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Abstract: The kidneys are organs that require energy from the metabolism of fatty acids and glucose;
several studies have shown that the kidneys are metabolically active tissues with an estimated energy
requirement similar to that of the heart. The kidneys may regulate the normal and pathological
function of circulating lipids in the body, and their glomerular filtration barrier prevents large
molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature
of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and
the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids
and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the
transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates
that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage,
oxidation and export, and they are important for normal physiological function. Apolipoproteins
are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce
kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under
various physiological and disease conditions. This review is aimed at describing recent clinical and
basic studies on the major roles and functions of apolipoproteins in the kidneys.

Keywords: apolipoprotein; fatty acid; chronic kidney disease; renal lipotoxicity; proximal tubule
epithelial cells

1. Introduction

Chronic kidney disease (CKD) is the underlying cause of kidney dysfunction; early
observations that fatty acid is a key component of renal lipotoxicity gave rise to the fatty
acid hypothesis for the pathogenesis of CKD. CKD is closely associated with a multitude
of metabolic diseases, including obesity, insulin resistance, type 2 diabetes, hypertension,
dyslipidemia and atherosclerosis [1–6]. Nearly 800,000 people in the United States have end-
stage renal disease, according to kidney disease statistics for 2022. CKD is a major health
challenge worldwide. If human CKD is identified early, medications and changes in lifestyle
and environmental factors can rescue kidney function [7]. Increases in cardiovascular
disease (CVD) strongly correlate with the development of CKD and circulating lipid
levels [8]. CKD is also a risk factor for CVD. Advanced stages of CKD are associated with
cardiovascular risk manifesting as coronary artery disease [9,10]. Obesity, diabetes, age
and sleep disorders are common risk factors contributing to the progression of CVD and
CKD [4].

Plasma lipid composition and apolipoproteins are a composition of lipoprotein. Plasma
lipoproteins include chylomicrons, chylomicron remnants, very-low-density lipoproteins
(VLDL), intermediate-density lipoproteins (IDL), low-density lipoproteins (LDL), high-
density lipoproteins (HDL) and Lipoprotein(a) (Lp(a)). Lipids metabolism and transport
and lipoprotein metabolism and particles are crucially essential contributing factors to
CVD. Dyslipidemia and lipoprotein abnormalities are established CVD risk factors and
are also common in patients with all stages of CKD. Early CKD is characterized by low
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levels of HDL, high levels of triglycerides and normal or elevated levels of LDL choles-
terol [11,12]. Advanced CKD does not result in significant changes in LDL cholesterol
levels, thus suggesting that LDL cholesterol is not a clear CVD risk factor in advanced CKD.
Low cholesterol levels in the plasma in end-stage renal disease (ESRD) are associated with
high mortality risk [13–15], possibly because of chronic inflammation and malnutrition;
this result apparently contradicts the established relationship between higher lipid levels
and atherosclerosis in the general population. However, high levels of the lipoprotein
Lp(a) in CKD are strongly associated with atherosclerosis [16]. Lp(a) is an LDL-like particle
linked to apolipoprotein B (apoB)-100 through a single disulfide bond [17]. Plasma Lp(a)
in kidney disease is regulated by the glomerular filtration rate (GFR) and is induced in
the earliest stages of renal impairment [18]. In addition, advanced CKD is associated with
high triglyceride levels and triglyceride-rich and apoB-containing chylomicrons, very-low-
density lipoproteins (VLDL) and intermediate-density lipoprotein particles [19,20]. Human
and animal studies have shown that lipoprotein composition may affect CVD pathological
procession and risk [10,14,21]. Lipoproteins and lipids are associated with the initiation and
progression of CKD in animal models. However, whether lipoproteins and apolipoproteins
prevent the development and progression of human renal disease is unknown, and many
questions remain unanswered.

Patients with CKD show alterations in serum fatty acid levels and renal fatty acid
metabolism disorders, thus resulting in mitochondrial dysfunction and cellular damage [21,22].
Increases in serum fatty acids are associated with not only effects on the heart but also the
progression of kidney damage [23,24]. In recent years, many studies have highlighted the
important role of lipid metabolism in the kidneys through mechanisms involving fatty acid
and renal lesions leading to kidney dysfunction [21,23,25–28]. First, the kidneys take up
fatty acids from the circulation [21,29]. Second, fatty acid synthesis and oxidation occur in
the kidneys [28]. Third, and most importantly, fatty acids are assembled and secreted by
the kidneys into the circulation [30,31].

Lipotoxicity can occur in the liver, skeletal muscle and heart. The accumulation of
lipids in the tubular cells of kidneys are described as the main cause of lipotoxicity in
many reviews. Fatty acids and renal proximal tubule epithelial cells contribute to kidney
pathology [32–34]. According to observations in rodents, kidney dysfunction is related
primarily to the circulation of lipids, and apolipoproteins also contribute to kidney tissue
lipid-induced pathology [21,28,35–37]. Here, we summarize the fatty acids and apolipopro-
tein families in human or animal kidneys whose function, physiology and pathology result
in a renal lipotoxicity phenotype and CKD. Age, sex, genetics, lifestyle, environment and
anatomical and physiological development should be thoroughly considered in preclinical
or normal kidney function in humans (Figure 1).

So far, several studies [14] have suggested that HDL deficiency and dysfunction,
increased VLDL, IDL and triglyceride levels are important factors in CKD; decreased
apoAI levels and an increased apoCIII/CII ratio are also important factors in CKD. CKD is
associated with lipoprotein abnormalities, including normal to increased LDL levels and
increased oxidized LDL levels. In addition, lipidomics studies [14] have suggested that
(1) increased free fatty acids glycerolipid and glycerophospholipid levels are associated
with CKD and (2) there is a negative relationship between the estimated GFR (eGFR)
and methylhexadecanonic acid and 3-oxooctadecanoic acid, increased palmitic acid and
monounsaturated acid levels and decreased polyunsaturated acid levels in CKD.
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Figure 1. Mechanistic pathways of renal lipotoxicity and CKD: hypothetical pathways whereby dis-
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Figure 1. Mechanistic pathways of renal lipotoxicity and CKD: hypothetical pathways whereby
disease risk factors (A) impose a requirement for constant adaptation (B) to maintain normal kidney
function, and (C) minimal or no kidney impairment can cause lipotoxicity and progression of
impairment and CKD according to the risk factors present. In these processes, many factors such
as circulating adipokines, dyslipidemia, albumin-lipid filtration, altered sphingolipid metabolism
and cholesterol efflux can cause early-stage renal steatosis through lipidic metabolism alterations,
alterations in glomerular barrier filtration, inflammation, generation of reactive oxygen species,
cell cycle alterations and tubulointerstitial injury (D), then develop mid-stage and end-stage CKD
including in several factors (E) such as hyperfiltration, podocyte loss, mitochondrial function in
proximal tubule epithelial cells (PTECs) and podocyte cells, accumulation of FAs mainly in the tubular
cell. These different pathways may result in lipotoxicity and CKD progression.

2. Physiological Roles of Fatty Acids in the Kidneys

In humans, triglyceride content differs between the kidneys and the liver. The total
renal lipid content is approximately 3% of the kidney wet weight [38], and the total hepatic
lipid content is approximately 4–5% of the liver wet weight [39], thus suggesting that the
kidney triglyceride content is markedly different from that in the liver.

In the 1960s, studies established the renal lipid uptake in humans, measuring the
lipid levels and comparing the differences in lipid concentrations between the feces and
urine [40]. Early studies showed that the human kidneys contribute to systemic lipid
metabolism, but this contribution is generally deemed insignificant in comparison to
those of the intestines and liver [34]. The hypothetical mechanism is that re-absorptive
endocytosis of filtered albumin determines the total influx of free fatty acids (FFAs) in
the proximal tubules, thus indicating whether this process causes FFA accumulation in
the kidneys and induces lipotoxicity. Studies have shown that the daily reabsorption of
albumin by proximal tubules is approximately 5–50 µmol/day [41] Thus, 5–50 µmol FFAs
might enter the proximal tubules each day, and 5% of FFAs can be delivered to the proximal
tubules from the apical side through reabsorption [39]. The uptake from the basolateral
side through circulation or synthesis in cells accounts for approximately 95% of the FFAs in
proximal tubule cells, thus suggesting that the FFA uptake from the proximal tubule lumen
through the apical side is less than the uptake from the circulation.

Renal FFAs are mainly taken up from the basolateral side, owing to high concentrations
of FFAs in circulation [39]. A lack of cellular fatty acids can cause imbalances in apical fatty
acid uptake through increasing albumin filtration and, consequently, FFA uptake from the
apical side [42,43]. Apical and basolateral FFA uptake may result in distinct intracellular
fates. Studies have also shown that albumin-bound FFAs induce macropinocytosis in
podocytes, and renal FFAs induce angiopoietin-related protein 4 in podocytes and the
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circulation in the experimental model of minimal change disease (MCD) and human disease
and may induce renal injury [44]. In addition, lipid synthesis from nonlipid substrates,
such as carbohydrates, acetic acid and acetate, plays an important role in the normal
kidneys. Renal expression of sterol regulatory element-binding proteins (SREBP)-1 has
been found to regulate renal de novo lipogenesis [45,46]. Several studies have shown that
the molecular mechanisms underlying renal FFA accumulation in the kidneys are due
to [36,47,48]: (1) enhanced expression of SREBP-1c, Srebp2 and carbohydrate response
element-binding protein (ChREBP); (2) decreased expression of peroxisome proliferator-
activated receptor (PPAR)-alpha and -delta, which cause decreased fatty acid oxidation;
and (3) decreased expression of nuclear receptor farnesoid X receptor (FXR) alpha and beta
and small heterodimer partner (SHP). These transcription factors may play important roles
in the increased expression of profibrotic growth hormones and proinflammatory cytokines
and the elevated oxidative stress in the kidneys.

Under normal conditions, the kidneys take up FFAs from the circulation in fasted
animals but add FFAs into the circulation in fed animals [31], thus suggesting that the
transport of FFAs between the circulation and renal cells may be bidirectional. Fasting-
induced lipid accumulation in the kidney cortex was demonstrated in tubule cells [31].
Thus, fasting-induced triglyceride accumulation may increase glomerular filtration and
tubular re-uptake of albumin-bound fatty acids. Moreover, caloric restriction regulates
age-associated renal disease partly through the modulation of renal SREBP expression and
decreases renal lipid accumulation in proximal tubule epithelial cells in aged C57BL/6J
mic [49].

3. Molecular and Pathological Roles of Fatty Acids in Renal Lipotoxicity and CKD
3.1. Molecular Mechanism of Fatty Acids in Renal Lipotoxicity

Lipids in circulation can accumulate in the kidneys, thus resulting in kidney lipo-
toxicity through fatty acid metabolic processes or the toxic effects of saturated fatty
acids [22,35,39,50,51]. However, FFA accumulation and the induction of lipotoxicity have ap-
peared as one of the major health problems around the world [14,21,28,34,35,39,47,48,52–60].

Renal lipotoxicity is associated with inflammation and fibrosis; it induces oxida-
tive stress and albuminuria and regulates intra-cellular signaling pathways in renal lipid
metabolism [39,61]. Kang et al. reported that incomplete fatty acid oxidation in renal
tubular epithelial cells plays a key role in the development of renal fibrosis [62]. Several
mechanisms are involved in the regulation of kidney function resulting in lipotoxicity. The
adipose tissue releases lipids into the bloodstream and alters lipid signaling [4,61,63,64]
(Figure 2).

First, mechanistic studies of renal lipotoxicity have shown increased lipogenesis
and decreased lipolysis in endothelial cells, podocytes and proximal tubular epithelial
cells [35,64,65]. Second, increases in Srebps (transcription factors associated with lipogen-
esis) cause the accumulation of fatty acids and exhaustion of mitochondrial β-oxidative
capacity in the kidneys [36]. Third, downregulation of the nuclear receptor FXR, and
decreased carbocilesterase-1 and lipolysis, induce the esterification of fatty acids with
glycerol and the formation of lipid droplets, thereby inducing renal steatosis through the
deregulation of adipocytokines and their functions in the kidneys [36,48]. Fourth, hyper-
triglyceridemia causes the accumulation of fatty acids in renal tissue, owing to increases
in the cluster of differentiation 36 (CD36) protein and greater uptake of fatty acids, thus
resulting in the formation of reactive oxygen species (ROS), which induce oxidative stress in
the kidneys [66]. Fifth, lipotoxicity was shown to be involved in various cellular signaling
pathways, including the increased transcription of PPAR-γ, activation of lipogenesis, de-
creased PPARα, activation of lipolysis and increased endoplasmic reticulum and lysosomal
dysfunction from the recruitment of macrophages to adipose tissue and the formation of
ROS35. Finally, activation of AMP-activated protein kinase (AMPK) is associated with high
fatty acid β-oxidation and decreased apoptosis through systemic inflammation [67].
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Figure 2. High free fatty acids (FFA) in circulation, originating from dietary lipids and adipose tissue,
cause fatty acid metabolism disorders, thus acting as major risk factors for lipotoxicity and CKD
in the kidneys. Increased fatty acid (FA) uptake increases de novo lipogenesis, increases de novo
FA and TG synthesis, decreases β-oxidation or lipolysis and decreases triglyceride (TG) secretion,
thus resulting in lipid accumulation in the PTECs of the kidneys. The lipotoxic effects caused by the
ectopic accumulation of lipids in the kidneys include oxidative stress, fibrosis, endoplasmic reticulum
(ER) stress, inflammation and other risk factors that cause lipotoxicity-induced CKD.

3.2. Glycotoxicity and Lipotoxicity

Lipotoxicity is characterized by the ectopic accumulation of lipids in tissues other
than adipose tissue. In the obesity model, adipokines increase renal lipotoxicity, thereby
inducing oxidative stress and inflammation, as well as stimulating renal sympathetic ner-
vous activity [68]. Lipid droplets are observed in the renal cells of obese people [69]. Renal
metabolic deregulation aggravates lipid deposition, thus leading to a decrease in energy
expenditure that ultimately induces apoptosis and contributes to CKD [70]. The activation
of PPARγ by PPARγ agonists is a lipolytic mechanism protective against kidney changes
caused by obesity [71]. In addition, distinguishing the effects of glycotoxicity (toxicity
from advanced glycation end products formed from excessive sugars) from lipotoxicity
is difficult in clinical practice, mainly because of the long exposures and synergistic inter-
relationships among the mechanisms [65]. Moreover, differentiation between the focus
on glucose as the cause of a condition (glucocentric mechanisms) and the focus on lipids
as the cause of a condition (lipocentric mechanisms) may be confusing, given that both
are involved in the progression of energy imbalance diseases and kidney disease [65].
Lipotoxicity is also associated with dysfunctional intracellular signaling [72] and an insulin
resistance response in the kidneys [61,65].

3.3. DKD and CKD

Most patients with diabetes (40%) develop kidney disease and end-stage kidney dis-
ease (ESKD), the latter of which is characterized by immune cell infiltration, glomerular
injury and tubulointerstitial damage [73] Current therapies do not induce remission in all
patients, and many individuals progress to kidney failure. Recently, Mori et al. showed
that kidney injury molecule-1 (KIM-1) is highly expressed in the proximal tubules and
is elevated in the blood and urine in patients with diabetes [74]. They found that KLM-
1 regulates palmitic acid–bound albumin uptake in the proximal tubules, thus causing
tubule injury, DNA damage and proximal tubular cell-cycle arrest, and additionally in-
ducing interstitial inflammation, fibrosis and glomerulosclerosis [74]. Sodium-glucose
co-transporter-2 (SGLT2) inhibitors, a target of diabetic kidney disease (DKD) therapy,
were also validated [5,75]. Mori et al. found that the small molecule Bcl-2/Mcl-1 inhibitor
TW-37 also inhibits KIM-1-mediated palmitic acid-albumin uptake in a mouse kidney
model [74]. The authors proposed a different strategy for therapeutically targeting the
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kidneys in patients with CKD using a KIM-1 inhibitor. SGLT2 inhibitors are approved
for clinical use [76,77]. However, whether combined KIM-1 inhibitor and SGLT2 inhibitor
therapy might decrease the risk of CKD or DKD remains unknown.

3.4. Different Single Cell Function and CKD

Endothelial cells are a therapeutic target against lipotoxicity at the systemic level.
Although endothelial cells do not appear to be predisposed to lipid accumulation, they
play an important role in the transport of lipids to other tissues, particularly in the kidney
region [78,79]. Endothelial cells are the main source of the lipid supply to glomerular
cells through the co-expression of vascular endothelial growth factor B (VEGF-B) and
mitochondrial proteins [80]. Endothelial glycocalyx dysfunction, including renal cholesterol
accumulation and modified lipoprotein accumulation, is present in patients with CKD [79].
Mesangial cells are specialized cells in the kidneys that present LDL receptor (LDLr) and
CD36 expression. Increased accumulation of foam cells and the presence of intracellular
lipid droplets in macrophages and/or foam cells of the kidneys are observed in focal
segmental glomerulosclerosis (FSGS) and diabetic nephropathy [81]. Cytokines such as
tumor necrosis factor (TNFα) and interleukin 1 beta (IL-1β) are shown to regulate LDLr-
mediated cholesterol uptake through increasing SREBP translocation and stimulating foam
cell formation in macrophages and mesangial cells in the kidneys [82–84].

4. Roles and Biological and Pathological Functions of Apolipoproteins in the Kidneys
and CKD

Lipids and lipid transport-associated proteins are elevated in the urinary excretion of
children with kidney stones and hypercalciuria [85]. However, the roles of apolipoproteins
in kidney stone formation and the effects of dietary changes on lipoprotein-associated
urinary excretion remain unclear and should be investigated further [86]. In addition,
the molecular mechanisms underlying the roles of apolipoproteins in kidney diseases
remain unclear.

Below, recent findings regarding changes in the most abundant apolipoproteins are
discussed. Apolipoprotein dysfunction can damage kidney function and morphology,
according to clinical studies. The gene expression of all apolipoproteins was detected in the
kidneys (Table 1).

Table 1. Apolipoprotein tissue distribution and lipoprotein content.

Apolipoprotein Lipoprotein Main Tissue

ApoA-I HDL, VLDL, CM Liver, small intestine, kidney, macrophages

ApoA-II HDL, VLDL, CM, Liver, stomach, small intestine, tongue, skin

ApoA-IV HDL, CM, Intestine, liver, kidney

ApoA-V HDL, VLDL, CM, Liver

ApoB 48 CM, IDL/CM remnants Intestine,

ApoB100 Lp(a), IDL, LDL, VLDL Liver

ApoC-I HDL, IDL, VLDL, CM Liver, brain

ApoC-II HDL, IDL, VLDL, CM Liver, brain

ApoC-III HDL, IDL/CM remnants, VLDL, CM Liver, intestine

ApoD HDL Brain, kidney, muscle

ApoE HDL, IDL/CM remnants, VLDL, CM Liver, kidney, lung, skin

ApoF HDL, LDL Liver, kidney, brain

ApoH HDL Liver, kidney, lung
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Table 1. Cont.

Apolipoprotein Lipoprotein Main Tissue

ApoJ HDL Brain, liver, kidney, lung,

ApoL-1 HDL, LDL Liver, pancreas, kidney, brain,

ApoL-2 HDL Liver, kidney, lung, brain

ApoM HDL, LDL, VLDL, CM Intestine, liver, kidney

ApoA-I
ApoA-I is the main protein in HDL particles. It has a size of 28.1 kDa molecular weight

(MW) and is catabolized in the liver and kidneys. ApoA-I is considered protective against
CVD [87–91]. ApoA-I plays a critical role in the ATP binding cassette subfamily A member
1-dependent efflux of excess cholesterol and phospholipids from peripheral tissue in reverse
cholesterol transport [87]. Studies showed that the dissociation of apoA-I from HDL or the
failure of apoA-I to incorporate into HDL enhances renal apoA-I catabolism [92].

ApoA-I clearance is associated with the kidneys in rodents. The kidneys are major
organs removing apoA-I from the body [93], and urinary apoA1 concentration is positively
associated with renal dysfunction and renal disease over time [94]. Recently, Jacobs-
Cacha et al. reported that apoA-I disorder is associated with recurrent focal segmental
glomerulosclerosis [95]. A misprocessed form of apoA-I precursor was found in the urine
in approximately 40% of patients with primary FSGS on a kidney transplant waitlist [95].
Recently, Saraf et al. showed that ApoA1 is a candidate gene in sickle cell disease-associated
nephropathy [96]. The apoB/apoA1 ratio was shown to be associated with CVD and CKD.
Zhao et al. showed that the serum apoB/apoA1 ratio is associated with the progression of
diabetic kidney disease in 258 patients receiving renal replacement therapy [97].

ApoA-I mimetic peptides are an emerging class of therapeutic agents whose
antioxidant/anti-inflammatory properties and reverse cholesterol transport (RCT) are
used to treat atherosclerosis and inflammatory disorders [88]. Decreased serum apoA1 has
been demonstrated in patients with renal dysfunction [98]. Studies have shown that ApoA1
mimetic peptides may ameliorate nephropathy in a mouse model of atherosclerosis, such
as ApoE-deficient mice [99]. ApoA1 mimetic peptides have also been found to decrease
renal tissue lipid accumulation in Ldlr-deficient, ApoE-deficient mice fed a Western diet
as well as 5/6 nephrectomy rats in a CKD model [100,101]. These findings suggest that
apoA-I may play important roles in cholesterol transport, and APOA1 mimetic peptides
may be useful for treating kidney disease.

ApoA-II
ApoAII exists as a 17.4 kDa homodimer. Like apoA-I, apoA-II is a major protein

element of HDL [102]. ApoA-II is present in the first segment of proximal tubules and
adjacent to the glomerulus. Although the role of human APOAII remains unclear, APOAII
has anti-atherogenic effects [103,104].

ApoAII is a marker linking dyslipidemia and the risk of kidney stones in humans and
other animals [105]. Because of its small molecular size, ApoA-II, like other apolipoproteins,
might undergo reabsorption in the renal tubules or might pass through the glomerular
sieves and be excreted in the urine [106,107]. SNPs in the ApoA-II gene promoter are
associated with insulin resistance, which is a risk factor for type 2 diabetes (T2D), diabetic
kidney disease, CVD and nonalcoholic steatohepatitis [108]. ApoA-II is implicated in renal
amyloidosis [109]. The mutation of human APOA2 is associated with systemic deposi-
tion disease, such as renal amyloidosis or cardiomyopathy with atrial fibrillation. High
apoA-II concentrations in the plasma are associated with a lower risk of death in patients
with CKD [110]. Abnormal HDL apoA-I and apoA-II kinetics in 1255 patients receiving
hemodialysis indicated that lower levels of apoA-II are primarily due to a decreased rate of
production in patients with ESRD receiving hemodialysis [110,111]. In obese individuals or
those with T2D, apoA-II is more hydrophobic than apoA-I, thus displacing apoA-I from
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HDL particles [112]; however, the underlying mechanism remains unknown. Recently,
Brown et al. showed that ApoA2 mutation was associated with renal amyloidosis in a
63-year-old man with ESRD [113].

ApoA-IV
ApoA-IV is a 46 kDa apolipoprotein in HDL particles, which serves as a serum

biomarker for renal injury as well as diabetic kidney disease [114,115]. Increased APOA-IV
is associated with renal disorders, specifically in mild and moderate renal failure [116].
ApoA-IV protein is expressed in kidney tubular cells in humans and other animals. Baseline
plasma apoA-IV and triglyceride concentrations are higher, and HDL cholesterol levels
are lower in patients with CKD than in unaffected individuals [117]. ApoA-IV is an
early marker of renal impairment [108]. Recently, Perampalam et al. reported that the
downregulation of Dp, Rb-like, E2F and MuvB (DREAM), a transcriptional repressor,
enhances ApoA4 protein levels and causes systemic amyloidosis in the heart, spleen, liver
and kidneys [118]. ApoA-IV is also associated with changes in insulin resistance [119],
which in turn are associated with CKD. Recently, Lee et al. reported that ApoA4 expression
is increased by treatment with TNFα via the activation of TNF receptor 2 and nuclear factor
kappa B signaling in injured kidney tubular cells [120]. However, the function of ApoA-IV
in renal tissue injury is not fully understood and requires further study.

ApoA-V
ApoA-V is a 39 kDa apolipoprotein [121] that is positively correlated with HDL choles-

terol in patients with ESRD [122]. Studies have shown that plasma APOA-V is lower
in patients with diabetic or nondiabetic ESRD than in healthy individuals [123]. Two
polymorphisms in APOA5 (1131T>C [rs662799] and T1259C [rs2266788]) are involved in
lipid metabolism and are significantly associated with CKD stages 3–5 [124,125]. APOA5
T1259C (rs226788) is significantly associated with blood triglyceride levels in renal dysfunc-
tion [124], thus suggesting that modulation of APOA5 to regulate blood triglyceride levels
might be a key factor contributing to the development of CKD as well as T2D nephropathy.
Recently, de Luis et al. reported that the minor C allele of the APOA5 gene (rs662799)
is negatively associated with plasma triglyceride levels, insulin levels and homeostatic
model assessment for insulin resistance after a hypocaloric diet with a Mediterranean
pattern [126].

ApoB
ApoB has two main forms, APOB-48 and APOB-100, which are 210 kDa and 550 kDa,

respectively, and are found in intermediate-density lipoprotein, LDL, VLDL and chylomi-
crons [127–129]. ApoB mRNA is expressed in mammalian kidneys.

Studies have found that the plasma apoB/A1 ratio, but not apoB level, is associated
with CKD progression and immunoglobulin A nephropathy [130–132], although neither
apoA1 nor apoB alone is associated with renal dysfunction in heart failure [133]. Higher
apoB/apoA1 ratios are significantly associated with lower eGFR [131]. The preoperative
apoB/apoA1 ratio is also a useful marker in improving current prognostic evaluation
and treatment decisions for patients with metastatic renal cell carcinoma [134]. Hyper-
triglyceridemia or hyper-apoB is associated with the highest risk of albuminuria [135,136].
ApoB-containing lipoproteins have been found to be important causes of elevated urinary
albumin excretion rates in a study of 275 patient [135,136]. Increased serum APOB is
associated with an elevated risk of a need for renal replacement therapy in patients with
diabetic kidney disease [97]. The deposition of ApoB results in the progression of glomeru-
losclerosis [137]. Elevated plasma APOB is correlated with microalbuminuria and the
development of overt nephropathy in T2D [97,138]. Ma et al. reported that polymorphisms
in APOB are associated with diabetic kidney disease in Chinese patients with T2D [139].
Additionally, Kwon et al. also showed that high plasma APOB concentrations are associ-
ated with a higher risk of ESRD in 9403 participants [130]. In ESRD, owing to renal lipid
supplies being overstepped for energy consumption, less fatty acid β-oxidation occurs;
therefore, apoB-containing lipoproteins remove excessive triglycerides from the tubular
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epithelium [140]. These studies have suggested that ApoB is a risk factor for ESRD [130].
However, the underlying molecular mechanism remains unknown.

Several studies have indicated that lipoproteins might be produced by tubular epithe-
lial cells rather than glomerular or vascular cells [22,26,64]. ApoB is produced mainly by
tubular epithelial cells [140]. ApoB-containing lipoproteins in the kidneys may depend on
lipid availability, which may be higher in the proximal than the more distal tubule cells
of the kidney. In addition, mouse kidneys secrete apoB-containing lipoproteins [140,141].
ApoB-antisense locked nucleic acid oligonucleotides have been found to decrease ApoB
expression by 90% in the renal cortex in wild type mice in vivo [142]. The repression of
ApoB expression enhances fasting-induced triglyceride accumulation in the kidneys [31].
In mammals, kidney secreted apoB-100-containing lipoproteins decrease the accumulation
of triglycerides in proximal tubule cells [143]. However, how apoB-containing lipoproteins
are secreted from the kidneys remains unknown. ApoB-containing lipoproteins have been
suggested to be produced by tubular epithelial cells rather than glomerular or vascular
cells [140,143].

According to the two-point hypothesis, the first point is due to renal uptake of lipids
(including phospholipids, albumin-bound FFAs and lipophilic vitamins), thus leading to
the secretion of lipids into the circulation [39]. The second point is due to apoB secretion
being the main pathway for assembly and resecretion of lipids from renal proximal tubule
epithelial cells back into the circulation [130]. However, this hypothesis remains to be tested.

ApoC
The ApoC family has three members: ApoC-I, ApoC-II and ApoC-III. These low molec-

ular weight apolipoproteins are components of chylomicrons, VLDL and HDL [33,144].
Like other low molecular weight apolipoproteins, ApoC-I and ApoC-II can diffuse via
adsorption on dialysis membranes. The ApoC1–3 gene family might regulate lipoprotein
metabolism in patients receiving hemodialysis [145].

ApoC-I
ApoC-I is a 7.6 kDa low molecular weight protein. High plasma apoC-I decreases the

uptake of triglyceride-rich lipoproteins via hepatic receptors, such as the LDL receptor-
related protein [146]. Plasma apoC-I also activates lecithin cholesterol acyltransferase
(LCAT), thus inhibiting plasma phospholipase A2, cholesteryl ester transfer protein (CETP),
lipoprotein lipase (LPL) and hepatic lipase, and playing important roles in lipid metabolism.
Studies have shown that diminished ApoC-I might decrease LPL activity and the accumula-
tion of triglyceride-rich lipoproteins that cause chronic renal failure [147,148]. This finding
may be explained by the higher apoC-I clearance and, consequently, lower renal triglyceride
accumulation in patients receiving dialysis than those not receiving dialysis [149]. Bus et al.
found that polymorphisms in human APOC1 as well as mouse apoC1 increase the number
of glomerular M1 macrophages [150] and are associated with the development of diabetic
nephropathy in human apoC1 transgenic mice [145,150]. These data suggest that apoC-I
plays an important role in the pathogenesis of glomerulosclerosis in nephropathy. Together,
the findings show that apoC-I is involved in atherosclerosis and might cause the formation
of glomerular nodules, which induce vascular damage [151]. Recently, Cui et al. showed
that renal cancer samples display the induction of apoC1 expression; moreover, high lev-
els of APOC1 are associated with poor survival times in clear cell renal cell carcinoma
(ccRCC) [152]. ApoC-I is a novel pro-metastatic factor, and exosomes containing APOC-I
are transferred from ccRCC cells to vascular endothelial cells [152]. This process activates
the signal transducer and activator of transcription 3, thus promoting metastasis of ccRCC
cells, according to in vitro and in vivo studies [153].

ApoC-II
ApoC-II is an 8.9 kDa protein that acts as a physiological activator of LPL and plays an

important role in the efficient lipolysis of triglyceride-rich lipoproteins in circulation [154].
The progression of renal insufficiency is associated with marked increases in the triglyceride
content of VLDL, LDL and HDL and is associated with high apoC-II and apoC-III levels in
the plasma [155].
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ApoC-III
ApoC-III is an 8.7 kDa protein. Like apoA-I in the kidneys, renal ApoC-III dysfunction

is associated with renal insufficiency in T2D but does not affect albuminuria [60]. ApoC-III
plays an important role in triglyceride transport and triglyceride homeostasis [155]. The
concentration of ApoC-III in urinary excretion is significantly associated with urinary cal-
cium excretion in children [156], thus suggesting that abnormalities in lipid metabolism and
APOC3 might play a role in kidney stone formation [156]. However, ApoC’s physiological
role in the kidneys remains to be established.

ApoD
ApoD, a 25–30 kDa protein cloned in 1980 [157], is a human-protein component of

plasma HDL and is associated with lecithin-cholesterol acyltransferase and progesterone
binding [158]. ApoD is expressed in the kidneys as well as the intestines, liver, central
nervous system, testis and adrenal glands. ApoD is a lipid-transport protein that has
been found in urine [159]. APOD is associated with renal function in African American
participants in a hypertension Genetic Epidemiology Network [160]. ApoD may be associ-
ated with kidney failure (including creatinine, eGFR and urea). However, little is known
regarding the function of this apolipoprotein in the kidneys.

ApoE
ApoE is a 34 kDa protein synthesized in the liver and kidneys [161]. The role of

APOE in kidney pathogenesis has not been well studied, although APOE variants are
associated with nondiabetic ESRD [162]. Several studies indicated that ApoE deficiency is
associated with occasional glomerular capillary thrombosis and substantial glomerular and
tubulointerstitial macrophage and lymphocyte accumulation [100,163,164]. APOE mutants
lead to lipoprotein glomerulopathy, which is abnormal lipoprotein deposition in glomerular
capillaries and mesangial proliferation, thus causing nephrotic syndrome [165,166]. In 5/6
nephrectomy ApoE-deficient mice, kidney function is diminished, and aortic plaques
increase 6- to 10-fold, thus causing cholesteryl ester accumulation in foam cells [167].

In addition, ApoE2 homozygotes show glomerulopathy and lipoprotein thrombi [168].
ApoE2 has been associated with diabetic nephropathy with abnormal lipid metabolism.
Serum apoE2 levels are associated with the severity of IgA nephropathy, and the apoE2
allele may play an important role in the progression to ESRD [169]. Like apoE2, apoE5 is a
risk factor underlying lipid-induced kidney diseases 169].

ApoF
ApoF is a minor apolipoprotein in plasma LDL with a size of 35.3 kDa. ApoF is also

called lipid transfer inhibitor protein (LTIP). Hepatic apoF negatively regulates plasma
LDL levels and increases RCT in fat-fed hamsters [170]. ApoF inhibits CETP activity, thus
increasing HDL cholesterol. ApoF may prevent atherosclerosis risk [170]. The regulation of
APOF includes signaling receptor binding and lipid transporter activity [171,172]. ApoF is
expressed in human kidneys. According to RNA-seq, the ApoF expression in the kidneys is
one-third that in the liver. Aberrant LTIP activity has been shown in patients with uremia
undergoing continuous ambulatory peritoneal dialysis [173]. However, the role of ApoF in
the kidneys is unknown.

ApoH
ApoH is a 50 kDa protein present in the plasma, in free form and in combination

with HDL. APOH mRNA and protein are mainly expressed in the proximal tubules in the
kidneys [174]. ApoH is filtered by the glomeruli and then reabsorbed into renal epithelial
cells [175]. High urinary concentrations of APOH have been observed in patients with
Fanconi syndrome [176]. Genome-wide association studies have emphasized that APOH
may serve as a novel locus modulating lipoprotein (a) levels in individuals of European
ancestry [177]. To date, little is known regarding the role of ApoH play in kidney diseases.

ApoJ
ApoJ, also called clusterin, is a 75–80 kDa secretory glycoprotein with two 40 kDa het-

erodimeric protein forms. ApoJ is an HDL apolipoprotein [178,179] that is expressed in ep-
ithelial cells [180] and is associated with various disease states such as polycystic kidney dis-
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ease, ischemic renal tissues and lupus-like nephritis [181], as well as several forms of acute
and chronic renal disease [182–184]. ApoJ/clusterin-deficient aged mice showed a 75%
increase in glomeruli in the kidneys and induced renal lipid accumulation [182,185,186].

ApoL
ApoL-I is 43 kDa in molecular weight. The apolipoprotein L gene family includes

ApoL1–6 [187]. APOL-I and APOL-II co-localize with ApoA-I in HDL particles and
play important roles in lipid exchange, transport and movement in the kidneys [188,189].
APOL-I protein is expressed in podocytes of the glomerulus, the proximal tubules and
extra glomerular arterial endothelium in normal human kidneys [190]. APOL-I, which
binds APOA-I, may modulate cholesterol efflux in podocytes under physiological condi-
tions [191,192]. APOL-I is strongly associated with CVD and CKD [193]. ApoL-I dysfunc-
tion induces the pathogenesis of glomerular diseases such as HIV-associated nephropathy
and FSGS [189]. Additionally, APOL1 is associated with recurrent FSGS after transplan-
tation [194]. Recently, Zee et al. showed that glomerular APOL1 expression or APOL1
risk alleles are associated with cellular/tissue changes in patients with FSGS [195,196].
ApoL2 is found mainly in the brain [197], but its function remains unknown in the kidneys.
ApoL3 and ApoL4 are associated with cholesterol and sphingolipid transport/recycling
to the plasma membrane in the lungs and other tissues [190], but their functions are also
unknown in the kidneys.

ApoM
ApoM is a small apolipoprotein of 26 kDa, which is highly produced in the liver and

kidneys [198,199]; 95% of plasma apoM is associated with HDL, and 5% of plasma apoM
is present in LDL, VLDL and chylomicron particles in humans and other animals [200].
ApoM has been reported to bind megalin and to be strongly expressed in kidney proximal
tubular cells [201]. ApoM knockout mice show induction of apoptosis via mitochondrial
and endoplasmic reticulum stress in renal tissue [202]. Studies have shown that ApoM
functions as a natural carrier of sphingosine-1-phosphate (S1P), and ApoM and SIP are
regulated by several transcription factors [203,204]. However, Brinck et al. reported
elevated S1P and diminished apoM in HDL particles in patients with CKD [205]. Uremia
increases plasma apoM by 25% but has no effect on S1P [198]. Svarrer et al. reported that
urinary apoM serves as a biomarker of acute kidney injury in young children after heart
surgery [206]. Plasma apoM is also associated with apoA-I-containing HDL and plays a
key role in the biology of plasma HDL [198].

Pathological Role of Apolipoproteins in Kidney Diseases

Apolipoproteins are composed of lipoproteins, which may play a key role in renal tox-
icity. Dysfunctional apolipoproteins induce glomerular and tubular damage [60]. Further
exploration is needed to understand the relationship between apolipoproteins and renal
injury. The regulation and possible roles of apolipoproteins in the kidneys, considering
the specific physiology and pathophysiology of the kidneys, are summarized in Table 2.
Hence, apolipoprotein dysfunction is associated with nephrotic syndrome with or without
developing CKD. In turn, renal dysfunction is also associated with many disorders in
lipoprotein metabolism leading to dyslipidemia and apolipoprotein dysfunction.

For example, plasma apoAI, apoAII nonB and ApoCIII nonB in HDL particles are neg-
atively associated with LDL cholesterol in patients after renal transplantation [207]. ApoE
deficiency has been shown to alter the plasma cholesterol concentration in lipoproteins
in atherosclerosis and CKD [208–210]. Plasma apoB100 is significantly elevated during
CVD and CKD, owing to the effect of apoB-100 on oxidized LDL-induced kidney cytotoxic-
ity [211]. ApoA-IV is a possible link between lipoprotein function and the development of
nephrotic syndrome with or without CKD, ApoA-IV accumulation in proximal and distal
tubular cells may influence kidney cell recovery [212]. ApoL-I is considered to have an
important function in the pathogenesis of CKD-induced diabetes [213]. APOL-I is also
associated with an elevated risk of hypertensive disease, lupus and HIV-associated kidney
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disease [214]. The presence of two apolipoprotein L renal risk variants is rapidly emerging
as a pathological mechanism that increases the risk of kidney disease [214,215].

Table 2. The physiology and pathophysiology roles of apolipoproteins in the kidneys.

Apolipoprotein Physiological Functions Pathophysiology

ApoA-I main structural protein in HDL,
Cholesterol transport CVD, CKD, FSGS [91–95,97,98]

ApoA-II main structural protein in HDL,
Cholesterol transport CVD, T2D, DKD, Kidney stones, ESRD [102–107]

ApoA-IV may increase triacylglycerol secretion DKD, CKD [105,111,115–117]
ApoA-V enhances triacylglycerol uptake ESRD, CKD, T2D nephropathy [119–123]
ApoB 48 remove excessive triglycerides albuminuria, gomerulosclerosis, ESRD [94,128–134]

ApoB100 binds to LDL receptor, remove
excessive triglycerides Albuminuria [132,133]

ApoC-I activates LCAT CKD, diabetic nephropathy, glomerulosclerosis,
renal cancer [142,147–149]

ApoC-II activates lipoprotein lipase poorly defined dieases

ApoC-III inhibits lipoprotein lipase, controls
triacylglycerol turnover renal insufficiency in T2D, kidney stone formation [59,153]

ApoD associated with LCAT,
progesterone binding poorly defined dieases

ApoE binds to LDL receptor, remove
excessive triglycerides

nondiabetic ESRD, nephrotic syndrome, diabetic
nephropathy, ESRD [162–166]

ApoF inhibits CETP activity uremia [170]

ApoH binding to phospholipids antiphospholipid Syndrome-related
kidney dieases [173,174]

ApoJ cholesterol clearance acute and chronic renal disease, polycystic kidney disease,
ischemic renal tissues, lupus-like nephritis [179–183]

ApoL-1 encodes a secreted HDL, bind to ApoA1,
efflux of cholesterol

Renal failure, FSGS, Glomerulonephritis and HIV-related
KD [186,187,190–193]

ApoM main structural protein in HDL,
transports S1P CKD [202,203]

CETP: cholesteryl ester transfer protein; CKD: chronic kidney disease; CVD: cardiovascular disease; DKD: diabetes
kidney disease; ESRD: end stage renal disease; FSGS:focal segmental glomerulosclerosis; HDL: high density
lipoprotein; KD: kidney disease; LCAT: Lecithin-Cholesterol Acyltransferase; LDL: low density lipoprotein;
S1P:sphingosine-1-phosphate; T2D: type 2 diabetes.

Therefore, understanding the mechanisms associated with apolipoprotein-associated
kidney disease is essential for successful treatment strategies that ameliorate fatty acid accu-
mulation and apolipoprotein function in kidney cells and improve kidney metabolic health.

Apolipoproteins such as ApoB, ApoA-I, ApoE and ApoCs also play important roles
in the viral pathogenesis and regulation of hepatitis C viral (HCV) entry, assembly and
transmission [216]. HCV is inversely associated with the development of diabetes mellitus
and CVD as well as CKD [217].

5. Future Perspectives and Conclusions

Obesity, diabetes mellitus and hyperlipidemia causing aberrant lipotoxicity are well-
known pathological hallmarks of CK [64]. In recent years, increased attention has been paid
to the accumulation of lipids through cell and tissue crosstalk in these renal pathologies.
Aberrant lipid and apolipoprotein metabolism is associated with multiple kidney disease
characteristics, such as increased renal inflammation and ROS production [39]. Therefore,
maintaining kidney lipid accumulation is considered increasingly important in CKD.

Although many apolipoproteins are not well studied in the context of CKD, they
are an interesting field of research because of their strong association with dysfunctional
fatty acid and apolipoprotein metabolism. Substantial direct evidence that apolipoproteins
are an important mechanism in the pathology of CKD is lacking for two main reasons.
First, the abnormal accumulation of lipids in the kidneys has long been known, but the
regulation of apolipoprotein function has only recently been reported, and increasing evi-
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dence indicates the importance of lipid metabolism in the kidneys. Second, apolipoproteins
often stood in the shadow of general lipoproteins and are associated with heart and liver
diseases in humans and other animal models; for example, the circadian clock was found to
regulate apoB-containing lipoproteins, thereby Clock genes controlling plasma lipids and
atherosclerosis [218,219]. Recently, the circadian clock gene Bmal1 was found to regulate
lipoprotein assembly and secretion, thus controlling liver metabolism through ApoA4
in the liver [220]. However, how circadian clock genes regulate kidney apolipoproteins
remains unknown. Only in the past few years have apolipoproteins been considered im-
portant elements of kidney lipoproteins; for example, apoL1 is an independent risk factor
associated with CKD. These findings were based mainly on CKD genome-wide associ-
ation studies revealing the apolipoproteins and possible apolipoprotein-related factors
in the kidneys. To date, several studies have provided insight into how apolipoproteins
are associated with CVD. Validation of these findings in the kidneys and in the context
of CKD is needed, given the known heterogeneity in apolipoproteins across various tis-
sues, cell types and the plasma [37,137,215]. Another overlooked aspect is whether the
apolipoproteins in circulating lipoproteins might affect fatty acid functions in the kidneys.
This possibility is worthy of study, particularly given that the renal core lipid, surface lipid
and apolipoprotein composition analysis of lipoprotein particles, cell motility and spatial
heterogeneity in apolipoprotein function and fatty acid metabolism in the kidneys, and that
the lipoprotein size, intensity and lipid composition and apolipoprotein dispersal observed
through kidney lipid staining show distinct intracellular patterns among cell types. With
the latest lipidomics, mass spectrometry-based lipidomics, lipid imaging, chemical-based
lipid analysis and lipid engineering technologies [28,45,48,113,221–223], such comparisons
can be made, and lipoprotein subtypes can be further classified on the basis of apolipopro-
teins and lipid differences. In addition, single-cell RNA-sequencing can comprehensively
describe cell types and states in human and animal kidneys and identify apolipoprotein
expression in each kidney cell, thus revealing CKD-associated molecular mechanisms.

Many kidney diseases occur together with inflammation, a process in which apolipopro-
teins are studied. For example, apoA-IV has been shown to rescue inflammation by in-
hibiting proinflammatory cytokine expression, degrading inflammasomes and preventing
ROS production [116]. Moreover, increases in lipid accumulation in the kidneys in ApoE-
deficient mice are associated with enhanced T cell activation and antigen presentation by
dendritic cells [224]. Endogenous apoA-I, apoA-IV and apoE prevent inflammation and
oxidative stress from free cholesterol-induced cytotoxicity [225–227]. Therefore, consider-
ation must be taken when raising the fact apolipoprotein dysfunction is associated with
inflammation levels in CKD. Thus, macrophage lipid metabolism in the kidneys may also
play an important role in the pathogenesis of CKD.

Treatment strategies targeting apolipoproteins in CKD have shown varying degrees
of success. Methods to specifically target lipoproteins genetically or pharmacologically
remain poorly understood, and further knowledge is needed regarding the regulation
of specific apolipoproteins and the interplay between CKD and lipoproteins at different
cellular signaling levels as well as in different cell types. Nonetheless, current evidence
highlights that apolipoprotein perturbations underlie kidney pathology in several types of
CKD and may be promising new targets in the search for future therapies.
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