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Abstract: Zinc oxide nanoparticles (ZnO NPs) have shown adverse health impact on the human
male reproductive system, with evidence of inducing apoptosis. However, whether or not ZnO NPs
could promote autophagy, and the possible role of autophagy in the progress of apoptosis, remain
unclear. In the current study, in vitro and in vivo toxicological responses of ZnO NPs were explored
by using a mouse model and mouse Leydig cell line. It was found that intragastrical exposure of
ZnO NPs to mice for 28 days at the concentrations of 100, 200, and 400 mg/kg/day disrupted the
seminiferous epithelium of the testis and decreased the sperm density in the epididymis. Furthermore,
serum testosterone levels were markedly reduced. The induction of apoptosis and autophagy in
the testis tissues was disclosed by up-regulating the protein levels of cleaved Caspase-8, cleaved
Caspase-3, Bax, LC3-II, Atg 5, and Beclin 1, accompanied by down-regulation of Bcl 2. In vitro tests
showed that ZnO NPs could induce apoptosis and autophagy with the generation of oxidative stress.
Specific inhibition of autophagy pathway significantly decreased the cell viability and up-regulated
the apoptosis level in mouse Leydig TM3 cells. In summary, ZnO NPs can induce apoptosis and
autophagy via oxidative stress, and autophagy might play a protective role in ZnO NPs-induced
apoptosis of mouse Leydig cells.
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1. Introduction

Nanotechnology manipulates matters at the atomic, molecular, and supramolecular scales and has
grown rapidly worldwide in the past decades. With the development of nanotechnology, environmental
exposure to nanoparticles (NPs) is increasing dramatically [1,2]. Metal oxide nanoparticles are the most
abundantly produced types of engineered nanomaterials in industry [3]. Among them, zinc oxide
nanoparticles (ZnO NPs) are used in various applications, such as cosmetics, rubber manufacture,
pigments, food additives, biosensors, chemical fibers, bioimaging, and antibacterial agents, due to
their low production cost and unique physicochemical properties [4]. ZnO NPs may enter human
bodies by various routes, including inhalation, dermal penetration, injection, and ingestion [5]. These
NPs can then accumulate in various organs, such as the liver, spleen, lungs, kidney, and heart via
circulation, and may produce adverse consequences, such as edema and degeneration of hepatocytes,
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inflammation of the pancreas, or damage to the stomach and spleen [6,7]. Consequently, toxicity
research and health risk assessments of ZnO NPs have attracted tremendous attention recently [8].

Tissue damage due to NPs exposure arises from direct cell–NPs interaction and is associated with
local concentrations of exogenous substances in the tissues, i.e., the nanoparticle itself or solubilized
ions [9,10]. Previous researches show that zinc ion dissolved from the surface of ZnO NPs is a primary
reason for its cytotoxicity [11,12]. Reducing the ion release from the surface, such as by pre-coating with
a protein corona, could greatly decrease their cytotoxicity [13,14]. Furthermore, our previous research
illustrates that ZnO NPs and their soluble ions can induce significant cellular endoplasmic reticulum
(ER) stress responses before triggering ER-related apoptosis [12]. Generation of reactive oxygen species
(ROS) is generally involved in cellular damage from the exposure to ZnO NPs [12,13,15]. ROS are
chemically-reactive molecules containing oxygen, which are generated as by-products of biological
oxidation during mitochondrial respiration under physiological conditions. ROS include both free
radicals, such as nitric oxide (NO), superoxide (O2

•−), and hydroxyl radical (•OH), and peroxides [16].
Reduced glutathione (GSH) and antioxidant enzymes such as glutathione peroxidase (GSH-PX) and
superoxide dismutase (SOD) are normally used to scavenge ROS. Oxidative stress occurs when there
is an imbalance between ROS production and the cellular antioxidant defence system [17,18].

Spermatogenesis consists of highly organized and sequential steps of undifferentiated
spermatogonial stem cell proliferation and differentiation, which generates functional sperms in
the testis [19–21]. ZnO NPs can cause vacuolization of germinal epithelium and sloughing of germ,
and even decrease the sperm number and motility in the epididymis [22]. In addition to Sertoli cells,
Leydig cells play an important role in maintaining spermatogenesis and are prone to being affected by
various chemicals [23,24]. ZnO NPs have been reported to exert cytotoxic effects on mouse Leydig
cells [25,26]. Similar toxic effects were revealed in the testis of six-month-old common carp Cyprinus
carpio after exposure to 10, 50, and 100 µg/L ZnO NPs for 21 days [27]. Furthermore, increasing
evidence suggests that the toxicity of ZnO NPs may result from ROS production [9,28,29].

Autophagy is an evolutionarily-conserved, highly-regulated lysosomal degradative pathway
involving the delivery of cytoplasmic cargo to the lysosome, which occurs at low basal levels to
perform protein and organelle turnover in normal situations [30,31]. Autophagy can be induced
during starvation or growth factor withdrawal in order to generate more intracellular nutrients and
energy [32]. Autophagy can also be induced under stressful conditions such as neurodegenerative
diseases, pathogen infections, chemotherapy, and chemical exposure [33–37]. Increasing evidence has
shown that ZnO NPs can induce autophagy in immune cells, normal skin cells, gastrointestinal tract
cells, and kidney tissue [7,38–40]. Until now, there has been no evidence that ZnO NPs exposure could
induce autophagy in testis tissue.

The aims of the present study were to investigate whether oxidative stress was involved in
ZnO NPs-induced apoptosis and autophagy of mouse Leydig cells, and to determine the role of
autophagy in ZnO NPs-induced apoptosis. These results will provide fundamental understanding of
ZnO NPs-induced spermatogenesis failure.

2. Results

2.1. Characteristics and Morphology of ZnO NPs

Transmission electron microscopy (TEM) test shows the primary size of ZnO NPs is about 30 nm
with a propensity to agglomerate (Figure S2). These characteristics are comparable to previous
publications using the same nanoparticles [41,42]. The hydrodynamic sizes and zeta potentials of ZnO
NPs suspended in water are 66.36± 0.39 nm (PDI = 0.167, n = 3) and 38.25± 1.06 mV (n = 3), respectively.

2.2. ZnO NPs Cause Testis Damage to Male Mice

As shown in Figure 1A, the testes of vehicle-treated mice showed normal seminiferous tubules
lined with both spermatogenic cells and Sertoli cells. No detached germ cells were found in the tubular
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lumen. In the 100 mg/kg/day ZnO NPs exposure group, no significant morphologic changes were
observed at the seminiferous epithelium. However, the seminiferous tubule demonstrated mildly
disorganized histo-architecture in the 200 mg/kg/day group. In the 400 mg/kg/day group, seminiferous
tubules exhibited disintegration of the germinal epithelium, germ cell depletion, and a reduction in
round sperm. There was a significant decrease in sperm density of the epididymis after exposure to
100, 200, or 400 mg ZnO NPs/kg/day compared to the vehicle control group (Figure 1B), indicating that
ZnO NPs exposure significantly inhibited spermatogenesis.
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Figure 1. Intragastrical exposure of zinc oxide nanoparticles (ZnO NPs) cause toxic damage to the
mouse male reproductive system. (A) Testes were obtained from male mice treated with 0 (a), 100 (b),
200 (c), or 400 (d) mg ZnO NPs/kg/day for 28 days. The testes were stained with hematoxylin and eosin
(HE) and then were visualized under an IX51 Olympus microscope. The disruption of the seminiferous
epithelium in the testis is indicated by arrows. Magnification: 100×. (B) Epididymides were obtained
from male mice treated with 0 (a), 100 (b), 200 (c), or 400 (d) mg ZnO NPs/kg/day for 28 days, and
stained with HE. The sperm in the epididymis are indicated by an asterisk. Magnification: 200×.
(C) The protein levels of cleaved Caspase-3, cleaved Caspase-8, Bax, and Bcl 2 and (E) the levels of LC3,
Beclin 1, and Atg 5 were detected by Western blot; Actin was used as an internal control. (D,F) The
relative protein levels were quantified by densitometry. (G) The serum testosterone concentration.
The experiment was done in triplicate and repeated three times (n = 9). Data were analyzed by one-way
ANOVA. * p < 0.05.
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To further investigate the potential mechanism of ZnO NPs-induced spermatogenesis failure,
the apoptosis level in the mouse testis tissues was assessed. As can be seen from Figure 1C,D, ZnO NPs
significantly increased the levels of apoptosis-related proteins, including cleaved Caspase-8, cleaved
Caspase-3 and Bax, along with a decreased protein level of Bcl 2 in the testis tissue, which indicates
that ZnO NPs induced apoptosis of the testis tissue. Additionally, ZnO NPs markedly increased the
ratio of LC3-II/LC3-I, as well as the levels of autophagy proteins Atg 5 and Beclin 1, indicating that
ZnO NPs induced autophagy of the testis tissue (Figure 1E,F). Furthermore, ZnO NPs decreased the
serum testosterone concentration in a dose-dependent manner (p < 0.05), which implies that ZnO NPs
disrupted the physiological function of the male reproductive system by targeting the Leydig cells
(Figure 1G).

2.3. ZnO NPs Induce Apoptosis of Mouse Leydig TM3 Cells

The content of testosterone dramatically decreased in the ZnO NPs-treated groups, which implies
that ZnO NPs might cause damage to Leydig cells. To further verify the hypothesis, mouse Leydig
TM3 cell line was utilized as an in vitro model. As shown in Figure 2A, ZnO NPs at concentrations
of 3, 4, and 8 µg/mL significantly inhibited cell viability. Further tests showed that the cell viability
was further suppressed at time points of 24, 48, and 72 h post-exposure to 4 µg/mL ZnO NPs
(Figure 2B). To determine whether the anti-proliferative effect of ZnO NPs resulted from apoptosis,
the apoptosis-related proteins were investigated, including cleaved Caspase-8, cleaved Caspase-3, Bcl 2
and Bax, after the cells were incubated with 0, 2, 3, and 4 µg/mL ZnO NPs for 24 h. It was shown that
ZnO NPs dramatically increased the protein levels of cleaved Caspase-8, cleaved Caspase-3, and Bax,
as well as decreased Bcl 2 protein level (Figure 2C,D). Furthermore, ZnO NPs increased the numbers
of AnnexinV-FITC positive staining cells (Figure 2E). These results indicate that ZnO NPs induced
apoptosis of mouse Leydig TM3 cells.
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2.4. ZnO NPs Induce Apoptosis Through Activation of Oxidative Stress 

Figure 2. ZnO NPs induce apoptosis in mouse Leydig TM3 cells. 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay results of mouse Leydig TM3 cells treated with 0–8 µg/mL
ZnO NPs for 24 h (A) or treated with 4 µg/mL ZnO NPs for 24~72 h (B). (C) The cells were treated with
0–4 µg/mL ZnO NPs for 24 h; then, the protein levels of cleaved Caspase-3, cleaved Caspase-8, Bcl 2,
and Bax were investigated by Western blot; Actin was used as an internal control. (D) The relative
protein levels were quantified by densitometry. (E) The cells were treated with 0 (a), 2 (b), 3 (c), 4
(d) µg/mL ZnO NPs for 24 h, then the AnnexinV-FITC positive staining cells were counted by flow
cytometry. The experiment was done in triplicate and repeated three times. Data were analyzed by
one-way ANOVA. * p < 0.05.
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2.4. ZnO NPs Induce Apoptosis through Activation of Oxidative Stress

In order to investigate whether oxidative stress was involved in ZnO NPs-induced apoptosis of
mouse Leydig TM3 cells, the contents of malondialdehyde (MDA) and GSH and the enzyme activities
of SOD and GSH-PX were determined after the cells were treated with ZnO NPs for 24 h. As shown in
Figure 3, ZnO NPs significantly increased MDA level in the cells in a dose-dependent manner, whereas
the content of GSH and the activities of the antioxidant enzymes SOD and GSH-PX were decreased in
the ZnO NPs-treated cells, which implies that ZnO NPs induced oxidative stress in mouse Leydig TM3
cells. The same markers were detected after the cells were treated with H2O2 and the cell viability was
significantly inhibited with the induction of apoptosis, suggesting that oxidative stress could induce
apoptosis of mouse Leydig TM3 cells (Figure S3). The mouse Leydig TM3 cells were treated with
4 µg/mL ZnO NPs for 24 h in the presence or absence of 5 mM NAC, an inhibitor of ROS, to further
confirm the role of oxidative stress in ZnO NPs-induced apoptosis. As shown in Figure 4, inhibition
of viability and induction of apoptosis by ZnO NPs was significantly rescued by NAC. These results
illustrate that oxidative stress was involved in ZnO NPs-induced apoptosis of mouse Leydig TM3 cells.
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Figure 3. ZnO NPs induce oxidative stress in mouse Leydig TM3 cells. Mouse Leydig TM3 cells were
treated with 0–4 µg/mL ZnO NPs for 24 h; then the contents of MDA (A) and GSH (B) and the enzyme
activities of SOD (C) and GSH-PX (D) were determined. The experiment was done in triplicate and
repeated three times. Data were analyzed by one-way ANOVA. * p < 0.05.
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Figure 4. Oxidative stress is involved in ZnO NPs-induced apoptosis of mouse Leydig TM3 cells.
Mouse Leydig TM3 cells were treated with 4 µg/mL ZnO NPs for 24 h in the absence or presence of
5 mM NAC, then cell viability (A), the protein levels of cleaved Caspase-8, cleaved Caspase-3, Bcl 2,
and Bax (B) and the AnnexinV-FITC positive staining cells (D) were detected by MTT assay, Western
blot, and flow cytometry, respectively. (C) The relative protein levels of cleaved Caspase-8, cleaved
Caspase-3, Bcl 2, and Bax were quantified by densitometry. The experiment was done in triplicate and
repeated three times. Data were analyzed by one-way ANOVA. * p < 0.05.

2.5. Oxidative Stress is Involved in ZnO NPs-Induced Autophagy

As shown in Figure 5A,B, ZnO NPs increased the ratio of LC3-II to LC3-I, as well as the protein
levels of Atg 5 and Beclin 1. Similarly, H2O2 markedly increased the ratio of LC3-II to LC3-I and
the contents of Atg 5 and Beclin 1, indicating that oxidative stress could induce autophagy of mouse
Leydig TM3 cells (Figure S4). Furthermore, inhibition of oxidative stress could rescue the induction of
autophagy by ZnO NPs (Figure 5C,D). ZnO NPs-induced autophagy was further investigated by TEM.
As shown in Figure 5E, there were relatively few autophagosomes in the cytoplasm of the control cells,
while autophagic vacuoles containing extensively-degraded organelles (such as mitochondria and
endoplasmic reticulum) significantly increased in both ZnO NPs-treated cells and starvation-treated
cells. Interestingly, inhibition of oxidative stress decreased the number of autophagosomes. These
results suggest that oxidative stress played an important role in ZnO NPs-induced autophagy. It is
worthy to note that ZnO NPs-induced autophagy and apoptosis of mouse Leydig TM3 cells might be
closely related to the soluble zinc ions, as similar bio-effects were observed after the cells were treated
with 0–1 µg/mL ZnCl2 (Figure S5).

2.6. Inhibition of Autophagy Increases ZnO NP-Induced Apoptosis

As apoptosis and autophagy were both induced by ZnO NPs, the effects of autophagy on ZnO
NPs-induced apoptosis were studied. Cell viability was measured after the cells were treated with
4 µg/mL ZnO NPs for 24 h in the absence or presence of an autophagy inhibitor, either 10 mM
3-Methyladenine (3-MA) or 1 µM Wortmannin (Wort). Compared with the ZnO NPs-treated cells,
inhibition of autophagy further decreased viability of mouse Leydig TM3 cells (Figure 6A) and
up-regulated the protein levels of cleaved Caspase-8, cleaved Caspase-3, and Bax, accompanied by the
down-regulation of Bcl 2 protein (Figure 6B,C). The number of AnnexinV-FITC positive staining cells
were also markedly increased when autophagy was inhibited (Figure 6D). These results indicate that
autophagy might play a protective role in ZnO NPs-induced apoptosis of mouse Leydig TM3 cells.
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Figure 5. Oxidative stress is involved in ZnO NPs-induced autophagy of mouse Leydig TM3 cells.
Mouse Leydig TM3 cells were treated with 0–4 µg/mL ZnO NPs for 24 h (A) or treated with 4 µg/mL
ZnO NPs for 24 h in absence or presence of 5 mM NAC (C); then, the protein levels of LC 3, Atg 5,
and Beclin 1 were quantified by Western blot. (B,D) The relative protein levels of LC 3, Atg 5, and
Beclin 1 were quantified by densitometry. (E) The cells were treated with ddH2O, bars: 1 µm, (a),
4 µg/mL ZnO NPs (b), or 5 mM N-acetyl-L-cysteine (NAC) plus 4 µg/mL ZnO NPs for 24 h (d). Then,
autophagic vacuoles in the cells were visualized by transmission electron microscopy (TEM), with
starvation-treated cells as a positive control (c). The autophagic vacuoles are indicated by white arrows.
The experiment was done in triplicate and repeated three times. Data were analyzed by one-way
ANOVA. * p < 0.05.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 15 
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Figure 6. Inhibition of autophagy increases the ZnO NPs-induced apoptosis level in mouse Leydig
TM3 cells. Mouse Leydig TM3 cells were treated with 4 µg/mL ZnO NPs for 24 h in the absence or
presence of 10 mM 3-MA or 1 µM Wortmannin (Wort), then cell viability (A), the protein levels of
cleaved Caspase-8, cleaved Caspase-3, Bcl 2, and Bax (B) and the AnnexinV-FITC positive staining
cells (D) were tested by MTT assay, Western blot, and flow cytometry, respectively. (C) The relative
protein levels of cleaved Caspase-8, cleaved Caspase-3, Bcl 2, and Bax were quantified by densitometry.
The experiment was done in triplicate and repeated three times. Data were analyzed by one-way
ANOVA. * p < 0.05.
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3. Discussion

Exposure to ZnO NPs for humans is inevitable due to their wide applications in commercial and
industrial products. Thus, the adverse effects from the exposure of ZnO NPs need clear definition.
Nanoparticles can pass through the blood–brain barrier (BBB), blood–testis barrier (BTB), and blood–air
barrier (BAB), with the ability to accumulate in the brain, the testis, or peripheral organs [43–46].
Recently, Qian et al. showed that ZnO NPs could cause adverse effects throughout the male reproductive
system by impairing the BTB [47]. Oral dose toxicity has been reported in SD mice after repetitive
exposure to positively-charged 100 nm ZnO NPs over 14 or 90 days, and the target organs were
found to be the spleen, stomach, and pancreas, with a no-observed-adverse-effect dose level of about
125 mg/kg (b.w.) [48,49]. In our research, it was shown that 28-day gavage exposure of ZnO NPs
(30 nm positively charged) at the concentrations of 100, 200, and 400 mg/kg/day caused disruption
and atrophy of the seminiferous epithelium in the testis of mice. Furthermore, the sperm density in
the epididymis significantly decreased in the ZnO NPs-treated groups, which was in good agreement
with some previous work [22,27]. This toxic dosage range is also similar to the research of Hong et al.,
in which they tested the toxicity on embryo-fetal development in rats from 15 days of repeated oral
doses of 20 nm negatively-charged ZnO NPs [50]. Therefore, ZnO NPs, with the high chance of daily
contact and exposure, may pose a high risk of reproductive toxicity after long-term accumulation in
the human body.

ZnO NPs have been shown to induce apoptosis in many cells such as human epidermal
keratinocytes, human aortic endothelial cells, human liver and kidney podocytes [51–54]. Han et al.
showed that ZnO NPs took cytotoxic effects on mouse testicular cells and induced apoptosis in Leydig
cells [25]. In this research, we confirmed that ZnO NPs up-regulated the protein levels of Bax, cleaved
Caspase-3, and cleaved Caspase-8 in the testis tissue, as well as decreased the protein level of Bcl 2,
which indicates that ZnO NPs could induce apoptosis in the testis.

Autophagy protein LC3, a widely used marker of mammalian autophagy, has two forms, i.e.,
a cytosolic form (LC3-I) and an autophagic vesicle-associated form (LC3-II). During induction of
autophagy, LC3-I covalently conjugates with phosphatidylethanolamine and develops LC3-II, which
is recruited and bound to the autophagosome membrane [33,55]. The conversion of LC3-I to LC3-II
is considered to be a crucial step in initiating autophagy [56], with the amount of LC3-II related to
the extent of autophagosome formation [55]. In the present study, ZnO NPs exposure significantly
increased the ratio of LC3-II to LC3-I in the testis tissue, along with similar up-regulation of autophagy
proteins Atg 5 and Beclin 1. These results implied that ZnO NPs could induce autophagy in the
testis tissue.

The primary function of Leydig cells is the synthesis and secretion of androgen, which plays an
important role in spermatogenesis [57]. In our study, ZnO NPs could decrease serum testosterone
level, indicating that Leydig cells might be the target for ZnO NPs-induced spermatogenesis failure.
To further verify this hypothesis, the mouse Leydig TM3 cell line was utilized as an in vitro research
model. In agreement with the in vivo findings, ZnO NPs exposure inhibited viability and induced
apoptosis of mouse Leydig TM3 cells. Thus, it is reasonable to speculate that the inhibition of cell
viability upon ZnO NPs exposure might result from the induction of apoptosis.

Oxidative stress has been identified as a critical pathophysiological mechanism of reproductive
toxicity from environmental chemicals or organophosphorus compounds [58]. Asani et al. showed
that ZnO NPs could induce oxidative stress in pancreatic β-cells [59]. Similar to the toxicity effects
of H2O2, exposure to ZnO NPs significantly increased the MDA in the cells, along with a marked
decrease in both the GSH levels and the enzyme activities of SOD and GSH-PX. Further evidence
demonstrates that apoptosis could be distinctly reduced when oxidative stress was inhibited, which
confirmed that oxidative stress was involved in ZnO NPs-induced apoptosis of mouse Leydig TM3 cells.
Oxidative stress has been shown to induce autophagy and plays an important role in chemical-induced
autophagy [21,60]. In the current study, ZnO NPs exposure induced autophagy of mouse Leydig TM3
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cells, which could be inhibited by NAC, a scavenger of ROS. Collectively, these results provide clear
evidence that oxidative stress was critical in ZnO NPs-induced autophagy in mouse Leydig TM3 cells.

Both cell survival and death can be related to autophagy when the cells are subject to stressful
conditions. In most circumstances, autophagy will promote cell survival [35,61]. However, autophagy
is also considered to be a form of non-apoptotic programmed cell death—“type II” or “autophagic”
cell death [62,63]. To investigate the role of autophagy in ZnO NPs-induced apoptosis, apoptosis
was measured after the treatment of ZnO NPs in the absence or presence of autophagy inhibitor.
Surprisingly, inhibition of autophagy could further induce apoptosis of mouse Leydig TM3 cells
(Figure 7). These results illustrate that autophagy plays a cytoprotective role in ZnO NPs-induced
apoptosis of mouse Leydig TM3 cells.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 15 
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Figure 7. Schematic representation of the activation mechanism of apoptosis and cytoprotective
autophagy in mouse Leydig cells after ZnO NP exposure. The up-regulation expression of protein
is indicated by up arrow (↑), and down-regulation expression is indicated by down arrow (↓) in
schematic illustration.

4. Materials and Methods

4.1. Reagents

ZnO NPs (No. 721077), N-acetyl-L-cysteine (A7250), 3-Methyladenine (M9281), and Wortmannin
(12-338) were obtained from Sigma (St. Louis, MO, USA). Mouse Leydig cell line (TM3) was obtained
from the Cell Culture Center of the Institute of Basic Medical Science, Chinese Academy of Medical
Sciences (Beijing, China). Anti-Caspase-3 (sc-7148), anti-Caspase-8 (sc-7890), anti-Bax (sc-493), anti-Bcl-2
(sc-492), and anti-β-actin (sc-69879) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA,
USA). Anti-LC3 (PD014), anti-Atg5 (PM050), and anti-Beclin-1 (PD017) were gained from MBL Co.
Ltd. (Nagoya, Japan). The AnnexinV-FITC/PI Apoptosis Kit (V13242) was purchased from Invitrogen
Life Technologies (Waltham, MA, USA). Oxidation-antioxidation assay kits of malondialdehyde
(MDA) (A003-1), glutathione (GSH) (A006-1), superoxide dismutase (SOD) (A001-1-1) and glutathione
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peroxidase (GSH-PX) (A005), testosterone Assay Kit (H090), and protease inhibitor cocktail (W060)
were bought from Nanjing Jiancheng Bioengineering Institute (Nanjing, China).

4.2. Nanoparticles and Characterization

In characterization tests, ZnO NPs dispersed in sterile Milli-Q water (final concentration 1 mg/mL,
Milford, MA, USA) were put into an ultrasound bath (100 W, Shanghai, China) to break up the
aggregates before transmission electron microscopy (TEM, JEM-200CX, JEOL, Japan) and dynamic
light scattering (DLS) analyses (Malvern Zeta sizer Nano ZS, Malvern Instruments, U.K.).

4.3. Animal Administration

Adult male Kunming mice (8 weeks old, 20–25 g) were obtained from the Shanghai Laboratory
Animal Center, Chinese Academy of Sciences (CAS, Shanghai, China). The mice were housed in
an isolated and air-conditioned animal room with water and rodent food supplement. All animals
were acclimated to this environment for at least one week prior to the experiment. Experiments were
approved by the Animal Ethics Committee of Nanchang University, China, SYKX2015-0001, 12 October
2015. The mice were intragastrically (i.g.) administered with ZnO NPs (0, 100, 200, 400 mg/kg/day,
diluted in water) for 28 days and were then anesthetized with carbon dioxide inhalation, followed
by cervical dislocation. The serum samples were collected following standard operation procedures.
Then, the testes and the epididymis were quickly dissected free of fat, decapsulated, and frozen in
liquid nitrogen.

4.4. Histology

Male mouse testis and epididymis tissues were stained with hematoxylin and eosin (HE) according
to the method described by Chen et al. [43].

4.5. Western Blotting Analysis

The homogenized testis tissue and mouse Leydig TM3 cells were harvested in lysis buffer (50 mM
Tris pH 7.5, 0.3 M NaCl, 5 mM EGTA, 1 mM EDTA, 0.5% Triton X-100, 0.5% NP40) containing protease
inhibitor cocktail. Then, the supernatants were collected for Western blot after centrifuge for 10 min at
12 000× g. All primary antibodies and their recommended secondary antibodies were diluted 1:1000
and 1:5000, respectively.

4.6. Detection of Testosterone Content

The testosterone level in the serum was determined by ELISA kit according to the manufacturer’s
instructions (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

4.7. Cell Culture and ZnO NP Treatment

Mouse Leydig TM3 cells were cultured at 37 ◦C in a 5% CO2 atmosphere in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco, Langley, OK, USA), supplemented with 5% horse serum (Gibco,
Langley, OK, USA) and 2.5% fetal bovine serum (FBS, Gibco, Langley, OK, USA). The cultured cells
were seeded and incubated for 24 h before exposure to varying concentrations of ZnO NPs or ZnCl2 as
per experimental designs. The summary of the research design was illustrated in Figure S1.

4.8. Cell Viability Assay

The cells were seeded at a density of 1 × 104 cells per well in medium in 96-well plates and
incubated for 24 h. The medium was then replaced with ZnO NPs of indicated concentrations in the
presence or absence of 5 mM NAC, 10 mM 3-MA, or 1 µM Wortmannin for 24 h. Cell viability was
determined by measuring the absorbance at 570 nm after the cells were incubated with 0.5 mg/mL
MTT in medium for 4 h.
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4.9. AnnexinV-FITC/PI Apoptosis Assay

Apoptosis was determined by using an AnnexinV-FITC/PI Apoptosis Kit from Invitrogen Life
Technologies (Waltham, MA, USA) as described previously [64].

4.10. Oxidative Stress Measurement

The resultant supernatants of homogenized mouse Leydig TM3 cells were utilized to determine the
activities of GSH-PX and SOD and the levels of GSH and MDA by using the commercial kits following
the manufacturer’s instructions. The protein concentration was detected by the Bradford assay.

4.11. Transmission Electron Microscopy (TEM) Analysis

Mouse Leydig TM3 cells were treated with ddH2O, 4 µg/mL ZnO NPs or 5 mM NAC, plus 4 µg/mL
ZnO NPs for 24 h. Then, the autophagic vacuoles were observed by TEM as previously described [65].
The cells treated for 2 h by starvation media (140 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 5 mM glucose,
and 20 mM HEPES at pH = 7.4 supplemented with 1 % BSA) were used as the positive control
of autophagy.

4.12. Statistical Analysis

The data were represented as means ± SE. Statistical analyses were performed using a one-way
ANOVA with Newman–Keuls multiple range test. p < 0.05 was considered statistically significant.

5. Conclusions

ZnO NPs could cause disruption and atrophy of seminiferous epithelium, and even damage to
spermatogenesis in male mice. Apoptosis and autophagy were induced by ZnO NPs in the testis tissue
with a decreased level of serum testosterone. In vitro studies demonstrated that ZnO NPs markedly
inhibited the viability of mouse Leydig TM3 cells and induced apoptosis and autophagy. Oxidative
stress was also induced after the cells were treated with ZnO NPs, while inhibition of oxidative stress
could rescue the induction of apoptosis and autophagy, indicating that oxidative stress was involved
in ZnO NPs-induced apoptosis and autophagy. However, suppression of autophagy further inhibited
cell viability with increase of the apoptosis levels. Taken together, we have provided detailed evidence
that oxidative stress is involved in ZnO NPs-induced apoptosis and autophagy of mouse Leydig TM3
cells, while autophagy contributes to counteract the reproductive toxicity of ZnO NPs in the testis.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/16/
4042/s1.
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