function(x)
sum(grepl(&#x201C;TRUE&#x201D;,	x)))	 
test.2v4[i]<-sapply(x[[i]]$AIC.2v4,	function(x)
sum(grepl(&#x201C;TRUE&#x201D;,	x)))	 
test.3v4[i]<-sapply(x[[i]]$AIC.3v4,	function(x)
sum(grepl(&#x201C;TRUE&#x201D;,	x)))	 
test.1vnull[i]<-sapply(x[[i]]$AIC.1vnull,	function(x)
sum(grepl(&#x201C;TRUE&#x201D;,	x)))	 
test.2vnull[i]<-sapply(x[[i]]$AIC.2vnull,	function(x)
sum(grepl(&#x201C;TRUE&#x201D;,	x)))	 
test.3vnull[i]<-sapply(x[[i]]$AIC.3vnull,	function(x)
sum(grepl(&#x201C;TRUE&#x201D;,	x)))	 
test.4vnull[i]<-sapply(x[[i]]$AIC.4vnull,	function(x)

sum(grepl(&#x201C;TRUE&#x201D;,	x)))	 
bias1[i]<-which(out.sim[[i]]$bias1==max(out.sim[[i]]$bias1))	 
mbias1v1[i]<-x[[i]]$bias1[1]	 
mbias1v2[i]<-x[[i]]$bias1[2]	 
mbias1v3[i]<-x[[i]]$bias1[3]	 
mbias1v4[i]<-x[[i]]$bias1[4]	 
bias2[i]<-which(out.sim[[i]]$bias2==max(out.sim[[i]]$bias2))	 
mbias2v1[i]<-x[[i]]$bias2[1]	 
mbias2v2[i]<-x[[i]]$bias2[2]	 
mbias2v3[i]<-x[[i]]$bias2[3]	 
mbias2v4[i]<-x[[i]]$bias2[4]	 
rnk_m1[i]<-ifelse(out.sim[[i]]$rank.mod$rank[1]==1,1,0)	 
rnk_m2[i]<-ifelse(out.sim[[i]]$rank.mod$rank[2]==1,1,0)	 
rnk_m3[i]<-ifelse(out.sim[[i]]$rank.mod$rank[3]==1,1,0)	 
rnk_m4[i]<-ifelse(out.sim[[i]]$rank.mod$rank[4]==1,1,0)	 
rnk_m5[i]<-ifelse(out.sim[[i]]$rank.mod$rank[5]==1,1,0)	 
n.Nests[i]<-x[[i]]$nNests	 
vegstart.fledge[i]<-x[[i]]$mean.vegstart.fledge	 
vegstart.fail[i]<-x[[i]]$mean.vegstart.fail	 
vegend.fledge[i]<-x[[i]]$mean.vegend.fledge	 
vegend.fail[i]<-x[[i]]$mean.vegend.fail	 
vegfail.fledge[i]<-x[[i]]$mean.vegfail.fledge	 
vegfail.fail[i]<-x[[i]]$mean.vegfail.fail	 
Initiation[i]<-x[[i]]$initiationDates	 
}	 
sum.t.1v2<-sum(test.1v2[])/n.sim	 
sum.t.1v3<-sum(test.1v3[])/n.sim	 
sum.t.1v4<-sum(test.1v4[])/n.sim	 
sum.t.2v3<-sum(test.2v3[])/n.sim	 
sum.t.2v4<-sum(test.2v4[])/n.sim	 
sum.t.3v4<-sum(test.3v4[])/n.sim	 
sum.t.1vnull<-sum(test.1vnull[])/n.sim	 
sum.t.2vnull<-sum(test.2vnull[])/n.sim	 
sum.t.3vnull<-sum(test.3vnull[])/n.sim	 
sum.t.4vnull<-sum(test.4vnull[])/n.sim	 
bias1v1<-length(which(bias1[]==1))/n.sim	 
bias1v2<-length(which(bias1[]==2))/n.sim	 
bias1v3<-length(which(bias1[]==3))/n.sim	 
bias1v4<-length(which(bias1[]==4))/n.sim	 
meanbias1v1<-mean(mbias1v1[])	 
meanbias1v2<-mean(mbias1v2[])	 
meanbias1v3<-mean(mbias1v3[])	 
meanbias1v4<-mean(mbias1v4[])	 
sdbias1v1<-sd(mbias1v1[])	 
sdbias1v2<-sd(mbias1v2[])	 
sdbias1v3<-sd(mbias1v3[])	 
sdbias1v4<-sd(mbias1v4[])	 
RMSE1v1<-sqrt(sum(mbias1v1^2))	 
RMSE1v2<-sqrt(sum(mbias1v2^2))	 
RMSE1v3<-sqrt(sum(mbias1v3^2))	 
RMSE1v4<-sqrt(sum(mbias1v4^2))	 
bias2v1<-length(which(bias2[]==1))/n.sim	 
bias2v2<-length(which(bias2[]==2))/n.sim	 
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bias2v3<-length(which(bias2[]==3))/n.sim	 
bias2v4<-length(which(bias2[]==4))/n.sim	 
meanbias2v1<-mean(mbias2v1[])	 
meanbias2v2<-mean(mbias2v2[])	 
meanbias2v3<-mean(mbias2v3[])	 
meanbias2v4<-mean(mbias2v4[])	 
sdbias2v1<-sd(mbias2v1[])	 
sdbias2v2<-sd(mbias2v2[])	 
sdbias2v3<-sd(mbias2v3[])	 
sdbias2v4<-sd(mbias2v4[])	 
RMSE2v1<-sqrt(sum(mbias2v1^2))	 
RMSE2v2<-sqrt(sum(mbias2v2^2))	 
RMSE2v3<-sqrt(sum(mbias2v3^2))	 
RMSE2v4<-sqrt(sum(mbias2v4^2))	 
avg_rnk_m1<-mean(rnk_m1[])	 
avg_rnk_m2<-mean(rnk_m2[])	 
avg_rnk_m3<-mean(rnk_m3[])	 
avg_rnk_m4<-mean(rnk_m4[])	 
avg_rnk_m5<-mean(rnk_m5[])	 
mean.vegstart.fledge<-mean(vegstart.fledge)	 
mean.vegstart.fail<-mean(vegstart.fail)	 
mean.vegend.fledge<-mean(vegend.fledge)	 
mean.vegend.fail<-mean(vegend.fail)	 
mean.vegfail.fledge<-mean(vegfail.fledge)	 
mean.vegfail.fail<-mean(vegfail.fail)	 
sd.vegstart.fledge<-sd(vegstart.fledge)	 
sd.vegstart.fail<-sd(vegstart.fail)	 
sd.vegend.fail<-sd(vegend.fledge)	 
sd.vegend.fledge<-sd(vegend.fail)	 
sd.vegfail.fail<-sd(vegfail.fledge)	 
sd.vegfail.fledge<-sd(vegfail.fail)	 
return(data.frame(test1v2=sum.t.1v2,test1v3=sum.t.1v3,test1v4=su
m.t.1v4,test2v3=sum.t.2v3,test2v4=sum.t.2v4,test3v4=sum.t.3v4,	 

test1vnull=sum.t.1vnull,test2vnull=sum.t.2vnull,test3vnull=sum.t.3vn
ull,test4vnull=sum.t.4vnull,	 
maxbias1v1=bias1v1,maxbias1v2=bias1v2,maxbias1v3=bias1v3,max
bias1v4=bias1v4,meanbias1v1=meanbias1v1,	 
meanbias1v2=meanbias1v2,meanbias1v3=meanbias1v3,meanbias1v
4=meanbias1v4,sdbias1v1=sdbias1v1,sdbias1v2=sdbias1v2,	 
sdbias1v3=sdbias1v3,sdbias1v4=sdbias1v4,maxbias2v1=bias2v1,ma
xbias2v2=bias2v2,maxbias2v3=bias2v3,maxbias2v4=bias2v4,	 
meanbias2v1=meanbias2v1,meanbias2v2=meanbias2v2,meanbias2v
3=meanbias2v3,meanbias2v4=meanbias2v4,sdbias2v1=sdbias2v1,	 
sdbias2v2=sdbias2v2,sdbias2v3=sdbias2v3,sdbias2v4=sdbias2v4,RM
SE1v1=RMSE1v1,RMSE1v2=RMSE1v2,RMSE1v3=RMSE1v3,RMSE1
v4=RMSE1v4,	 
RMSE2v1=RMSE2v1,RMSE2v2=RMSE2v2,RMSE2v3=RMSE2v3,RM
SE2v4=RMSE2v4,	 
avg_rnk_m1=avg_rnk_m1,avg_rnk_m2=avg_rnk_m2,avg_rnk_
m3=avg_rnk_m3,avg_rnk_m4=avg_rnk_m4,	 
avg_rnk_m5=avg_rnk_m5,max.n=max(n.Nests),	 
min.n=min(n.Nests),mean.n=mean(n.Nests),mean.vegstart.
fledge=mean.vegstart.fledge,	 
mean.vegstart.fail=mean.vegstart.fail,mean.vegend.fail=mean.
vegend.fail,mean.vegend.fledge=mean.vegend.fledge,	 
mean.vegfail.fledge=mean.vegfail.fledge,mean.vegfail.fail=mean.
vegfail.fail,sd.vegstart.fledge=sd.vegstart.fledge,	 
sd.vegstart.fail=sd.vegstart.fail,sd.vegend.fail=sd.vegend.fail,sd.
vegend.fledge=sd.vegend.fledge,	 
sd.vegfail.fledge=sd.vegfail.fledge,sd.vegfail.fail=sd.vegfail.fail,mean.
Initiation=mean(Initiation),	 
sd.Initiation=sd(Initiation)))	 
}	 
sum.true(out.sim)	 
end<-sum.true(out.sim)


