
 International Journal of 

Molecular Sciences

Article

The Drought-Mediated Soybean GmNAC085 Functions as a
Positive Regulator of Plant Response to Salinity

Xuan Lan Thi Hoang 1,2, Nguyen Nguyen Chuong 1,2, Tran Thi Khanh Hoa 1,2, Hieu Doan 1,2,
Pham Hoang Phuong Van 1,2, Le Dang Minh Trang 1,2, Pham Ngoc Thai Huyen 1,2, Dung Tien Le 3,† ,
Lam-Son Phan Tran 4,* and Nguyen Phuong Thao 1,2,*

����������
�������

Citation: Hoang, X.L.T.; Chuong,

N.N.; Hoa, T.T.K.; Doan, H.; Van,

P.H.P.; Trang, L.D.M.; Huyen, P.N.T.;

Le, D.T.; Tran, L.-S.P.; Thao, N.P. The

Drought-Mediated Soybean

GmNAC085 Functions as a Positive

Regulator of Plant Response to

Salinity. Int. J. Mol. Sci. 2021, 22, 8986.

https://doi.org/10.3390/ijms22168986

Academic Editor: Ricardo Aroca

Received: 15 July 2021

Accepted: 17 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Applied Biotechnology for Crop Development Research Unit, School of Biotechnology,
International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam;
htlxuan@hcmiu.edu.vn (X.L.T.H.); nguyenchuong1402@gmail.com (N.N.C.); ttkhoak11@gmail.com (T.T.K.H.);
kaiba_doan@yahoo.com (H.D.); phphuongvan27@gmail.com (P.H.P.V.);
minhtrangbt600@gmail.com (L.D.M.T.); huyenpham101697@gmail.com (P.N.T.H.)

2 Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
3 Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Str.,

Hanoi 100000, Vietnam; dung.le@bayer.com
4 Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance,

Texas Tech University, Lubbock, TX 79409, USA
* Correspondence: son.tran@ttu.edu (L.-S.P.T.); npthao@hcmiu.edu.vn (N.P.T.)
† Bayer Vietnam Limited (Bayer Crop Science Division), 3rd Floor, Centre Point Building, 106 Nguyen Van Troi

Str., Phu Nhuan District, Ho Chi Minh 700000, Vietnam.

Abstract: Abiotic stress factors, such as drought and salinity, are known to negatively affect plant
growth and development. To cope with these adverse conditions, plants have utilized certain defense
mechanisms involved in various aspects, including morphological, biochemical and molecular alter-
ations. Particularly, a great deal of evidence for the biological importance of the plant-specific NAM,
ATAF1/2, CUC2 (NAC) transcription factors (TFs) in plant adaptation to abiotic stress conditions
has been reported. A previous in planta study conducted by our research group demonstrated that
soybean (Glycine max) GmNAC085 mediated drought resistance in transgenic Arabidopsis plants.
In this study, further characterization of GmNAC085 function in association with salt stress was
performed. The findings revealed that under this condition, transgenic soybean plants overexpress-
ing GmNAC085 displayed better germination rates than wild-type plants. In addition, biochemical
and transcriptional analyses showed that the transgenic plants acquired a better defense system
against salinity-induced oxidative stress, with higher activities of antioxidant enzymes responsible
for scavenging hydrogen peroxide or superoxide radicals. Higher transcript levels of several key
stress-responsive genes involved in the proline biosynthetic pathway, sodium ion transporter and
accumulation of dehydrins were also observed, indicating better osmoprotection and more efficient
ion regulation capacity in the transgenic lines. Taken together, these findings and our previous report
indicate that GmNAC085 may play a role as a positive regulator in plant adaptation to drought and
salinity conditions.

Keywords: GmNAC085; ROS-scavenging system; salt tolerance; stress-related genes; transcrip-
tion factor

1. Introduction

In recent years, soil salinization has emerged as one of the most serious abiotic
stress factors, narrowing cultivable areas and threatening agricultural production [1].
According to a report in 2020, nearly 800 million hectares of land have been faced with
saline problems [2]. Unfortunately, it is predicted that salinity will continue to spread
to other parts of the world in the near future as a consequence of climate change and
inappropriate farming practices [3]. It is known that under stress conditions, various

Int. J. Mol. Sci. 2021, 22, 8986. https://doi.org/10.3390/ijms22168986 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5117-3476
https://orcid.org/0000-0001-9883-9768
https://doi.org/10.3390/ijms22168986
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22168986
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22168986?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 8986 2 of 16

biological processes in plants are negatively affected, including reduction in shoot growth,
photosynthesis and biomass accumulation; promotion of senescence; and decrease in seed
quantity and quality [4–6]. From an agricultural perspective, yield loss not only threatens
global food security but also reduces the income of farmers.

A previous review on plant defense against salinity indicated that various synchronous
mechanisms have been employed [7]. In response to external changes in general, salinity
in particular, transcription factors (TFs) play important roles, as they can directly regulate
gene expression [8]. Salinity-related TFs that have been identified are members of vari-
ous TF families such as NAM, ATAF1/2, CUC2 (NAC), APETALA2/ethylene-responsive
element-binding factor (AP2/EREBP), basic leucine zipper (bZIP), myeloblastosis (MYB)
and WRKY [9,10]. Among these, the NAC TF family has been highlighted to perform
pivotal functions in regulating different biological aspects of plant growth, development
and plant responses to biotic and abiotic stresses [11–14]. In soybean (Glycine max), from
the first large-scale examination of NAC gene expression, 9 out of 31 GmNAC genes in
the soybean cv. Maverick displayed transcriptional induction upon various abiotic stress
treatments, including dehydration, salinity and low temperature [15]. A subsequent inves-
tigation of the dehydration stress effect on expression of 152 full-length GmNACs identified
from the genome of soybean cv. Williams 82 (W82) revealed more dehydration-related
GmNAC genes, of which 25 genes were upregulated and 6 genes were downregulated [16].
Following this study, a subset of these dehydration-responsive genes was selected for fur-
ther expression profiling under drought stress conditions using two local soybean varieties
(DT51 and MTD720) with contrasting drought-tolerant phenotypes [12,17]. Differential ex-
pression analyses of these genes helped the identification of certain members that might be
associated with the drought tolerance capacity of soybean, including GmNAC043, 085, 092,
095, 101 and 109. A similar investigation carried out on drought-sensitive (B217 and H228)
and drought-tolerant (Jindou74 and 78) soybean cultivars identified eight GmNAC genes
with differential expression (GmNAC004, 021, 065, 066, 073, 082, 083 and 087) between the
two studied groups of soybeans under drought stress conditions, whereby the tolerant
cultivars displayed higher gene expression levels [18]. These findings indicate expression
of drought-associated GmNAC genes is genotype-dependent.

Particularly, GmNAC085 has been recognized as an important drought-related NAC
gene, as its expression was the most induced by dehydration in both shoot and root tis-
sues among the 25 GmNAC genes with upregulated expression in the study of Le et al.
(2011) [16]. Expression of GmNAC085 was also found to be significantly higher in the
drought-tolerant cultivar than the drought-sensitive soybean cultivar under drought condi-
tions [12,17]. Subsequent in planta functional characterization of GmNAC085 highlighted
the positive regulatory role of this TF in mediating plant response to drought. Transgenic
Arabidopsis plants harboring GmNAC085 acquired better drought tolerance with better
reactive oxygen species (ROS) detoxification capacity owing to higher activities of the
antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase
(CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and glutathione
reductase (GR) [19,20]. Furthermore, bioinformatic analyses revealed that the amino
acid sequence of GmNAC085 protein was 39% identical to that of the rice (Oryza sativa)
stress-responsive NAC1 (SNAC1/ONAC2) [16], which was found to improve the plant’s
tolerance toward not only drought but also high salinity in different transgenic crop plants,
including rice [21], wheat (Triticum aestivum) [22], cotton (Gossypium hirsutum) [23] and
ramie (Boehmeria nivea) [24]. Similar to drought, salinity also triggers osmotic and oxidative
stresses in plants [25,26]. Under these adverse environmental conditions, plants have
difficulties in absorbing sufficient water due to decreased soil water potential, whereas
excessive levels of endogenous ROS can trigger cellular damage and inhibition of metabolic
activities [27]. Therefore, from the lines of evidence for the important role of GmNAC085 in
mediating plant tolerance to drought, in this study, we further investigated the biological
role of GmNAC085 in plant response to salinity to find out whether this TF is a plant
regulator for multi-abiotic stress factors. To do this, effects of salinity on germination rate,
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antioxidant enzyme activities and expression of several key salinity-related genes were
compared between transgenic soybean plants overexpressing GmNAC085 and wild-type
(WT) plants.

2. Results and Discussion
2.1. GmNAC085 Expression Is Inducible by Various Abiotic Stress Conditions

Environmental stress factors, such as drought, salinity and heat, seriously affect plant
growth and development [28]. Under these adverse conditions, transcriptional regulation
plays a crucial role in plant stress adaptation and tolerance [29]. Following our previous
findings on the drought-responsive feature of GmNAC085 using local soybean DT51,
which is a drought-tolerant cultivar [12,17], we further investigated the expression patterns
of this TF-encoding gene in this cultivar that had been exposed to either dehydration,
salinity, low temperature or abscisic acid (ABA). The obtained results showed that except
cold treatment, GmNAC085 expression was significantly upregulated over the course of
dehydration, salinity and ABA challenge in both root and shoot tissues (Figure 1). These
findings were in agreement with previous studies, as expression of several genes, including
the Arabidopsis Dehydration-responsive element (DRE)-binding factor 2 (DREB2) [30], Galactinol
synthase 1 (AtGolS1), AtGolS2 [31] and the rice OsNAC10 [32], was induced by drought
and salinity but not by cold stress. Analysis of the GmNAC085 regulatory region [12] also
revealed that the promoter sequence did not contain (i) DRE cis-acting element, which has
been known to involve in drought and cold response in an ABA-independent manner [33],
or (ii) induction of C-repeat binding factor (CBF) expression regions (ICEr1/ICEr2), C-
repeat (CRT) and low-temperature-responsive element (LTRE), which are cold-responsive
cis-motifs [34]. In particular, transcript abundance of GmNAC085 increased by 30-fold in
the shoots and 5-fold in the roots after 2 h of dehydration, and 261-fold in the shoots and
8-fold in the roots after 10 h of dehydration (Figure 1). Upregulation of GmNAC085 in the
dehydration-treated W82 variety was also reported, with a higher induction level in the
shoots than in the roots [16].
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Figure 1. Expression profiles of GmNAC085 in shoot and root tissues of soybean cultivar DT51 under
dehydration, cold, salt and abscisic acid (ABA) treatments. Each value represents the mean ± SE
(n = 3). Significance in transcriptional changes over the course of each treatment was analyzed by
ANOVA and Tukey’s honestly significant difference and indicated by different letters (p < 0.05).

Under salinity conditions, transcript abundance of GmNAC085 was enhanced by 115-
fold and 50-fold in shoot and root tissues, respectively, after 10 h of treatment (Figure 1).
GmNAC085 expression was also ABA-inducible but at a higher level in the roots (16-
fold) than in the shoots (9-fold) (Figure 1). Previously, the upregulation of the Nine-cis-
epoxycarotenoid dioxygenase 3 (NCED3) gene, whose product is a key enzyme in the ABA
biosynthetic pathway, in Arabidopsis ectopically expressing GmNAC085 was reported [19].
In addition, ABA-related cis-elements, including ABA-responsive element 2 (ABRE2)
and the MYB recognition (MYBR) site, were also found within the promoter region of
GmNAC085 [12,35], suggesting an interaction between ABA and GmNAC085 activities.
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Furthermore, it is noteworthy that dehydration and salinity induced GmNAC085 more
than ABA treatment in the shoot tissues, which was also observed in a study of transgenic
Arabidopsis ectopically expressing the pearl millet (Pennisetum glaucum) PgNAC21 [36]. A
hypothesis proposed by Shinde et al. (2019) for this finding was a possible regulation of
GmNAC085 expression via an ABA-independent yet stress-dependent route [36]. Collec-
tively, it is suggested that GmNAC085 might function in plant responses to various abiotic
stress factors, and its role might vary in different tissues.

Importantly, amino acid sequence analysis revealed that GmNAC085 displayed 39%
identity and 50% similarity to the well-known SNAC1 in rice, which functions as a positive
regulator for plant response to drought [16]. In addition, both GmNAC085 and SNAC1
harbor sequences with transcriptional activation potential in the C-terminal region, as
shown by the yeast one-hybrid assay [19,21], and are induced by dehydration, salinity and
ABA treatments (Figure 1) [37]. Overexpression of SNAC1 in rice resulted in enhanced
tolerance toward drought and salinity [21,23]. GmNAC085, therefore, appears to be an
excellent candidate to enhance salt stress tolerance of crop plants by genetic engineering.

2.2. GmNAC085-Transgenic Soybean Lines Display Normal Phenotype

To verify the biological role of GmNAC085 in relation to salt tolerance in soybean, we
performed an in planta study using two independent homologous transgenic soybean lines
overexpressing GmNAC085 (OE1 and OE2). In comparison with WT plants, expression
levels of GmNAC085 in OE1 and OE2 were significantly higher, by 170-fold in OE1 and
58-fold in OE2 (Figure 2A). Analysis of shoot- and root-related traits, including shoot
and root lengths and shoot and root dry weights, indicated that these two transgenic
lines and WT showed similar plant growth and development under normal growth condi-
tions (Figure 2B,C). A number of studies have reported growth retardation under normal
conditions in transgenic plants using the promoter 35S to drive expression of the trans-
gene [38,39]. However, other overexpression studies reported no alteration in plant size
due to activity of this constitutive promoter [40,41]. It has been suggested that although
a smaller phenotype, including the transgenic Arabidopsis carrying 35S::GmNAC085, is
considered a non-desirable agronomic trait under non-stressed conditions, this could help
the plants become more resilient to water deficit due to the lower demand of water con-
sumption and better prevention in water loss [19,27,42,43]. Meanwhile, 35S::GmNAC085-
harboring transgenic soybean plants do not display this feature, as they share a similar
morphology with WT plants under normal growth.

2.3. Transgenic Plants Have Higher Germination Rates under High Salinity Conditions

The importance of GmNAC085 in plant resistance to salinity was first evaluated using
a germination assay. According to the obtained data, at a lower concentration of NaCl
(100 mM), the germination rates of all three examined genotypes compared with their
non-treated counterparts were similar (Figure 3). However, differential inhibitory effects of
NaCl on soybean seed germination were clearly found under the high salt concentration
of 200 mM. Under this stress condition, the germination rates of the soybean seeds were
significantly reduced by 68% in WT, 38% in OE1 and 42% in OE2 compared with the
control condition (Figure 3). This result indicated that GmNAC085-overexpressing plants
maintained better germination rates than their non-transgenic counterparts under high
salt concentrations. With influences on water uptake capacity and toxic ion disturbance
on enzymatic activities, cellular metabolism and nutrient acquisition, salt stress is known
to impair soybean seed germination and post-germinative growth, ultimately leading to
yield loss [44,45]. Furthermore, NaCl treatment can cause oxidative stress, which is also
detrimental to seed development and suppresses seed germination [46,47]. Therefore, the
higher germination rates observed in the transgenic plants could be attributed to a better
defensive capability against salt stress effects.



Int. J. Mol. Sci. 2021, 22, 8986 5 of 16Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 2. Expression of GmNAC085 in 21-day-old GmNAC085-transgenic plants (OE1 and OE2) and 
their phenotype under normal growth conditions. (A) GmNAC085 expression levels in wild-type 
(WT), OE1 and OE2 plants (n = 3). (B) Phenotypic parameters, including shoot length, root length, 
shoot dry weight and root dry weight (n = 10). (C) Representative pictures of shoots and roots of the WT 
and transgenic plants. Each value represents the mean ± SE. Significant differences analyzed by ANOVA 
and Tukey’s honestly significant difference test were indicated by different letters (p < 0.05). 

2.3. Transgenic Plants Have Higher Germination Rates under High Salinity Conditions 
The importance of GmNAC085 in plant resistance to salinity was first evaluated us-

ing a germination assay. According to the obtained data, at a lower concentration of NaCl 
(100 mM), the germination rates of all three examined genotypes compared with their 
non-treated counterparts were similar (Figure 3). However, differential inhibitory effects 
of NaCl on soybean seed germination were clearly found under the high salt concentra-
tion of 200 mM. Under this stress condition, the germination rates of the soybean seeds 
were significantly reduced by 68% in WT, 38% in OE1 and 42% in OE2 compared with the 
control condition (Figure 3). This result indicated that GmNAC085-overexpressing plants 
maintained better germination rates than their non-transgenic counterparts under high 

Figure 2. Expression of GmNAC085 in 21-day-old GmNAC085-transgenic plants (OE1 and OE2) and
their phenotype under normal growth conditions. (A) GmNAC085 expression levels in wild-type
(WT), OE1 and OE2 plants (n = 3). (B) Phenotypic parameters, including shoot length, root length,
shoot dry weight and root dry weight (n = 10). (C) Representative pictures of shoots and roots of the
WT and transgenic plants. Each value represents the mean ± SE. Significant differences analyzed by
ANOVA and Tukey’s honestly significant difference test were indicated by different letters (p < 0.05).
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Figure 3. Germination of GmNAC085-transgenic (OE1 and OE2) and wild-type (WT) seeds under
different concentrations of NaCl. The germination rates and representative pictures were taken after
3 days of incubating the seeds under dark conditions. Each value represents the mean ± SE (n = 3
replicates, 20 seeds/replicate). Significant differences among the genotypes in each treatment that
were analyzed by ANOVA and Tukey’s honestly significant difference test were indicated by different
letters (p < 0.05).

2.4. GmNAC085-Transgenic Plants Display Enhanced ROS-Scavenging Capacity

Prolonged salt stress triggers over-accumulation of ROS, leading to damage of cellular
components, including DNA and proteins [48]. According to Sadak et al. (2020), salt stress
significantly increases the hydrogen peroxide (H2O2) content in soybean leaves [49], which
was also confirmed earlier in leaves of other plant species, such as sunflower (Helianthus
annuus) [50] and wheat [51]. At appropriate concentrations, ROS can function as messenger
molecules involved in acclimatory signaling to trigger plant tolerance against various
abiotic stresses [52–55]. As ROS play dual roles in stress tolerance of plants, ROS synthesis
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and ROS-scavenging machineries are tightly regulated to maintain relevant levels of ROS
at different plant developmental stages and under different growing environments [56].
In a previous study, transgenic Arabidopsis plants harboring GmNAC085 were shown to
obtain improved drought tolerance due to, at least partly, enhanced expression of genes
associated with the activities of antioxidant enzymes, including SOD, CAT and APX that
are known as the major ROS scavengers [19]. Therefore, expression profile analysis of
antioxidant enzyme-encoding genes, GmCAT, GmAPX1 and GmMnSOD, by quantitative
real-time PCR (RT-qPCR) was carried out.

As shown in Figure 4A, GmNAC085 overexpression lines had increased transcript
abundance of the examined antioxidant enzyme-encoding genes. Analyses of GmCAT
expression patterns showed that only OE1 had significantly higher expression of this
gene in non-stressed root tissue, probably due to higher GmNAC085 transcript abundance
compared with that of the OE2 line (Figure 2A). This high expression level status was
maintained in the stressed OE1 line, whereas a substantial upregulation by 2.2-fold of
GmCAT in the OE2 line upon salt treatment was observed (Figure 4A). Under normal
conditions, expression levels of GmAPX1 were higher in both transgenic lines compared
with WT plants (by 2-fold in OE1 and 2.1-fold in OE2). After 10-day exposure to salin-
ity, GmNAC085-overexpressing plants continuously outperformed their non-transgenic
counterparts in GmAPX1 transcript abundance. Following this, a significant increase in ex-
pression of GmAPX1 was only observed in the transgenic lines, whereas the transcript level
of this gene in the WT plants did not change much between the two conditions (Figure 4A).
Regarding GmMnSOD, the transcript abundance of this gene was found almost identical
among the three genotypes under normal conditions but at substantially higher levels
under salt treatment in the transgenic lines (by 2.6-fold in OE1 and 1.6-fold in OE2 in
comparison with the WT counterpart) (Figure 4A).

Data from biochemical assays were also in agreement with the RT-qPCR analyses.
Activities of CAT and peroxidase (POD), which are H2O2-scavenging enzymes, remained
relatively low and similar among the three studied genotypes under normal conditions
(Figure 4B). Under the applied stress condition, though all the three genotypes enhanced
activities of these enzymes, the overexpression lines displayed their activities at remarkably
higher levels. This partially explains the lower H2O2 accumulation after 6-day and 12-day
stress application in the transgenic plants than in WT plants (Figure 4C).

Interestingly, activities of SOD, which is responsible for the dismutation of superoxide
into H2O2, were found to be more active in the transgenic plants under both non-stressed
and stressed conditions (at least by 1.4-fold and 1.3-fold higher in OE1 and OE2, respec-
tively). It is also noted that under the stress conditions, molecular analyses revealed
upregulation of GmMnSOD, whereas the biochemical data did not demonstrate this trend
(Figure 4A,B). This could be due to alteration in expression of other genes encoding Gm-
SOD isozymes, which remains to be explored. In addition, according to our data, it can
be deduced that the increase in H2O2 over the course of stress treatment in general could
be due to the over-production of this ROS from various sources that employ different
enzymes, such as photorespiration, electron transport chain and redox reactions in the
apoplast [57,58], rather than depending on the superoxide conversion into H2O2 by SOD
enzyme activity (Figure 4B,C).
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(A) Expression profile of antioxidant enzyme-encoding genes. (B) Enzymatic activities of catalase (CAT), peroxidase (POD)
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Many studies have shown that overexpression of CAT can increase plant resistance
to abiotic and biotic stresses [59,60], acknowledging its indispensable role in alleviating
oxidative stress [61–63]. With APX, this is a group of enzymes that belongs to the POD
superfamily and plays a central role in the ascorbate-glutathione cycle that has evolved
in plants to scavenge H2O2 from plant chloroplasts and cytosol [64]. Regarding SOD
genes, they can be divided into four subfamilies, among which three (MnSOD, FeSOD and
Cu/ZnSOD) are widely found in plants and one (NiSOD) is present in streptomyces [65,66].
Frequently, members of different SOD subfamilies are localized to different cellular com-
partments, including mitochondria (MnSOD), peroxisomes (MnSOD and Cu/ZnSOD),
chloroplasts and cytosol (FeSOD, Cu/ZnSOD) [67]. The important role of the APX and
SOD gene families in antioxidative stress has now been demonstrated in a variety of
plants. For example, transgenic cassava (Manihot esculenta) co-expressing cytoplasmic
MeCu/ZnSOD and MeAPX2 displayed high levels of SOD and APX antioxidant enzyme
activities, thus improving their tolerance to cold stress [68]. In another report, ectopic
expression of MnSOD gene from Tamarix androssowii conferred salinity and oxidative
stress tolerance in the transgenic poplar (Populus davidiana x P. bolleana) [69]. Furthermore,
various studies have reported that the enhanced stress tolerance in plants harboring a
regulatory transgene (e.g., NAC and MYB) such as GmNAC085-transgenic Arabidopsis [19],
GmNAC20-transgenic rice [70] and SlMYB102-transgenic tomato (Solanum lycopersicum) [71]
or a non-antioxidant functional transgene (e.g., Sodium–proton antiporter (NHX) and Salt
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overly sensitive (SOS)) such as TaNHX2-transgenic sunflower [72], AtNHX1-transgenic mung
bean (Vigna radiata) [73] and GmsSOS1-transgenic Arabidopsis [74] was also associated with
higher expression levels of antioxidant enzyme-encoding genes and/or higher activities of
antioxidant enzymes.

Taken these lines of evidence together, the higher activities of CAT, POD and SOD
and higher transcript abundance of antioxidant enzyme-encoding genes in transgenic
plants indicated their better defense capability against oxidative stress compared with
the non-transgenic counterpart. As oxidative stress was found to be associated with seed
germination [46], these results may also explain the higher germination rates observed in
the transgenic plants compared with WT plants under NaCl treatment (Figures 3 and 4).

2.5. Expression Levels of Other Stress-Related Genes Are Also Enhanced in Transgenic Plants
under Salinity Conditions

In addition to antioxidant genes, expression of the Na+/H+ antiporter-encoding gene
(GmNHX1), as well as two osmoprotectant-related genes Delta-1-pyrroline-5-carboxylase
synthase (GmP5CS) and Dehydrin 15 (GmDHN15), was also analyzed. Generally, the ex-
pression of these genes was upregulated upon stress exposure, which is consistent with
findings from previous studies [75–77]. However, both transgenic lines displayed higher
induction levels than WT plants (Figure 5). It is noticed that the GmNHX1 and GmP5CS
shared similar expression patterns to that of GmMnSOD (Figures 4A and 5). In particular,
transcript abundance of these genes was at the same level among the three examined
genotypes under normal conditions but remarkably higher in the overexpression lines
upon stress application (at least 1.5-fold higher for NHX1 and 1.8-fold higher for P5CS).
Meanwhile, DHN15 had the highest expression activity in the OE1 in both non-stressed
(3.6-fold higher compared to WT) and stressed conditions (3.9-fold higher compared to
WT) (Figure 5).
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Salinity, along with drought, cause changes in osmotic pressure and oxidative stress
that trigger cellular damage and dehydration [78]. To deal with this, several strategies can
be used by plants, including accumulation of osmolytes to lower cellular osmotic potential,
activation of antioxidant systems for ROS removal and increase in chaperone activities for
protein protection [79]. For example, synthesis of proline, an amino acid that can function
as an osmolyte and osmoprotectant, is usually promoted under the stress condition by
enhancement activities of P5CS, the rate-limiting enzyme in the proline biosynthetic path-
way [75,80]. Similarly, increased synthesis of dehydrin and late embryogenesis abundant
(LEA) proteins that play important roles in protein protection is also observed [77,81]. In
this study, the upregulated expression of P5CS and DHN15 would bring certain advantages
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for the GmNAC085-transgenic soybean lines in mitigating the salinity effects. It is also
known that the reluctant accumulation of cellular Na+ under salinity conditions leads to
the disruption of ion balance and cellular metabolism [82,83]. Compartmentalization of
Na+ ions in vacuole by activity of vacuolar Na+/H+ antiporter in replacement of Na+ for
H+ has long been proposed as an effective mechanism for salt tolerance [84]. This helps
avoid deleterious effects of excessive Na+ in the cytosol, while the osmotic balance in
the vacuole can be maintained by using Na+ as an ionic osmolyte [85–87]. Furthermore,
it has been evidenced that overexpression of Arabidopsis vacuolar NHX1 could confer
improved salt tolerance in transgenic tomato plants [88]. Similar findings were also re-
ported for other transgenic crop species overexpressing NHX-encoding genes, including
rice [89–91], wheat [92], barley (Hordeum vulgare) [93], cowpea (Vigna unguiculata) [94] and
mung bean [73]. Therefore, enhanced transcriptional activities of GmNHX1 observed in the
GmNAC085-transgenic plants would contribute to the maintenance of normal metabolism
under salt stress. Additionally, transcriptional activation assay in yeast demonstrated that
the C-terminal transcriptional regulatory region of GmNAC085 possesses a transcriptional
activation domain that enables the protein to function as a transcriptional activator [19].
Therefore, higher expression levels of the examined genes observed in this study could be
the results of direct and/or indirect regulation of this NAC TF.

3. Materials and Methods
3.1. Plant Materials and Plant Growth Conditions

Seeds of soybean varieties W82 and DT51 were obtained from RIKEN Center (Yoko-
hama, Japan) and Legumes Research and Development Center (Hanoi, Vietnam), respec-
tively. The transgenic soybean (W82 background) lines were generated by the service
at Iowa State University (Ames, IA, USA) using the Agrobacterium tumefaciens-mediated
transformation method. Cassette P35S-GmNAC085-NOS from a pGKX vector constructed
previously [19,95] was cloned into pENTR Direction TOPO using the following primers:
5′-CACCGAGCTTGCCAACATGGTGGAG-3′ (forward) and 5′-CGATCTAGTAACATAGA
TGAC-3′ (reverse). Subsequently, the cassette was transferred into a pTF101.1gw1 vector
and then used for transformation. The homozygous transgenic progenies used in this study
were verified as independent lines according to Mendelian segregation analyses for the ratio
of Basta-resistant/Basta-sensitive phenotypes, followed by molecular confirmation [96,97].
The plants were grown in plastic pots containing soil, coir, husk ash and compost (Tribat
soil, Saigon Xanh Biotechnology Ltd. Company, Ho Chi Minh City, Vietnam) and under
net house conditions (28–33 ◦C, 60–70% humidity and natural photoperiod) [12].

3.2. Abiotic Stress Assays for Analyses of GmNAC085 Expression

Local soybean variety DT51 was used for various stress challenges, as described by
Tran et al. (2009) [15]. For dehydration treatment, 12-day-old plants were carefully pulled
from the container and washed to remove soil attached to the root surfaces. The plants
were then placed on filter papers and allowed to dehydrate in a controlled growth chamber
(60% relative humidity, 28 ◦C day/night temperature and 200 µmol m–2 s–1 light intensity).
For salinity and ABA treatments, plants were transferred to 250 mM NaCl and 100 µM
ABA solution, respectively, under laboratory conditions. Low-temperature treatment was
conducted by keeping the seedlings in distilled water maintained at 4 ◦C. During the assays,
the roots and shoots tissues of treated plants were collected at 0, 2- and 10-h timepoints for
expression analysis of GmNAC085. All experiments were carried out with three biological
replicates.

3.3. Morphological Analysis of Transgenic Plants under Normal Conditions

Root and shoot growth of V4-stage seedlings (i.e., 21-day-old) were evaluated for
length and dry biomass. The seedlings were grown in plastic pots (10 cm in diameter and
80 cm in height, one plant per pot) with normal irrigation until they were harvested for the
measurement (n = 10) [98].
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3.4. Analysis of Seed Germination Rate

For this experiment, seeds were first sterilized using 2% sodium hypochlorite (NaOCl)
for 10 min before they were rinsed with distilled water for chemical removal. Next, the
seeds were incubated between two layers of filter paper placed in a Petri dish (9 cm in
diameter) supplied with 10 mL of NaCl solution with different concentrations (0, 100 and
200 mM) [99,100]. After keeping the plates in dark conditions at room temperature for three
days, the germination rates were recorded. Seeds were considered successfully germinated
if the length of rising radicles was at least greater than half of the seed length [101]. For
each genotype, three replications per sodium chloride concentration were used, of which
each replication was one plate with 20 seeds.

3.5. Biochemical Analyses for Endogenous Hydrogen Peroxide Content and Antioxidant
Enzyme Activities

To initiate salt stress, 12-day healthy seedlings of both transgenic and non-transgenic
plants were irrigated with NaCl solution (100 mM) (100 mL/plant) every two days. For
each genotype, the leaf tissues of three individual plants (n = 3, 0.2 g/replicate) were
collected on days 0, 6th and 12th during the stress application. Previously described
methods for determination of contents of H2O2 [43,102] and soluble proteins [103], as well
as activities of CAT [104], SOD [105] and POD [106] enzymes, were used.

3.6. Gene Expression Analysis by RT-qPCR

Expression analysis of GmNAC085 in DT51 root and shoot tissues that were exposed
to various abiotic stress conditions (Section 3.2) and expression analysis of stress-related
genes in root tissues of transgenic and WT plants subjected to salinity (Section 3.5) for ten
days were conducted using RT-qPCR. The primer sets used for this assay are provided
in Table 1. Total RNA extraction and purification, cDNA synthesis and RT-qPCR were
carried out using commercial kits (Thermo Scientific, Waltham, MA, USA) and following
the guidelines provided by the manufacturer [97]. NanoDrop OneC Microvolume UV-Vis
Spectrophotometer (ND-ONEC-W, Thermo Scientific, MA, USA) was used to determine
the concentrations and quality of total RNA extracts. cDNA synthesis was carried out
using the same amount of total RNA from each sample. Preparation for reactions, thermal
profile and melting curve analysis in RT-qPCR assay (Mastercycler®ep realplex, Eppendorf,
Hamburg, Germany) was described in our previous study [97]. Fbox [107] was used as the
reference gene for normalization based on the 2−∆Ct method [108]. LinRegPCR software
(version 2020.2, Academic Medical Center, Amsterdam, The Netherlands) was used to
calculate the efficiency of PCR reactions.

Table 1. Information of primers that were used in gene expression analysis.

Genes ID Primer Type Primer Sequence (5′-3′) Amplicon Size (bp) References

GmNAC085 Glyma12g22880 Forward GGCTAGACACATACAATGAATCGG
92 [16]Reverse TGCGGTGCTGTGGTGAAA

GmFbox Glyma12g051100 Forward AGATAGGGAAATTGTGCAGGT
93 [107]Reverse CTAATGGCAATTGCAGCTCTC

GmCAT Glyma06g017900 Forward CCACAGCCATGCCACTCAAG
184 [109]Reverse CAGGACCAAGCGACCAACAG

GmAPX1 Glyma12g073100 Forward AGTTGGCTGGCGTTGTTG
86 [109]Reverse TGGTGGCTCAGGCTTGTC

GmMnSOD Glyma04g221300 Forward GCACCACCAGACTTACATCAC
88 [109]Reverse AACGACGGCGGAGGAATC

GmNHX1 Glyma20g229900 Forward CTTTCCACTCCAACACACAC
110 [76]Reverse GGTGAGCCAGGTTCTATAGG

GmP5CS Glyma18g034300 Forward TGTCTCTCAGATCAAGAGTTCCAC
144 [110]Reverse CAGCCTGCTGGATAGTCTATTTTT

GmDHN15 Glyma11g149900 Forward TTTTGTTTTGTTGTATTGTGTAG
150 [77]Reverse GAAAAATCCTCCACCTGACGA
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3.7. Statistical Analyses

Data were analyzed using one-way ANOVA and Tukey’s honestly significant differ-
ence test for comparison among the examined genotypes under the same treatment to
identify statistically significant differences (p < 0.05).

4. Conclusions

The results from this study showed that GmNAC085 functions as a positive regulator
for plant response to salinity, in addition to a previous report on its contribution to plant
resistance to drought. Under high salinity conditions, GmNAC085-overexpressing soybean
plants maintained better germination rates and had more robust antioxidant enzyme ac-
tivities. Gene expression profiling data also indicate that the enhanced salinity tolerance
mediated by GmNAC085 comes from the increased biosynthesis of osmoprotectants pro-
line and dehydrin, as well as effective sequestration of excessive cytosolic Na+ using the
vacuolar Na+/H+ antiporter. Therefore, the findings presented here, together with our
previous report, should lay a solid foundation for further study into the molecular mecha-
nisms by which GmNAC085 mediates multi-responses to different types of osmotic stress,
as well as for the development of stress-tolerant crops based on GmNAC085 manipulation.
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