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Abstract: Rolling element bearings are a vital part of rotating machines and their sudden failure
can result in huge economic losses as well as physical causalities. Popular bearing fault diagnosis
techniques include statistical feature analysis of time, frequency, or time-frequency domain data.
These engineered features are susceptible to variations under inconsistent machine operation due
to the non-stationary, non-linear, and complex nature of the recorded vibration signals. To address
these issues, numerous deep learning-based frameworks have been proposed in the literature.
However, the logical reasoning behind crack severities and the longer training times needed to
identify multiple health characteristics at the same time still pose challenges. Therefore, in this work,
a diagnosis framework is proposed that uses higher-order spectral analysis and multitask learning
(MTL), while also incorporating transfer learning (TL). The idea is to first preprocess the vibration
signals recorded from a bearing to look for distinct patterns for a given fault type under inconsistent
working conditions, e.g., variable motor speeds and loads, multiple crack severities, compound
faults, and ample noise. Later, these bispectra are provided as an input to the proposed MTL-based
convolutional neural network (CNN) to identify the speed and the health conditions, simultaneously.
Finally, the TL-based approach is adopted to identify bearing faults in the presence of multiple crack
severities. The proposed diagnostic framework is evaluated on several datasets and the experimental
results are compared with several state-of-the-art diagnostic techniques to validate the superiority of
the proposed model under inconsistent working conditions.

Keywords: bearing; bispectrum; convolution neural network; fault diagnosis; multitask learning;
transfer learning

1. Introduction

Rotating machinery is a prevailing component that plays an increasingly significant role in
modern industries [1,2]. Due to their regular usage, these machines are subject to wear and tear
processes, and it is necessary to perform predictive maintenance of these machines [3]. Rolling element
bearings are vital components of rotating machinery. Harsh working environments, variable working
conditions and changing load conditions are a few of the factors that can lead to the failure of a
bearing. Thus, these components are often the primary reasons for the sudden failure of rotating
machinery [1], which can create huge economic losses and personnel casualties [4–7]. Over the past few
decades, industries have recognized the significance of developing reasonable and robust data-driven
condition monitoring and fault diagnosis techniques to mitigate such problems [8]. Data-driven
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condition monitoring and fault diagnosis of a bearing normally consist of data acquisition from the
bearing, signal processing and data classification steps. However, due to several important factors,
e.g., friction, clearance, and variable working conditions, the acquired vibration signals from these
rolling bearings are non-linear and non-stationary, which makes extracting fault feature information
a difficult task [3,9–14]. Specifically, when using popular feature extraction methods that analyze
features from the time domain, frequency domain, or time-frequency domain, it is very difficult to
identify the fault characteristics under variable working conditions [15–20]. Therefore, research on
new and effective methods for the condition monitoring of rolling element bearings has become a
challenging and valuable task [21–24].

Recently, vibration signal analysis has become a standard for creating the diagnostic framework for
rolling element bearings [25,26]. Many efforts have been conducted to identify the fault characteristics to
create a generalized diagnostic framework by analyzing the vibration signals. For instance, Zheng et al. [27]
introduced a multiscale fuzzy entropy-based architecture to measure the complexity of the time series
using a combination of the Laplacian score (LS) and a variable predictive model to develop a bearing
fault diagnostic framework. Similarly, in [28], Ali et al. proposed a model for bearing fault diagnosis
based on statistical feature extraction from empirical mode decomposed signals and the energy and
entropy values of the signals with an artificial neural network (ANN). Following a similar trend,
Zhao et al. [29] performed bearing fault diagnosis using wavelet packet decomposition (WPD)–based,
multi-scale permutation entropy with a hidden Markov model (HMM). Further, Shao et al. [30] proposed
a diagnostic framework by using fast Fourier transformation (FFT) with a deep Boltzmann machine
(DBM). By considering spectrum features from sliding windows, Wang et al. [31] developed a deep belief
network (DBN)-based diagnostic model. These studies mainly extract fault signatures by analyzing
the time-domain or frequency-domain and use deep learning algorithms to diagnose the health types
of different mechanical machines. However, when using only the time or frequency domain, it is
very difficult to capture the changing nature of frequency over time for non-stationary and non-linear
signals [1]. Additionally, due to the disparity in the signal amplitude and frequency for several
inconsistent working conditions, e.g., variable loads, speeds, different crack severities, and compound
faults, these established approaches have failed to generalize the health characteristics. To solve
these problems, several time-frequency-based analysis techniques have also been proposed. In [32],
Wang et al. designed a wavelet-based time-frequency analysis with a CNN. In [33], a bearing fault
diagnosis mechanism was proposed using short-time Fourier transform (STFT)-based time-frequency
analysis with a CNN. These methods are mainly based on the analysis of one-dimensional acceleration
signals through a deep learning algorithm for automatic feature extraction [34]. Nevertheless, despite a
profound impact on the diagnostic framework [35], these types of methods can miss important
information [34]. For instance, every so often, signal processing methods are difficult to implement
because proper domain expertise is needed. Moreover, a particular signal analysis technique may
only apply to a certain problem set; hence, the generalization capability of a developed fault diagnosis
approach under various working conditions is compromised [36]. Fortunately, these types of automatic
diagnostic approaches prove the drawbacks of handcrafted feature-based methods [37], which were
popular for a certain period of time. Thus, as a newly established research direction, numerous studies
have been conducted to improve deep learning-based automatic feature extraction for bearing fault
diagnosis. The main goal of these types of domain-dependent automatic diagnostic frameworks
is to develop a powerful feature extractor that can grab distinguishable features from input data.
In [38], Jia et al. introduced neuron activation maximization to improve diagnostic deep algorithms for
imbalanced data. Similarly, in [39], Liu et al. introduced a dislocated layer into the CNN architecture
to boost the one-dimensional feature analysis performance. However, these methods have two major
drawbacks: (a) the lack of proper health state information that is applicable in cross-domain fault
diagnosis and (b) weak generalization capabilities because these approaches cannot provide satisfactory
results for the fault diagnosis of bearings under inconsistent working conditions (e.g., variable motor
speed, variable motor load, multiple crack severities, and compound fault types).
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In this study, an automatic bearing diagnostic framework has been developed that utilizes
higher-order spectral analysis of the vibration signal and multitask learning (MTL). The proposed
model can identify bearing health conditions under inconsistent working conditions, e.g., in the
presence of multiple fault severities, noisy conditions, compound faults, and variable motor speed,
simultaneously. The higher-order spectral analysis projects the input signal on to a two-dimensional
frequency space that adequately describes the health state of a bearing. In this way, it reduces the
possibilities of deceptive information obtained during the analysis of non-stationary and non-linear
vibration signals [1,40]. Subsequently, for fault identification and classification, a multitask learning
(MTL)-based deep architecture is proposed. This helps the framework learn different tasks collectively.
MTL allocates one shared model instead of using a separate model for different tasks, which helps
reduce the storage space and training time [41]. Thus, from the given input, the proposed MTL-based
CNN architecture can effectively identify the bearing health type under inconsistent working conditions,
such as conditions with noise, compound faults, and variable motor speeds. Furthermore, a transfer
learning (TL)-based framework is adopted to identify bearing faults under certain fault sizes if a
pre-trained model (trained on data from a different fault severity condition) is used. Thus, by using
a pre-trained deep network and learning parameters from a source task, the proposed framework
can mitigate the need for prior knowledge acquisition via training a new model. Therefore, it saves a
significant amount of time in the course of task completion [16]. The main contributions of this study
can be summarized as follows:

(1) For data preprocessing, a bispectrum-based higher-order analysis is adopted in this work; this can
provide distinct patterns under inconsistent working conditions for signals associated with
different health conditions. Thus, the inclusion of this signal analysis approach can make the
subsequent data classification step easier.

(2) A CNN-based MTL architecture is designed to utilize bispectra as inputs for automatic feature
extraction. The end-to-end architecture can predict two types of health characteristics at the same
time: (a) the speed of the rotating machine and (b) its health type. For the first time, multitasking
capabilities are incorporated into the rolling bearing fault diagnostic architecture.

(3) A transfer learning (TL) framework is incorporated to enhance the classification performance
under multiple crack severity conditions. The TL diminishes the need for adjusting CNN
architectures with different parameters for inconsistent working conditions.

The proposed approach is tested on two different datasets to validate the generalization ability
of the proposed diagnostic framework. Several comparisons with state-of-algorithms are conducted,
as well. The rest of the paper is organized as follows. Section 2 talks about the technical backgrounds
for the bispectrum, CNN, MTL, and TL-based learning structure and Section 3 introduces the proposed
methodology in a detailed, step-by-step procedure. Section 4 shows the experimental details with the
performance analysis for different case studies, and Section 5 concludes the paper.

2. Technical Background

This section discusses the technical background of the bispectrum and convolutional neural
network, as well as the basics of fine-tuning-based transfer learning and multitask learning, which are
the essentials of the proposed diagnostic framework.

2.1. Bispectrum

The vibration signals of rotating machines contain bearing information with added noise from the
surroundings [42]. The addition of ample noise introduces non-stationary, non-linear, and complex
behavior into the vibration signals. Thus, it is difficult to capture changes in the frequency over time
based on statistical analysis of the signals in the time or frequency domains [43]. Furthermore, due to the
non-linear behavior of these signals [1], it is often difficult to extract consistent information from variable
working conditions, e.g., variable speeds and multiple crack severities [16,42]. Therefore, to tackle these
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issues caused by significant variations in the frequency and spectrum amplitudes [42,44], higher-order
analysis is considered by using the bispectrum of the signals. The bispectrum is mainly a third-order,
spectrum-based approach that searches for non-linear interactions from given signals under inconsistent
working conditions; this is done by preserving the phase information while eliminating the Gaussian
noise [45]. The insights of bispectrum procedures are given below:

(1) First, a discrete signal is needed, which is defined as follows:

{
x(m)

}
=

{
xp(0), xp(1), . . . , xp(N − 1)

}
where p = 1, . . . , P. (1)

(2) The discrete coefficients of this signal can be expressed as:

X(p)(λ) =
1
N

N−1∑
m=0

x(p)(m) exp
(
− j

2πmλ
N

)
where λ = 0, 1, . . . ,

N
2

, p = 1, . . . , P. (2)

(3) The third-order autocorrelation coefficients can be calculated as:

βp(λ1,λ2) =
1
δ2

0

L1∑
i1=−L1

L1∑
i2=−L1

X(p)(λ1 + i1)X(p)(λ2 + i2)X(p)(−λ1 − λ2 − i1 − i2) where

δ0 =
fs

M0
and N = (2L1 + 1)M0

(3)

(4) Now, the bispectrum of x(0), x(1), L, x(M− 1) can be expressed as:

B(ω1,ω2) =
1
P

P∑
p=1

βp(ω1,ω2) where ω1 =
2π fs
M0

λ1 and ω2 =
2π fs
M0

λ2. (4)

From (4), it is shown that this bispectrum is a two-dimensional reorientation of the spectrum of a
signal that considers two independent frequency components ω1,ω2 with a period of 2π. The main
advantages of using the bispectrum are given below [42,44,46]:

(1) For the symmetric probability density function of a non-zero Gaussian process, bispectrum is
likely to be zeros. Thus, along with removing the Gaussian noise, non-Gaussian components are
also extracted from the signals.

(2) For the deterministic stationary signals with no asymmetric component, the bispectrum
is zero. However, if some different scenarios come into consideration in the harmonic
process, e.g., (a) non-linear interactions or (b) constant components, then the bispectrum has a
non-zero value.

(3) From the simple power spectral density-based analysis, the phase coupling information cannot
be extracted. Due to the advantages of the identification capability for non-linear systems,
the bispectrum can capture the phase coupling information.

Therefore, to develop the diagnostic framework for the rolling element in this study,
the bispectrum-based preprocessing method is considered.

2.2. Convolutional Neural Network (CNN)

With the advantages of automatic feature extraction, the convolution neural network (CNN)
represents an advancement over simple, feed-forward neural architectures with several convolutional
and pooling layers and few fully connected layers [16,47]. With the advancement in deep learning-based
research, lots of evolutions (e.g., dropout [48,49], batch normalization [50], and global pooling [51])
have been added to the basic architecture of CNN to optimize the network properly and solve
the overfitting problem. The training process of this CNN can be described based on two phases:
(1) forward propagation and (2) backward propagation.
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2.2.1. Forward Propagation

In the forward propagation phase, the network tries to learn spatial information from the input
data during the subsequent layers, as described in Figure 1. Typically, the convolution layer tries to
learn abstract features by using kernels of different sizes [43]. To enhance the extracted convolution
feature information, a few elements are considered (e.g., the weight, bias, and activation function)
with the convoluted features to calculate the final outputs for the next layer [52]. To mitigate
the overfitting problem by reducing the redundant features extracted from the convolution layer,
a pooling layer is placed immediately after that convolution layer. In this study, by considering the
maximum value of the convolutional outputs, max-pooling is used to reduce the size of the learned
parameters [53]. Thus, to increase the depth of the network architecture for better learning of the
parameters, several convolutions and pooling layers are stacked together. Finally, the outputs of these
layers are flattened and connected with some fully connected layers, which alter the resultant matrix
into columns [54,55]. The last fully connected layer is denoted as the output layer, from which the
output probability is obtained by using activation functions. In this study, SoftMax is considered as the
activation function [54]. The SoftMax function is a generalization of the logistic function, which simply
squashes values into a given range. Thus, for the simplistic algorithmic approach, it is very fast to
train and predict. There are no standard rules for selecting the number of layers of the neural network
architecture. From the literature and based on existing knowledge [56,57], it has been shown that the
performance increases with a deeper architecture [16]. However, with an increasing number of layers,
handling the number of learning parameters is a challenging task to tackle due to the computational
complexity [58].
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Figure 1. Common architecture of a convolution neural network (CNN).

2.2.2. Backward Propagation

Once the forward propagation is finished, the value of the objective function is observed to
minimize the loss of the network. Conventionally, the objective function is known as the loss function.
The main goal of the neural network-based architectures is to update the parameters of the internal
layers by observing and minimizing the objective function. To train the network, the whole dataset is
divided into smaller portions in a random manner; this is known as a batch [59]. The size of a batch
is dependent on the experimental setup and the length of the total dataset. Thus, to feed the whole
dataset into the network for one-time, multiple batches are required. Feeding the whole dataset into
the network one time is known as an epoch [59]. By adjusting the bias-variance tradeoff to avoid
overfitting and underfitting problems, several epochs are considered to allow the network to enhance
the training performance. In this study, the cross-entropy loss function is considered as the objective
function to minimize the loss of the target and the actual output [52]. It is a better measure than
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mean squared error (MSE) for classification because the decision boundary in a classification task is
large (in comparison with regression). Moreover, from a probabilistic point of view, the cross-entropy
arises as the natural cost function to use as we have SoftMax nonlinearity in the output layer of the
network architecture, and we want to maximize the likelihood of classifying the input data correctly.
This function can be expressed as follows:

L =
1
n

n∑
w=1

[yw ln yw + (1− yw) ln(1− yw)] (5)

Here, yw and yw are the actual target and predictive value of the network in accordance with
w, respectively.

2.3. Multitask Learning with CNN

Multitask learning (ML) is a special type of transfer learning (TL), which follows the main
principles of TL by sharing knowledge among the subtasks of a principle task [60,61]. If a task
is divided into subtasks, instead of having a separate model for completing each task separately,
MTL allows the CNN architecture to create a task branch to perform several subtasks simultaneously
by minimizing the one principle objective function [62]. Thus, it shares the model architecture and
parameters of the network with all the subtasks, thereby reducing the training time [60]. The concept
of MTL can be expressed by the following equations:

{
xm, ym

}M
m=1,where

 xm =
{
xm

1 , . . . , xm
p

}
ym =

{
ym

1 , . . . , ym
p

} (6)

ym
n = fm(xm

n ) (7)

In (6),
{
xm, ym

}M
m=1 refers to p training samples from the original task M, where the subscript m

denotes the subtasks. The aim is to build a CNN-based diagnostic framework for multiple tasks ym
n

to learn and share transferable parameters to connect different subtasks competently and actively.
In Figure 2, the basic idea of MTL is illustrated for visual understanding. In this study, to diagnose
different health types along with the speed condition of the bearing, the MTL-CNN is proposed. In the
proposed MTL-CNN framework, subtask 1 identifies the rotational speed of the bearing, and subtask 2
identifies the health type of the bearing.
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2.4. Fine-Tuning-Based Transfer Learning

According to the definition, the main goal of TL is to transfer knowledge obtained from one task to
another task that resembles it closely to improve the diagnostic performance of the new task in a short
amount of time [13]. Fine-tuning-based TL (FTL) is one of the most popular approaches for designing
a TL-based architecture [63]. In FTL, knowledge of the source task is transferred to the target task by
transferring the learned parameters only. The source task is the task on which the proposed MTL-CNN
is trained, and the parameters are adjusted accordingly. Alternatively, the target task is a task that is
very similar to the source task; the learned parameters can be transferred from the source task to the
target task to make the training process faster [16]. In this study, for the source task, the MTL-CNN
is trained to identify the bearing speed conditions and health type under a certain crack severity.
Then, in the target task, this learned knowledge and the network parameters are passed to identify the
speed conditions and health type of the bearing for a different crack severity. Thus, the necessity of
training the target task from scratch is mitigated. For example, (7) can be rewritten as the output of the
source task:

Sym
n
= S fm

(
Sxm

n

)
(8)

where S fm is the final objective function or mapping function of the source task. Similarly, like the
source task, the relatively similar target task can be expressed as:

Tym
n
= T fm

(
Txm

n

)
(9)

where T fm is the final objective function of the target task. In the FTL framework, by using the
MTL-CNN architecture, the network first learns the mapping function S fm . After that, S fm is transferred
to Tym

n
for obtaining the optimized objective function T fm , which improves the learning process. In this

study, FTL is used for inter-task diagnostic purposes.

3. Proposed Methodology

The main objective of this research is to identify the health states of rolling element bearings by
using bispectra analysis of the vibration signals and MTL-based transfer learning under inconsistent
working conditions. Figure 3 illustrates the block diagram of the proposed methodology in detail.

As can be seen from the figure, the proposed framework is composed of three core steps:

(1) Source task: The testbed vibration signals associated with a certain crack severity under variable
speed conditions are converted to a 2D bispectrum for deep learning-based analysis. The proposed
MTL-CNN identifies the health type and the speed conditions of the preprocessed bispectrum
of a certain crack severity. Thus, in the source task, the proposed MTL-CNN framework learns
invariant spatial information for inconsistent working conditions that can optimize the developed
network architecture.

(2) Transfer pool: The knowledge obtained by an optimized network, also referred to as the transfer
pool in the source task, is then passed to the target task. The benefits of the transfer pool are:
(a) the knowledge transferred between the tasks can work as prior information to the target
task, which can boost its diagnostic performance, and (b) the need to train the whole network to
complete targets diminishes. Therefore, the overall learning process becomes faster if unseen
data associated with a different crack size and motor speed is experienced in the target task.

(3) Target task: In the target task, data associated with different crack severities (different than the
source task) under variable speed conditions are passed to the diagnostic framework. Like the
source task, 2D bispectra of the vibration signals are computed here, as well. Then, to identify
the speed conditions and the health type, the trained network from the source task (with the
parameters and learned knowledge) is utilized. Both source and target tasks have similarities in
terms of the diagnostic framework design.
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3.1. Bispectrum

For a neural network-based diagnostic framework, data preprocessing is the most crucial part due
to the large volume of the dataset [64]. Additionally, a significant amount of time is required due to the
calculation of multiple features associated with inconsistent working conditions. Therefore, to solve
these issues, 2D bispectrum-based analysis is considered in this study. As can be seen from Figure 3,
the 1D vibration signals are first segmented into smaller portions with a length of 2048 data points
based on the overlapping technique. Next, a bispectrum with dimensions of 128× 128 is computed for
each segment. Finally, these 2D bispectra are converted into grey-scale images for further analysis.

3.2. Multitask Learning-Based CNN Architecture

The proposed MTL–based, inter-class diagnostic framework is developed using a CNN for
identifying the health types of bearings under variable speed conditions and multiple fault severities.
As presented in Figure 4, the designed architecture of the MTL-CNN can be divided into two segments:
(a) a general feature extractor and (b) subtask branches. The general feature extractor takes abstract
spatial information from the preprocessed 2D input data. This segment is composed of two convolutions
and two pooling layers. Later, the subtask branches utilize the extracted spatial information to identify
the health types and the speed conditions of bearings. In the proposed framework, subtask 1 is used
to identify the speed of the bearing, which is composed of one convolution layer, one pooling layer,
one fully connected layer, and the final output layer. Similarly, subtask 2 is allocated for identifying
the health state of the bearing, which is composed of two convolution layers, one pooling layer,
two fully connected layers, and the final output layers. For the activation of the fully connected
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layers of this framework, leaky rectified linear unit (Leaky ReLU) [65] is considered. To prevent the
overfitting problem, L2 regularization with a value of 0.04 is attained on the layer before the output
layer. By observing the behavior of training accuracy, and loss function values in several experiments,
this value has been decided for avoiding the overfitting problem. Similarly, the number of kernels of
the proposed MTL-CNN architecture is optimized utilizing grid search, as preliminary experiments
demonstrate that the fluctuating number of kernels affects the final classification performance [66].
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3.3. Fine-Tuned Transfer Learning Framework

In the source task, MTL-CNN is optimized on data that are associated with a single crack size.
The learned parameters of the source task are then passed to the target task to identify the faults
using a dataset collected from the same testbed with different crack severities. The components of the
proposed MTL-CNN with layer-wise (layers are denoted in Figure 4) transferable specifications are
presented in Table 1.

Table 1. The details transferred architecture to the target task using the proposed CNN-MTL.

Subtask 1 Subtask 2

Layers Trainable Transfer Layers Trainable Transfer

C1 Yes Yes C4 Yes Yes

P1 No Yes C5 Yes Yes

C2 Yes Yes P4 No Yes

P2 No Yes F2 Yes No

C3 Yes Yes F3 Yes No

P3 No Yes O2 Output No

F1 Yes No

O1 Output No
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3.4. Performance Evaluation

To evaluate the performance of the proposed framework, different performance evaluation
matrices have been considered in this work, including the (a) F1 score (F1), (b) average score (AS),
(c) confusion matrices [67], and (d) loss function graph. The F1 score and AS [68] can be calculated as
expressed in Equations (10) and (11), respectively:

F1 =
2TP

2TP + FN + FP
× 100% (10)

AS =

∑
F1

total_classes
(11)

In (10), the terms TP, FN, and FP represent the number of true positives, false negatives, and false
positives, respectively. Moreover, to adjust the overfitting and underfitting problems, the total loss of
the model is observed until 3000 epochs. Further, to visualize the class separability, the feature space
of the output layer is visualized by t-stochastic neighbor embeddings (t-SNEs) [69]. Subsequently,
to remove the bias from the data along with the evaluation parameters, six-fold cross-validation
(6-CV) [70] is used for each experiment.

4. Experimental Set Up and Performance Analysis

In this study, several experiments are performed to verify the efficiency of the diagnostic
framework under inconsistent working conditions, including different crack severities, speeds (RPM),
load conditions, and low signal-to-noise ratios (SNRs). The proposed approach is validated with
two separate datasets, i.e., (a) publicly available bearing dataset provided by Case Western Reserve
University (CWRU) [71] and (b) a rolling element bearing dataset with compound faults acquired
from a self-designed testbed. The reason for using a public dataset is to validate the generalization
capabilities of the proposed diagnostic framework; furthermore, low SNR tests are conducted using
only this dataset for easy replication.

4.1. Case Study 1: Case Western Reserve University Dataset

4.1.1. Experimental Setup and Dataset Description

For this experiment, vibration signals from rolling element bearings are collected from a public data
repository offered by the bearing data center of Case Western Reserve University (CWRU) [71]. Figure 5
depicts the whole experimental setup. It can be observed that the experimental setup is composed of
an induction motor (2 hp), a dynamometer, and a transducer. The signals are collected with the help of
accelerometers, which are mounted on the housing of the induction motor. During signal collection,
several motor loads were applied by using a dynamometer. As a result, variation in the motor shaft
speed was also observed. Furthermore, to create the artificially induced faults on the drive-end bearing,
an electromagnetic discharge machine was used. The signals were collected with a sampling frequency
of 12 kilohertz (kHz). While conducting the experiments, four types of health conditions of the bearing
are considered under different motor speeds and crack severities, i.e., normal type (NT), inner raceway
type (IRT), outer raceway type (ORT), and roller type (RT). In total, 800 signals (200 from each health
type) are recorded for each motor speed (measured in revolutions per minute, RPM): 1797, 1772,
and 1750 RPM. The details of the datasets are given in Table 2.
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Table 2. Details of CWRU dataset used for this experiment.

Health Type Shaft Speed (RPM) Load
Crack Size

Length (in)

Dataset 1

NT

1797, 1772, 1750 0, 1, 2

-

IRT 0.007

ORT 0.007

RT 0.007

Dataset 2

NT

1797, 1772, 1750 0, 1, 2

-

IRT 0.014

ORT 0.014

RT 0.014

Dataset 3

NT

1797, 1772, 1750 0, 1, 2

-

IRT 0.021

ORT 0.021

RT 0.021

4.1.2. Performance Analysis

Initially, in the source task, the proposed MTL-CNN is trained with one type of crack severity. Later,
the learned knowledge is passed to the target task, where the datasets with different crack severities
are tested. For both source and target tasks, all the datasets need to be preprocessed by the proposed
bispectrum-based method. The bispectra obtained from dataset 1 are presented in Figure 6. As can be
seen from the figure, the pattern of the bispectrum for the NT condition is consistent under varying shaft
speeds and load conditions. For IRT, the prominent peaks of the bispectrum can be observed at 0.1 Hz,
0.2 Hz, and 0.25 Hz. Subsequently, from the bispectra of ORT and RT, it is observed that the prominent
peaks lie between 0 Hz and 0.4 Hz. It should be noted that, in the bispectra for IRT, ORT, and RT, several
discreet peaks are visible at different symmetric locations. Due to the presence of additive noise in the
original vibration signals, these types of variations are encountered in the bispectra. However, for all
the considered health types, the pattern of the dominant peaks is very similar. Thus, the obtained
bispectra deliver invariability under variable shaft speeds and load conditions. These bispectra are
fed into the proposed MTL-CNN so that it can automatically extract salient information from the
images, which can be subsequently used for multi-class classification [16,72]. Once the source task is
accomplished, the target task is started to measure the final diagnostic performance. Specifically, in the
source task, the MTL-CNN is trained with one dataset. Those MTL-CNN parameters and architectures
are then passed to the target task to identify the bearing speeds and health types for rest of the datasets.
The parameters of the MTL-CNN architecture are depicted in Figure 4.
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To generate results, a total of three experiments are conducted. In experiment 1, dataset 1 is used
for the source task, while datasets 2 and 3 are considered in the target task. At first, the bispectrum
images are attained from dataset 1, and then the MTL-CNN is trained and tested with 90% and 10% of
the data, respectively. The trained MTL-CNN architecture with learned weights is then saved to use
for the target task. In the target task, the bispectrum-based inputs are calculated from datasets 2 and
3. Then, the MTL-CNN architecture with the learned knowledge is used to adjust the target task’s
MTL-CNN for measuring the final diagnostic performance. In this case, 15% of data from datasets
2 and 3 are used for training the network, and the remaining 85% of the data from both datasets are
used for testing purposes. Similarly, for experiment 2, dataset 2 is considered for the source task
and datasets 1 and 3 are considered for the target task. For experiment 3, dataset 3 is considered for
the source task and datasets 1 and 2 are considered for the target task. Therefore, in this diagnostic
framework, the dataset is divided separately for two different tasks, i.e., the source task and the target
task, as shown in Table 3.

Table 3. Data division.

Source task details

Dataset
Train (90%)

Test (10%)
Training (80%) Validation (20%)

1 1944 samples 216 samples 240 samples

2 1944 samples 216 samples 240 samples

3 1944 samples 216 samples 240 samples

Target task details

Train (15%)
Test (85%)

Training (90%) Validation (10%)

1 324 samples 36 samples 2040 samples

2 324 samples 36 samples 2040 samples

3 324 samples 36 samples 2040 samples
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Additionally, to remove the bias from the datasets, an equivalent number of samples are considered
for each health type. Moreover, the model is trained for 3000 epochs for the source tasks. For each
experiment, once the network is trained in the source task, the performance of the target task is observed
to measure the final classification accuracy. The diagnostic performances of the three experiments
are listed in Table 4. The obtained results in terms of F1 and AS are calculated by Equations (9) and
(10). As can be seen from this Table, the subtasks for all three experiments, apart from subtask B for
experiment 3, achieved 100% accuracy. In experiment 3, the source dataset is dataset 3, which contains
a crack severity of 0.021. In this case, the speed detection accuracy for 1772 RPM data in the target task
is 99.9%. To show the detailed analysis of this specific result, the graph of the overall loss functions,
as well as the subtask-specific loss functions, are highlighted in Figure 7. Additionally, the confusion
matrices for these two subtasks, along with the last layer feature separability obtained by t-SNE,
are highlighted in Figures 8 and 9. As expected, from Figure 9, the two-dimensional t-SNE features are
of high quality that the trained network architecture can estimate both the intraclass compactness and
interclass separability for both the subtasks (Task A, and task B).

Table 4. Diagnostic performance of case study 1.

Exp. Source Task Target Task Subtasks Conditions F1 (%) AS (%)

1 Dataset 1 Dataset 2, 3

A. Speed detection
1797 RPM 100

1001772 RPM 100

1750 RPM 100

B. Health type detection

NT 100

100
IRT 100

ORT 100

RT 100

2 Dataset 2 Dataset 3, 1

A. Speed detection
1797 RPM 100

1001772 RPM 100

1750 RPM 100

B. Health type detection

NT 100

100
IRT 100

ORT 100

RT 100

3 Dataset 3 Dataset 1, 2

A. Speed detection
1797 RPM 100

99.91772 RPM 99.9

1750 RPM 100

B. Health type detection

NT 100

100
IRT 100

ORT 100

RT 100
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Figure 7. Loss functions for the target task of experiment 3: (a) training and validation loss for task A:
speed detection, (b) training and validation loss for task B: health type detection, and (c) training and
validation loss for the TL-based MTL-CNN model.
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and (b) task B: health type detection.

As mentioned earlier, the TL-based approach can learn faster with a smaller amount of data.
To establish this fact, experiment 3 is further analyzed. A test is conducted where the proposed
MTL-CNN is trained from scratch with the target dataset independently, without passing on any
knowledge from the source task. Like the previous test, 15% of the data are used for training and 85%
of the data are used for testing the network. The data division is identical so that the performance
can be compared on the same scale. In Figure 10a, it can be observed that the MTL-CNN without TL
does not yield the same performance; it provides 83.3% accuracy for overall training. Furthermore,
from Figure 10b, it is observed that the proposed approach learns faster than the MTL-CNN without
the TL approach, and it also achieved 100% training accuracies, which lead to a better diagnostic
performance (as discussed in Table 4). Without TL, it took around 3000 epochs to train the network,
whereas, with TL, with 1000 epochs, better performance is achieved. It makes the training process
faster by 3× times. Hence, it can be concluded that the proposed model provides a faster convergence
rate with enhanced classification performance.
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To establish the validity and robustness of the proposed diagnostic framework, several approaches
are considered from the literature [43,73,74] and adopted using an experimental setup similar to the
one in this case-study. The AS accuracy is considered to compare the performances of these methods.
These methods include:



Sensors 2020, 20, 7205 16 of 25

(1) WC + MTL-CNN-TL: the input is transformed into 2D wavelet coefficient matrices and then
supplied to the MTL-based deep architectures [73] to perform the TL-based analysis on the
target task.

(2) TFI + CNN-TL: the input is transformed into several time-frequency images (TFI) to create the
multi-fusion input [43] and then passed to the MTL-CNN architecture based on the CNN model
mentioned in [43]. Finally, the TL-based approach from the proposed framework is adopted to
perform the final analysis.

(3) S-transform + CNN-TL: the input is transformed into 2D vibration images by using Stockwell
transform [13] and then supplied to the CNN-based deep architectures mentioned in [13] to
perform the TL-based analysis on the target task.

(4) RAW + CNN-TL: the input is directly fed to the adopted CNN architecture derived from [74],
and then the knowledge attained from the source task is transferred to the target task to determine
for final classification accuracy.

These methods are compared, and the improvement details of the proposed framework
are discussed in Table 5. It is clear that the proposed framework outperforms these other
state-of-the-art approaches [43,73,74], showing an improvement of 3.7% to 9.0% in terms of the
AS score. Additionally, the impact of noisy data on the diagnostic performance of the proposed
approach is also explored. Experiment 3 is again considered for this test. The source task is trained
with dataset 3. Then, Gaussian white noise (AWGN) with signal to noise ratios (SNRs) ranging from
−1 dB to −15 dB is added to the target datasets, i.e., datasets 2 and 3, for validating the diagnostic
performance. As can be seen from Figure 11, the diagnostic performance in this scenario is declined
slightly. Especially, for a high level of AWGN (i.e., for −15 dB), the performance dropped off, and the
classification accuracy is around 85%. However, the proposed method still performs better in noisy
conditions than the other methods used for comparison. Therefore, these results show that the proposed
diagnostic framework can tolerate moderate AWGN and yield acceptable diagnostic performance.
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Table 5. Comparison of the diagnostic performance for case study 1.

Methods Exp. Subtasks AS (%) Improvement
Shown by the Proposed Approach (%)

WC + MTL-CNN-TL

1
A 96.2 3.8

B 96.3 3.7

2
A 96.3 3.7

B 95.9 4.1

3
A 96.1 3.9

B 96.2 3.8

TFI + CNN-TL

1
A 97.2 2.8

B 96.5 3.5

2
A 96.5 3.5

B 96.9 3.1

3
A 95.2 4.7

B 96.3 3.7

S-transform + CNN-TL

1
A 99.2 0.8

B 98.1 1.9

2
A 99.5 0.5

B 99.1 0.9

3
A 99.0 0.9

B 98.7 1.3

RAW + CNN-TL

1
A 92.1 7.9

B 92.3 7.7

2
A 92.0 8.0

B 91.9 8.1

3
A 90.9 9.0

B 91.2 8.8

Proposed

1
A 100.0 -

B 100.0 -

2
A 100.0 -

B 100.0 -

3
A 99.9 -

B 100.0 -
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4.2. Case Study 2: Self-Designed Test Rig with Compound Faults

4.2.1. Experimental Setup and Dataset Description

To collect data with compound fault conditions, a test on a self-designed test rig is conducted.
The vibration signals are collected at two different motor speeds, i.e., 300 and 400 RPM, for two
different crack severities. The experimental setup is illustrated in Figure 12. As depicted in the
figure, the setup uses two shafts, i.e., drive-end and non-drive-end shafts. These two shafts are
connected to a gearbox that has a reduction ratio of 1.52:1. Furthermore, a cylindrical bearing is used
(model FAG-NJ206-E-TVP2) at both shaft ends. To obtain the data, a three-phase induction motor
is positioned in the drive-end shaft [42]. A wide-band vibration sensor [75] is applied to record the
vibration signals from the non-drive-end shaft at a sampling rate of 65,536 Hz [42].
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In the experiment, among the four types of health conditions as shown in Figure 13, one compound
fault is considered, i.e., normal type (NT), inner raceway type (IRT), roller type (RT), or inner-roller
type (IART). A total of 800 signals (200 from each health type) are recorded at each of the considered
motor speeds (300 and 400 RPM). Details of the datasets are listed in Table 6.
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Table 6. Details of the working conditions.

Health Type Shaft Speed (RPM)
Crack Size

Length (mm)

Dataset 1

NT

300, 400

-

IRT 6

RT 6

IART 6

Dataset 2

NT

300, 400

-

IRT 12

RT 12

IART 12

4.2.2. Performance Analysis

To perform a diagnostic analysis, two experiments are conducted. In experiment 1, dataset 1 is
used for the source task and dataset 2 is used for the target task. In experiment 2, dataset 2 is utilized
for the source task and dataset 1 is used for the target task. For these two experiments, the datasets are
divided into the training and testing subsets, as shown in Table 7. The bispectra are calculated from
the samples of both datasets, i.e., datasets associated with the source and target tasks. As can be seen
in Figure 14, the computed bispectra from dataset 1 for RT and IART under different RPMs are similar.
However, there is a slight variation in the pattern of the bispectra for IRT. Nevertheless, the prominent
peaks are between 0.02 and 0.2 Hz. Furthermore, for RT, the prominent peaks lie between 0.14 Hz
and 0.47 Hz. Therefore, the prominent peaks of IART (compound fault conditions) should consider
the ranges of both IRT and RT conditions. From Figure 14, the prominent peaks of IART fall between
0.02 Hz and 0.5 Hz. Thus, along with the visual similarities in the patterns of different RPM conditions,
the frequency range of significant peaks suggests that IART preserves the characteristics of both IRT
and RT together.
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Table 7. Data division.

Source task details

Dataset
Train (90%)

Test (10%)
Training (80%) Validation (20%)

1 1152 samples 288 samples 160 samples

2 1152 samples 288 samples 160 samples

Target task details

Train (15%)
Test (85%)

Training (90%) Validation (10%)

1 216 samples 24 samples 1360 samples

2 216 samples 24 samples 1360 samples
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After that, for each experiment, the diagnostic performance of the target task is attained.
The diagnostic performance of the proposed approach is listed in Table 8. The experimental details
are kept identical to the previous case study. In Table 8, the results indicate that, for speed detection,
the proposed framework performs as expected, like the previous case study. However, for health
type detection, the performance (AS) deteriorated slightly in both experiments. It is evident from
the obtained results that the framework fails to give 100% accuracy. Nonetheless, the experimental
results prove that the proposed TL-based MTL-CNN framework can still robustly identify the health
conditions of a rolling element bearing under variable load, speed, and compound fault conditions.
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Table 8. Diagnostic performance for case study 2.

Exp. Source
Task

Target
Task Subtasks Conditions F1 (%) AS (%)

1 Dataset 1 Dataset 2

A. Speed detection
300 RPM 98.2

98.2
400 RPM 98.1

B. Health type
detection

NT 95.2

94.8
IRT 93.4

RT 96.1

IART 94.3

2 Dataset 2 Dataset 1

A. Speed detection
300 RPM 98.4

98.3
400 RPM 98.2

B. Health type
detection

NT 96.1

95.1
IRT 95.2

RT 95.5

IART 93.5

5. Conclusions

This study presented a bispectrum-aided preprocessing technique, which is combined with
a multitask learning–based, fine-tuned transfer learning approach to diagnose bearing faults.
Multitask learning is implemented by using a convolutional neural network. This represents a
new diagnostic approach for rolling element bearings operating under inconsistent working conditions,
e.g., different speeds, different loads, and various crack severities. Moreover, the proposed architecture
is also tested with a bearing dataset containing ample noise. Bispectra of the vibration signals under
inconsistent working conditions portray a distinct pattern that enhances the performance of the
subsequent classification step. By integrating the multitask learning ability of deep architectures
with transfer learning-based automatic feature analysis, this method can explore abstract features
from a higher-order spectrum for tackling non-stationary, non-linear, and noisy vibration signals.
The adaptation of this approach enables end-to-end diagnosis without requiring any statistical feature
extraction or selection procedure for variable working conditions. Data acquired from two sources,
i.e., (a) a publicly available standard dataset from Case Western Reserve University’s archive and
(b) a self-designed testbed, are used to validate the robustness and the generalization capabilities of
the proposed approach. Experimental results suggest that this approach can enhance the diagnostic
performance, while also saving a lot of time. This approach makes use of bispectra with a fixed
resolution, which could be replaced with bispectra that have an adaptive resolution to better address
the issues faced during the fault diagnosis of nearing due to the inconsistent working conditions of a
rotating machine. Furthermore, an unsupervised multitask deep network could be utilized to enhance
the generalization ability of the proposed diagnostic framework.
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