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Identifying and quantifying 
potential super-spreaders in social 
networks
Dayong Zhang   1, Yang Wang2 & Zhaoxin Zhang2

Quantifying the nodal spreading abilities and identifying the potential influential spreaders has been 
one of the most engaging topics recently, which is essential and beneficial to facilitate information 
flow and ensure the stabilization operations of social networks. However, most of the existing 
algorithms just consider a fundamental quantification through combining a certain attribute of the 
nodes to measure the nodes’ importance. Moreover, reaching a balance between the accuracy and the 
simplicity of these algorithms is difficult. In order to accurately identify the potential super-spreaders, 
the CumulativeRank algorithm is proposed in the present study. This algorithm combines the local 
and global performances of nodes for measuring the nodal spreading abilities. In local performances, 
the proposed algorithm considers both the direct influence from the node’s neighbourhoods and the 
indirect influence from the nearest and the next nearest neighbours. On the other hand, in the global 
performances, the concept of the tenacity is introduced to assess the node’s prominent position 
in maintaining the network connectivity. Extensive experiments carried out with the Susceptible-
Infected-Recovered (SIR) model on real-world social networks demonstrate the accuracy and stability of 
the proposed algorithm. Furthermore, the comparison of the proposed algorithm with the existing well-
known algorithms shows that the proposed algorithm has lower time complexity and can be applicable 
to large-scale networks.

Spreading process is a ubiquitous phenomenon in the nature1,2. In most of the real-world networks, the spreading 
process is the results of the interactions between infected individuals and uninfected individuals. Some spread-
ing processes, including virus propagation and rumor spreading have profound negative economical and social 
impacts3,4. In order to prevent potential disruptions and ensure social stability, external intervention is widely 
essential as the most effective way to control epidemic transmission or rumor spreading5,6. Specifically, influ-
ential users, which are source spreaders, can obtain higher information diffusion levels on the network than 
non-influential users7. Thus, the optimized solution for the influence maximization problem is the most com-
mon and effective intervention method. However, quantifying the individual spreading abilities in complex net-
works, especially identifying the potential super-spreaders in a large-scale social network, is still a big challenge 
nowadays8–11.

The term “super-spreaders” refers to those who are particularly effective in transmitting infectious diseases or 
spreading information. In epidemiology, a super-spreader is an infected organism that infects disproportionally 
more secondary contacts than others who are also infected with the same disease12. Similarly, in information 
diffusion, super-spreaders play a more important role than normal individuals in promoting the information 
diffusion or determining the emergence of hot topics, including opinion leaders who have the ability to influence 
others to share and retweet their messages13, information brokers who connect different groups of users or have 
strong ties with the influential followers14. In fact, identifying individuals with the ability to be super-spreaders 
during virus propagation and rumor spreading can help us to better prevent the epidemic or public events 
bursting15,16.

The ranking algorithms were proposed initially to investigate the influence or prestige of individuals in social 
networks by several social scientists17,18. Nowadays, the ranking algorithms are introduced to study real-world 
issues. Moreover, they are utilized for novel applications, including optimizing communication networks19, find-
ing social leaders20, and assessing network vulnerability21. However, these conventional centrality indices just 
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consider a fundamental quantification through combing geodesics between individuals and they are not suitable 
to describe the pivotal positions of individuals from multiple angles. Thus, some researchers have attempted to 
redefine the concept of the individual influence. Stephenson and Zelen introduced the concept of the informa-
tion centrality to capture the information contained in all possible paths of a connected network22. Kitsak et al.
proposed the k-shell decomposition algorithm to evaluate the nodal spreading capabilities8. Wang and Zhao 
suggested a multi-attribute integrated index based on the degree centrality, the closeness centrality, the clustering 
coefficient and the topology potential23. Sheikhahmadi and Nematbakhsh introduced a hybrid algorithm called 
the MCDE algorithm16. Ahajjam and Badir provided a new centrality for the identification of influential nodes in 
networks based on the improved coreness centrality and the eigenvector centrality7.

Furthermore, with the explosive data growth, designing efficient and effective ranking algorithms on 
large-scale networks has attracted considerable attentions. Some diffusion algorithms based on random-walk 
were proposed, including the well-known PageRank24, HITS scores25, LeaderRank20, ClusterRank26 and other 
improved PageRank algorithms27,28. These representative algorithms have a common assumption that a node is 
expected to be of high influence if it points to many highly influential neighbours. So, they work well for directed 
networks, however they have a poor performance for undirected networks.

In fact, many researches regarding artificial network dataset and real social networks have demonstrated that 
when investigating the effectiveness of a ranking algorithm, it must be combined with the structural properties 
of networks and a certain functional goal29,30. For example, identifying influential nodes according to their roles 
in maintaining the network connectivity or facilitating information flow31. In addition, the existing ranking algo-
rithms are difficult to reach a balance between accuracy and simplicity. In other words, some measures perform 
very simple but limit the accuracy, such as the local centrality indices, whereas others with a high computational 
complexity perform accurately but are incapable to be applied in large-scale networks, such as the global central-
ity indices. Thus, in the present study it is intended to fill this gap by exploring a new algorithm to quantify the 
nodal spreading abilities and identify potential super-spreaders in real-world social networks.

In the present study, a new ranking algorithm named CumulativeRank is proposed to quantify the nodal 
spreading abilities, which combines the local and global performances of each node in a given social network. 
Finally, the SIR model is applied to simulate the spreading processes in real social networks. The experimental 
results show that the proposed algorithm outperforms other well-known ranking algorithms in terms of accuracy 
and simplicity. The contributions of this study can be summarized as the following:

•	 The CumulativeRank algorithm is a three-step implementation algorithm that combined the local and global 
performances of each node.

•	 The improved network constraint coefficient (INCC) is proposed to assess the local performances of each 
node.

•	 The concept of the tenacity is introduced to measure the node’s prominent position in maintaining the net-
work’s connectivity.

•	 The experimental results verify the outperformance of the proposed algorithm in terms of accuracy and 
simplicity.

The rest of the paper is organized as the following: In section 2, several widely-used ranking algorithms are 
reviewed briefly and the SIR model is introduced as the evaluation metric. In Section 3, the proposed algorithm is 
described in detail. In Section 4, the SIR model is applied to compare the performances of the proposed algorithm 
and six well-known ranking algorithms in real-world datasets. Finally, conclusions are given in Section 5.

Background
Ranking algorithms.  A social network is a social structure made up of social members and their relation-
ships. From the view of graph theory, most of social networks can be written as a graph G = (V, E), where 

= V v v v{ , , }n1 2  represents a node set and = E e e e{ , , }m1 2  represents an edge set. A node vi ∈ V denotes 
an individual or organizations in the social network. Moreover, an edge ei ∈ E denotes a possible social interaction 
between individuals or organizations, including communication or collaboration between members of a social 
group. The number of elements in V and E are presented by n and m, respectively. Nowadays, with the emergence 
of web2.0, people can share their opinions, communicate and relate to one another anytime and anywhere. In fact, 
some individuals play an important role in facilitating information flow and ensuring the stabilization operations 
of the whole network. In this section, five widely-used ranking algorithms, including degree centrality, between-
ness centrality, eigenvector centrality, LocalRank, PageRank and a hybrid algorithm defined by Fu et al.32 are 
introduced as benchmark algorithms.

Degree centrality (DC).  The DC is obtained by calculating the ratio of the number of edges of node i to the max-
imum possible number of edges, which reflects the ability of a node to connect directly with other nodes.

Betweenness centrality (BC).  The BC measures a node’s influence through the ratio of the shortest path over the 
nodes to the number of all paths. The BC considers the global structure information of a given graph. The higher 
the BC value of a node, the stronger its controlling or spreading abilities.

Eigenvector centrality (EC).  Another important index in the category of global centrality indices is the EC, 
which considers that the centrality of a node depends not only on the number of its neighbours, but also on the 
centrality of its neighbours.
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LocalRank (LR).  Most of the global centrality indices have rather high computational complexity, which 
restricts their applications to large-scale networks. To overcome this problem, Chen et al.33 proposed a semi-local 
centrality, named the LocalRank, as a tradeoff between the local centrality indices and the global centrality indi-
ces. The LR value of node i is written as the following:
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where Γ(i) and N(w) are the total number of first-degree neighbours of the node i and the total number of first- and 
second-degree neighbours of node w, respectively.

PageRank (PR).  The PR is an application of the random walker model on a Markov chain24, where nodes are the 
web pages and edges represent the links from one page to another. The PR value of a page i at t step is described 
as the following:

∑= +
−

Γ∈

−
PR a PR j

k
a

n
( ) 1

(3)
i
t

j

t

j
out

1

i
in

Where the damping factor a ∈ [0, 1] is usually set to be around 0.85. Moreover, Γi
in, kj

out and n are the set of pages 
that link to page i, the out-degree of page j and is the total number of pages, respectively.

Fu et al.’ algorithm (FA).  Fu et al.32 proposed a hybrid algorithm that combines global diversity and local features 
to identify the most influential network nodes. They used the k-shell entropy to measure the global connecting 
capability of each node and considered the local degree values of its neighbours. The FA value of node i is defined 
as the following:

= ⋅FA E L (4)i i i

Where Ei and Li are the k-shell entropy value of node i and the sum of all neighbours’ degree centrality values 
within the two-step distance of node i, respectively.

SIR model.  Centrality measures provide a method to quantify the nodal influence values, however the 
numeric values may not be directly interpretable34. As the information diffusion is similar to the epidemic spread-
ing, a series of epidemic models are proposed to track the information spreading process and identify the influ-
ential spreaders. In the present study, the standard SIR model is utilized to estimate the spreading abilities of 
selected individuals and illustrate competitive advantages of the proposed algorithm over the conventional 
well-known algorithms. It should be noted that the standard SIR model assumes that nodes in a network can be 
in one of three possible states, including susceptible (denoted by S), infected (denoted by I) and recovered 
(denoted by R). Only a few individuals are set to be infective initially, while other individuals are in the susceptible 
state. The initial infected individuals are the originators of diseases, which can be obtained by various ranking 
indices. Once susceptible nodes get in contact with one or more infected neighbours, they become infected with 
the infection probability of β. Meanwhile, the infected individuals can be cured with the recovery probability of 
γ. The epidemic spreading is repeated until there are no infected individuals in the network and the network 
reaches a stable state. Since the large infection probability β makes the spreading cover almost all of the network, 
where the role of the individual is no longer important, the β value is set to be slightly larger than the epidemic 
threshold β ≈ k k/th

2 , where 〈k〉 and 〈k2〉 represent the average degree and the second order average degree35, 
respectively. Moreover, the recovery probability is γ = 0.3.

In order to characterize the spreading abilities of individuals, the spreading scope F(t) at time t is presented 
as the following:

=
+

F t
n n

n
( ) (5)
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Where n is the number of individuals in a given network. Moreover, nI(t) and nR(t) represent the number of infected 
and recovered nodes at time t, respectively. It should be noted that all of the simulations are carried out on the real 
social networks. When all infected individuals are converted to the recovered state, the spreading process ends 
and the final spreading scope F(tc) is equal to the maximum values of the recovered individuals. Generally, within 
the same network, the larger the final spreading scope F t( )c  triggered by initial spreaders, the stronger their 
spreading abilities.

The Proposed Algorithm
From the previous section, it is resulted that a reasonable algorithm for the identification of the key individuals 
should focus on two aspects, including accuracy and simplicity. The accuracy is mainly reflected in the compu-
tational accuracy and stability, while simplicity is mainly correlated to the computational runtime. Especially for 
a social network, which usually contains millions of nodes, the key issue is how to reduce the complexity and 
improve the computational efficiency. In order to fill this gap, a novel algorithm is required to effectively reach a 
balance between the accuracy and the simplicity. According to Burt’s structural holes theory36, the individuals’ 
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structural position in the social network is more important than the corresponding external relationship strength.
Certain positional advantages indicate that the individuals occupying these positions have more information, 
resources and power than others. The positional advantages in the social network include local and global advan-
tages as the following: The former advantages can be quantified by the local structural information9,37, while the 
latter advantages should consider global topological connections8,38. In this regard, it is intended to propose a 
three-step algorithm, named the CumulativeRank,in the present study. It is expected that the proposed algo-
rithm can sufficiently combine node’s local and global performances. The details of the proposed algorithm are 
described as the following:

Step 1:Quantifying the local advantage of each node.  The structural hole theory provides a novel 
perspective for understanding the local performance of individuals. In fact, a structural hole is a gap between two 
unconnected nodes. When these two unconnected nodes are connected by a third node, the bridging node usu-
ally has more information advantages and control advantages since it acts as a mediator between different nodes. 
In order to quantify the control advantage of bridging nodes, Burt introduced the network constraint coefficient 
(NCC). The NCC for ith node is described as the following:

∑ ∑=
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Where pij is the proportion of a given node i’s energy invested directly related to node j, which is written as the 
following:
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where zij is equal to 1 when a path from i to j exists, and it is zero otherwise. Γ(i) is the set of the nearest neigh-
bours i. ∑ = ≠ p pk k i j

N
ik kj1, ,  measures the strength of the indirect connection from i to j. The NCC value of a node 

generally has a negative association with its influence in a given network. Therefore, it is found that as the NCC 
values reduce, the formation of structural holes is enhanced and subsequently the influence of nodes increases.

Equation (6) indicates that the NCC value of a node is calculated based on its neighbourhood topology, 
including the number of neighbours and the the the corresponding closeness between them. However, the NCC 
has similar disadvantages to the DC. It only collects information of the nearest neighbours, while the structural 
information from farther neighbours is ignored. In fact, the NCC is ineffective when it faces the nodes bridging 
the same number of non-redundant contacts. For example, Fig. 1 illustrates that nodes C and F act as bridges 
between nodes G and H, and between nodes L and G, respectively. Based on Eq. (6), nodes C and F have the same 
value (i.e. NCCC = NCCF = 0.46). In other words, the two nodes have the same local influence. However, Fig. 1 
shows that in addition to the common neighbour node G and its neighbours, node C has a high-order neighbour 
like node H, while node F only has one-order neighbour, which is entitled by node L. In fact, it is found that the 
spreading ability of each node highly depends on its neighbours39. For example, although nodes C and F have 
the same NCC values, node C has stronger spreading ability, which originates from wide range of contacts of 
high-order neighbours. Therefore, it is concluded that the NCC cannot accurately quantify the difference between 
nodes C and F in the abovementioned sample network.

This analysis shows that the NCC only collects information from the nearest neighbours, which leads to low 
resolution. In order to increase the accuracy of the method, more local structural information should be consid-
ered. Therefore, an improved network constraint coefficient (INCC) is proposed in the present study. It should be 
indicated that the INCC scheme is inspired by Chen’ semi-local centrality index33. In the proposed method, the 
local influence of a node combines the direct and indirect influences on its nearest and next nearest neighbours. 
Compared with the Burt’s NCC, INCC can provide richer connection information that individual has established, 
which gives a full understanding of the node influence in facilitating the information flow. The INCC value of 
node i is defined as the following:
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Figure 1.  An example network consisted of 15 nodes and 19 edges.
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i
, LRi and Qj are calculated by the Eqs (1) and (2), respectively. Take node A as an example, 
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As shown in Fig. 1, node C has three nearest neighbours, including nodes B, G and H and seven next near-
est neighbours, including nodes A, D, E, F, I, J and K, thus N(C) = 10. The N values of the other nodes are pre-
sented in the third column of Table 1. According to Eqs (1) and (2), we can calculate QC = NB + NG + NH = 24, 
LRC = QB + QG + QH = 92. Similarly, QF = NA + NG + NL = 18 and LRF = QA + QG + QL = 71. Thus, it is easy 
to know the difference between node C and F by the corresponding INCC values, where INCCC = 0.566 and 
INCCF = 0.771. INCCF > INCCC, that indicates node C has more spreading influence than node F. Table 1 shows 
that, node H has the lowest INCC value, which indicates that it has the largest local influence in the example net-
work, while nodes L, M, N and O have the largest INCC values, indicating that they have the lowest influence. In 
a descending order of the nodal influence, the ranking result is H, G, K, C, F, B, A, D, E, I = J, L = M = N = O. It is 
found that the INCC can more accurately quantify the differences between node C and F, node A and B, node D 
and E, in comparison to the performance of the NCC method.

Step 2: Quantifying the global advantages of each node.  Generally, the influential nodes also play 
a crucial role in maintaining the network connectivity. If these top influential nodes are removed or not involved 
in the spreading process, the final spreading scope and the spreading efficiency are reduced40. Consequently, the 
global performances of nodes are considered on maintaining the network connectivity and facilitating the infor-
mation flow. In general, if the removal of a node leads to the network remaining more components and smaller 
connected components, the removed node is important in maintaining the network connectivity. The inherent 
attachment mechanism of social networks often leads to their excessive sensitivity to the removal of key nodes. In 
order to measure the vulnerability of a given network, Cozzens et al. proposed the concept of the tenacity41. As a 
vulnerability parameter of graph, the tenacity integrates three criteria, including the cost of the network breakage, 
the number of components and the size of largest connected component.

In this paper, the tenacity are introduced to assess the individual prominent position in maintaining the 
network connectivity. Due to the inhomogeneity of general networks, most nodes don’t belong to the cut-set 
of a given network, so random removal of these nodes cannot change the balance of the network structure or 
directly trigger the collapse of the network42. Thus, we redefine the tenacity of each node, which is denoted as the 
following:

=

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Where i  is the cost of node i removed, when the targeted removal obeys one by one model, =i 1. −m G i( ) and 
−w G i( ) denote the giant component size after destruction and the number of components of the remaining 

network −G i. In Supplementary Note, an iterative algorithm is proposed for evaluating the nodes’ global perfor-
mances. If node i plays a key role in maintaining the network connectivity, it either is the root with at least two 
descendants, or has a descendant u whose lowest depth-first number (low) is not less than its depth-first number 
(dfn). According to the above rule, we can identify five key nodes in the example network, which are H, G, K, C 
and F, respectively. The identification process is shown in Fig. 2.

Step 3: Identifying the influential spreaders in the network.  Based on the basic definitions men-
tioned above, a new ranking algorithm named the CumulativeRank algorithm is presented in this study, which 

i DCi Ni Qi LRi NCCi INCCi Ri CRi

A 3 7 21 76 0.676 0.886 15 0.168

B 3 7 24 82 0.676 0.829 15 0.164

C 3 10 24 92 0.460 0.566 4 0.055

D 2 6 15 67 0.785 0.928 15 0.172

E 2 6 15 64 0.785 0.937 15 0.173

F 3 7 18 71 0.460 0.771 7 0.096

G 6 8 43 117 0.384 0.328 5.5 0.047

H 4 9 25 71 0.406 0.323 3 0.027

I 2 4 13 38 0.953 0.994 15 0.177

J 2 4 13 38 0.953 0.994 15 0.177

K 4 7 21 46 0.25 0.365 3 0.031

L 1 3 7 18 1 1 15 0.178

M 1 4 7 21 1 1 15 0.178

N 1 4 7 21 1 1 15 0.178

O 1 4 7 21 1 1 15 0.178

Table 1.  The basic values of the example network.
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measures the node spreading ability from two layers, including locally, the proposed algorithm considers both 
the local influence of nodes on their neighbours and globally, the algorithm considers the nodes’ prominent 
position in maintaining the network connectivity. The precise definition of the CumulativeRank is defined as the 
following:

=
∑

+
∑= =

CR INCC

INCC

TC
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Where INCCi is calculated by the Eq. (8). Moreover, TCi is the normalized tenacity value of a given node i, 
≤ ≤TC0 1i  and it is defined as the following:
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According to the above algorithm, nodes with the lowest CR values have the largest influence in facilitating 
information flow and maintaining the network connectivity. In a descending order of the nodal spreading ability, 
the ranking result of the example network is H, K, G, C, F, B, A, D, E, I = J, L = M = N = O.

Experimental Evaluation
Dataset.  To validate the effectiveness of the proposed algorithm, the algorithm is evaluated in nine real social 
networks. All of the data except for OClinks can be downloaded from the Stanford network dataset43. Table 2 
indicates that the six real social network include:(1) OClinks, which is a representative online community net-
work, where users are from the University of California, Irvine44; (2)Ego-Facebook, which is an ego network 
consisting of friends lists from Facebook; (3)Soc-Epinions, which is a who-trust-whom online social network of 
a general consumer review site Epinions.com; (4)Wiki-Vote, which is a network containing all of the Wikipedia 
voting data from the inception of Wikipedia till January 2008; (5)Ca-HepPh, which is a collaboration network 
covering scientific collaborations between authors papers submitted to High Energy Physics from January 1993 
to April 2003; (6) Email-Enron, which is an email communication network from Enron posted to the web by 
the Federal Energy Regulatory Commission during its investigation;(7) Ca-CondMat,which is a collaboration 
network covering scientific collaborations between authors papers submitted to Condense Matter category;(8) 
Ca-GrQc,which is a collaboration network covering scientific collaborations between authors papers submitted 

Figure 2.  The identification process of key nodes in the example network: The solid arrowlines represent the 
forward edges, the dashed arrowlines represent the backtracking paths, the numbers above the nodes are their 
dfn values, and the numbers in brackets are their low values.

Network n m 〈k〉 L C H βth

OClinks 1899 20296 21.375 3.197 0.085 3.773 0.012

Ego-Facebook 4039 88234 43.691 3.693 0.606 2.439 0.009

Soc-Epinions 75879 508837 6.706 11.549 0.138 16.569 0.009

Wiki-Vote 7115 103689 14.573 3.341 0.141 9.803 0.007

Ca-HepPh 12008 118521 19.74 4.673 0.612 28.21 0.002

Email-Enron 36692 183831 10.732 4.025 0.497 13.265 0.007

Ca-CondMat 23133 93497 8.0835 5.352 0.706 2.734 0.045

Ca-GrQc 5242 14496 5.531 6.049 0.687 3.049 0.059

Email-Eu-core 1005 25571 33.246 2.653 0.372 5.614 0.005

Table 2.  The basic topological properties of the six social networks,including number of nodes n and edges m 
within the networks, average degree 〈k〉, characteristic path length L, clustering coefficient C, degree 
heterogeneity =H k k/2 2, epidemic threshold β ≈ k k/th

2 .
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to General Relativity and Quantum Cosmology category;(9) Email-Eu-core,which is an email communication 
network from a large European research institution.

Experimental results.  In general, the super-spreader in a social network is regarded as an individual that 
has greater spreading abilities. In other words, it is capable of widely spreading the message to other recipient 
individuals infinitely. In this section, the standard SIR model is utilized to simulate the spreading processes in 
real social networks.

The ranking order of each node is calculated in the above mentioned six networks initially according to DC, 
BC, EC, LR, PR, FA and CR, respectively. In a sample network, if nodes have the same calculated scores according 
to the same ranking algorithm, they will have the same rank. In the present study, we are more interested in the 
super-spreaders instead of all nodes in the network. Thus, only the top nodes of the ranking list are considered. 
For this purpose, the top-10 nodes of each ranking algorithm are selected as the initial spreaders and all of the 
other nodes in the network are marked as susceptible nodes.

Table 3 shows that the ranking results of the proposed algorithm are quite different from those of other rank-
ing algorithms. In Wiki-Vote, it is observed that the proposed algorithm suggests node 326 as the most influential 
node, followed by the nodes 656 and in the third position comes node 488. The same data is not found for the 
other ranking algorithms, indeed DC, BC and LR suggest node 699 as the most influential node, followed by 
nodes 286 and 2374 (third for DC and LR) or 409(third for BC). It is indicated that the CR gives the ranking 
results with the most significant difference from other five well-known ranking algorithms in Ca-HepPh and 
Ca-CondMat, as none of the 10 key nodes identified by CR appear in the top 10 nodes for DC, BC, EC, PR and 

OClinks Ego-Facebook Soc-Epinions

Rank DC BC EC LR PR FA CR Rank DC BC EC LR PR AF CR Rank DC BC EC LR PR FA CR

1 444 35 444 49 35 443 718 1 0 107 1912 107 3437 106 3437 1 363 14 14 14 14 13 1677

2 35 718 49 4 718 34 35 2 107 1684 2347 1912 107 1911 107 2 1677 1677 363 363 1677 362 14

3 49 49 4 444 444 48 49 3 1684 3437 2266 2347 1684 1683 1684 3 14 530 1867 40 1867 1676 2776

4 718 4 35 35 49 717 6 4 1912 1912 2233 2543 0 3436 1912 4 1867 363 40 1867 363 1866 1867

5 4 444 64 336 4 3 635 5 3437 1085 2543 1888 1912 4038 0 5 2776 1867 530 530 8499 529 8499

6 38 6 718 331 6 37 4 6 2543 0 2206 1800 348 1887 3980 6 40 40 185 185 530 184 363

7 2 2 336 2 2 1 2 7 2347 698 1985 1663 686 1799 414 7 530 2776 23 23 230 229 4125

8 6 38 2 343 38 5 232 8 1888 567 2142 1352 3980 1662 348 8 23 230 230 150 2776 39 563

9 64 635 38 64 64 63 20 9 1800 58 2464 1431 414 1351 686 9 185 8499 132 230 185 131 530

10 336 64 57 57 336 335 54 10 1663 428 2218 1199 483 1729 698 10 30 185 150 132 40 322 185

Wiki-Vote Ca-HepPh Email-Enron

Rank DC BC EC LR PR FA CR Rank DC BC EC LR PR FA CR Rank DC BC EC LR PR FA CR

1 699 699 905 699 326 698 326 1 363 279 297 297 363 362 1056 1 271 271 79 79 271 143 144

2 286 286 326 286 409 2373 656 2 297 827 328 328 297 296 564 2 144 80 85 182 144 270 80

3 2374 409 409 2374 1332 285 488 3 328 472 518 518 328 327 788 3 191 92 182 85 80 190 92

4 408 410 711 1052 656 407 686 4 440 509 611 611 440 439 976 4 80 93 245 245 191 196 191

5 1052 902 666 2013 905 2012 409 5 518 475 648 363 518 517 464 5 197 148 144 197 93 79 197

6 2013 1052 286 3712 711 1051 1224 6 327 890 545 327 327 610 4549 6 85 144 197 144 92 84 148

7 3712 1146 626 408 686 3711 177 7 611 295 327 648 611 326 1284 7 245 191 95 95 197 244 245

8 517 666 1141 2 699 516 1374 8 507 528 440 545 507 506 871 8 148 46 89 440 148 147 244

9 483 656 1005 517 2 482 926 9 586 724 363 440 586 585 2157 9 79 197 1233 89 245 78 85

10 1221 7 247 483 666 1220 1141 10 326 1619 507 507 326 325 879 10 92 1233 191 1233 1268 91 93

Ca-CondMat Ca-GrQc Email-Eu-core

Rank DC BC EC LR PR FA CR Rank DC BC EC LR PR FA CR Rank DC BC EC LR PR FA CR

1 349 349 949 949 349 853 2135 1 101 101 1037 101 108 1036 108 1 160 160 160 160 160 159 377

2 949 949 3880 3880 949 259 1265 2 295 279 11 279 1037 185 2138 2 121 86 107 121 62 120 5

3 3073 3073 2092 2092 1184 438 9960 3 279 265 207 265 577 1031 11 3 107 5 62 82 86 81 211

4 3880 1369 349 349 260 1038 11441 4 103 77 53 77 295 107 1731 4 62 121 434 107 107 106 107

5 2092 854 2116 255 1369 348 774 5 77 296 577 72 11 10 1137 5 86 62 121 62 121 85 462

6 1369 41 3073 2116 41 2134 2172 6 72 159 20 288 186 52 53 6 82 107 183 434 129 61 971

7 1517 1184 255 3073 3073 2171 527 7 296 288 147 296 103 30 1118 7 434 64 128 249 183 433 121

8 255 260 4068 947 1057 1033 5801 8 288 295 186 103 101 1732 315 8 183 82 129 86 5 165 411

9 41 3880 1637 41 527 768 439 9 265 285 108 159 53 206 20 9 5 377 256 183 434 182 560

10 947 1057 2119 585 255 3579 71 10 100 302 288 295 1733 364 123 10 129 129 249 166 64 63 495

Table 3.  The top-10 ranked nodes by the proposed method and their corresponding ranks by degree centrality 
(DC), betweenness centrality (BC), eigenvector centrality (EC), LocalRank (LR), PageRank (PR),Fu et al.’ 
algorithm (FA) and CumulativeRank(CR).
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LR. In addition, it is observed that both the proposed algorithm and the FA algorithm combine the global and 
local attributes of the network, however there are great differences between the two algorithms in terms of rank-
ing results.

In order to evaluate the performances of the proposed algorithm, the all-contact SIR model is applied to 
simulate the information spreading process. In the all-contact SIR model each infected node can contact all of 
its susceptible neighbours at per time step. Figure 3 shows the simulation result of the spreading scopes, F (t), as 
a function of time for nine networks. For each initial infective node set, the SIR process is repeated 100 times to 
ensure the stability of the results (see the Supplementary Note). By comparing the changes of F (t) under differ-
ent spreading sources, it is observed that in almost all of the networks, the initial spreaders obtained by the CR 
algorithm spread the information faster and the final spreading scopes F(tc) always reach the highest value (see 
Table 4). In the cases of OClinks, Ego-Facebook, Ca-HepPh,Ca-GrQc and Email-Eu-core, it is observed that the 
performance of the CR is much better than those of other algorithms. Even though in Soc-Epinions, the initial 
infection sources determined by different ranking algorithms are very similar and the changes of F (t) under 
different spreading sources perform nearly the same, but the proposed algorithm is slightly better and the final 
spreading scope still reaches the highest value. Relatively, other six classical ranking algorithms do not show 
significant consistency in the change tendency of F (t). Although the performance of the EC can outperform 
the other five algorithms except the CR in Wiki-Vote and Email-Enron, DC and LR perform better than EC in 
OClinks, Ego-Facebook, Ca-HepPh and Email-Eu-core. Experimental results show that the ranking of the pro-
posed algorithm is more accurate and stable.

Figure 3.  Plot of the spreading scope of the top-10 nodes ranked by different ranking algorithms in (a) 
OClinks, (b)Ego-Facebook, (c) Soc-Epinions, (d)Wiki-Vote, (e) Ca-HepPh, (f) Email-Enron, (g) Ca-CondMat, 
(h) Ca-GrQc and (i) Email-Eu-core. The infection probability β are 0.02 in (a), 0.01 in (b–f,i), 0.05 in (g) and 
0.06 in (h), the recovery rate γ is 0.3. The results are averaged over 100 independent runs.
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Datasets Algorithms
Final spreading 
scopes Time steps n β P

OClinks

DC 0.157 39

1899 0.02 0.0053

BC 0.14 35

EC 0.146 35

LR 0.157 31

PR 0.138 42

FA 0.163 40

CR 0.188 36

Ego-Facebook

DC 0.383 54

4039 0.01 0.0025

BC 0.381 52

EC 0.298 58

LR 0.302 51

PR 0.384 40

FA 0.374 56

CR 0.396 33

Soc-Epinions

DC 0.107 41

75879 0.01 0.0001

BC 0.105 46

EC 0.106 42

LR 0.105 43

PR 0.108 41

FA 0.105 43

CR 0.110 40

Wiki-Vote

DC 0.288 35

7115 0.01 0.0014

BC 0.292 45

EC 0.301 42

LR 0.296 42

PR 0.292 41

FA 0.296 36

CR 0.305 34

Ca-HepPh

DC 0.124 41

12008 0.01 0.0008

BC 0.123 61

EC 0.115 53

LR 0.119 44

PR 0.119 55

FA 0.120 40

CR 0.129 39

Email-Enron

DC 0.095 45

36692 0.01 0.0003

BC 0.102 43

EC 0.105 40

LR 0.102 44

PR 0.101 46

FA 0.099 44

CR 0.106 41

Ca-CondMat

DC 0.355 66

23133 0.05 0.0004

BC 0.0.47 56

EC 0.355 48

LR 0.349 66

PR 0.350 63

FA 0.355 55

CR 0.365 48

Ca-GrQc

DC 0.141 49

5242 0.06 0.0019

BC 0.146 48

EC 0.167 48

LR 0.172 51

PR 0.153 45

FA 0.168 51

CR 0.182 41

Continued
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The SIR model is based on discrete step iterations to demonstrate the spreading process of information. If 
information cannot continue to flow between nodes according to the model rules, iterations end and the net-
work reaches its stable state. The final time required for the end of the spreading process is obtained from the 
number of iterations. In general, the higher the number of iterations, the longer information propagates within a 
given network. Table 4 shows that in the same network, the difference in the spreading sources can increase the 
number of iterations and prolong the time of information propagation in reaching a steady state. For example, in 
Ego-Facebook, when β = 0.01, the spreading sources selected by the CR have the least number of iterations before 
convergence and the time steps are 33. The PR performs next above the CR, and then LR, BC, DC and EC show 
ascending order of the number of iterations. In contrast, the CR has the average lesser number of iterations before 
convergence, however it achieves the largest final spreading scope in all sample networks, which means that the 
spreading sources selected by the CR effectively accelerate the spreading process of information.

The total runtime of the CR consists of two parts, including the time of computing INCC values for all nodes 
and the time of quantifying the tenacity of each node. For the former, as Nw requires traversing node v’s neigh-
bourhood within two steps and takes O(〈k〉2) time on average, the time complexity is O(n〈k〉2), where n and 〈k〉 
are the total number of nodes and the average degree in a given network, respectively. After each iteration, the 
number of components −w G i( ) and the size of the largest connected component −m G i( ) are re-calculated, 
which takes the complexity O(n2). Totally, the whole time complexity of the proposed algorithm is O(n〈k〉2 + n2). 
In contrast, the time complexity of the CR is much lower than that of the BC and the EC, which have the complex-
ity of +O n n nm( log )2  and O(n3) respectively. These are close to the PR with the complexity of O(n2 + n). 
Analysis of time complexity demonstrates that the proposed algorithm has relatively less computational burden 
in identifying potential super-spreaders and can be applicable to large-scale networks.

Conclusion
In the present study, a three-step ranking algorithm, named the CumulativeRank, is proposed in order to identify 
and quantify potential super-spreaders in a social network. Previous studies have shown that the nodal spreading 
ability originate from the local prominent position and the total connectivity strength that the node obtains. The 
proposed algorithm sufficiently combines the node’s local and global performances. Locally, inspired by Burt’s 
structural holes theory, the improved network constraint coefficient is proposed based on the semi-local cen-
trality index. Compared with the conventional network constraint coefficient, the improved network constraint 
coefficient provides richer connection information for evaluating the local performance of each node. Globally, 
the concept of the tenacity are introduced to evaluate the nodes’ global connectivity strengths. Furthermore, 
extensive experiments on real-world social networks show explicitly that the proposed algorithm outperforms the 
existing well-known ranking algorithms and can be applicable to large-scale networks.
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