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Abstract

Motivation: The well-known fact that protein structures are more conserved than their sequences forms the basis of
several areas of computational structural biology. Methods based on the structure analysis provide more complete
information on residue conservation in evolutionary processes. This is crucial for the determination of evolutionary
relationships between proteins and for the identification of recurrent structural patterns present in biomolecules
involved in similar functions. However, algorithmic structural alignment is much more difficult than multiple se-
quence alignment. This study is devoted to the development and applications of DAMA—a novel effective environ-
ment capable to compute and analyze multiple structure alignments.

Results: DAMA is based on local structural similarities, using local 3D structure descriptors and thus accounts for
nearest-neighbor molecular environments of aligned residues. It is constrained neither by protein topology nor by
its global structure. DAMA is an extension of our previous study (DEDAL) which demonstrated the applicability of
local descriptors to pairwise alignment problems. Since the multiple alignment problem is NP-complete, an effective
heuristic approach has been developed without imposing any artificial constraints. The alignment algorithm
searches for the largest, consistent ensemble of similar descriptors. The new method is capable to capture most of
the biologically significant similarities present in canonical test sets and is discriminatory enough to prevent the
emergence of larger, but meaningless, solutions. Tests performed on the test sets, including protein kinases, demon-
strate DAMA's capability of identifying equivalent residues, which should be very useful in discovering the biological
nature of proteins similarity. Performance profiles show the advantage of DAMA over other methods, in particular
when using a strict similarity measure Qc, which is the ratio of correctly aligned columns, and when applying the
methods to more difficult cases.

Availability and implementation: DAMA is available online at http://dworkowa.imdik.pan.pl/EP/DAMA. Linux
binaries of the software are available upon request.

Contact: lesyng@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction recognition (Singh and Saha, 2003). One of the most challenging

tasks in computational biology is multiple structure alignment
Structures of proteins are conserved more than their sequences. It is (MStA). There are several methods for computing MStA, like CBA
believed, that methods based on analysis of structure, rather than se- (Ebert and Brutlag, 2006), Matt (Menke et al., 2008), MASS (Dror

quence analysis, provide more complete information on residue con- et al., 2003), MAMMOTH-Multi (Lupyan et al., 2005), MultiProt

servation in evolutionary processes. This knowledge is crucial for (Shatsky et al., 2004), MUSTANG (Konagurthu et al., 2006) or
both, determination of evolutionary relationships between proteins, POSA (Ye and Godzik, 2005). Some of them were reviewed in

?nd f_or theUidfentificatii)n Olf ,st%‘uctural patterns involved in .Simﬂﬁ‘r (Berbalk et al., 2009). Since then some new methods have been
m“gﬁﬁ";ire éleﬁf;ﬁ?f Ytajkliﬁff aj?‘;f;“f: ‘jegcgs"“gel“:::ﬁ;;sy developed, like MAPSCI (Ilinkin et al., 2010), MISTRAL (Micheletti
& gning seq : > and Orland, 2009), 3DCOMB (Wang et al., 2011), msTALI (Shealy

structure alignment is commonly used in protein classification (e.g. .
Fox et al. g2014- Orengo et };zl. 19971)) or in structural motii;f and Valafar, 2012), mTM-align (Dong ez al., 2018) or Caretta
’ ’ ’ (Akdel et al., 2020).
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The MStA problem can be formulated in several ways and exist-
ing algorithms differ by the type of alignments they compute. We
distinguish methods in which structures are treated as rigid bodies
(CBA, 3DCOMB) from methods that allow a certain level of flexibil-
ity (Matt, POSA, MASS). Some algorithms may allow for circular
permutations (and other rearrangements) (MASS).

Most approaches either gradually join pairwise structural align-
ments into one MStA (i.e. perform progressive alignment), or align
all structures simultaneously.

DAMA has been designed to bridge a gap between these
approaches and ensure robust performance while imposing the least
constraints on the solution. Quality of alignments is achieved by
ensuring that the entire molecular environment of the aligned resi-
dues is taken into account. There are no constraints on the global
superposition, which enables alignment of structures with significant
spatial distortions (e.g. a different arrangement of domains con-
nected by a flexible linker). Circular permutations and segment
swaps are allowed as well. The concept of progressive alignment is
applied in the initial phase for generating several alignments to be
further improved by an evolutionary algorithm. Selected algorithms
have already been implemented and optimized for CUDA graphical
processors (Daniluk et al., 2019).

2 Approach

Finding optimal multiple alignments is a computationally difficult
problem. However, it has been proven that a seemingly simpler
problem of computing a multi-alignment as a consensus of given
pairwise alignments is intractable as well (Daniluk and Lesyng,
2014). This is due to the fact, that not all sets of pairwise alignments
may constitute a valid multiple alignment. It is disallowed for two
different residues from a single structure to belong to the same col-
umn in the alignment. Nevertheless, it is easy to construct a set of
pairwise alignments which would lead to such a condition if merged
into a multiple alignment (see Fig. 1). Therefore, computing a mul-
tiple alignment from a set of pairwise alignments would require
identifying all such conflicts, and finding an optimal way of remov-
ing them.

In this study, we tackle the multi-alignment problem in its most
generic form. We aim at finding multiple alignments that may con-
tain circular permutations, segment swaps and other sequential rear-
rangements, as well as, structural deformations.

The only constraint we enforce on the multiple alignments is the
similarity of local physico-chemical environments, which are charac-
terized using molecular fragments called local descriptors of protein
structure (Daniluk and Lesyng, 2011b; Hvidsten ez al., 2009). A
local descriptor is a small part of a structure that can be viewed as a
residue-attached local environment. In principle, it is possible to
build a descriptor for every residue of a given protein. This process
begins by identifying all residues in contact with the descriptor’s cen-
tral residue. Elements are then built by including two additional resi-
dues along the main-chain, both upstream and downstream of each
contact residue. Any overlapping elements are concatenated into sin-
gle segments. Thus, a descriptor is typically built of several disjoint
pieces of the main chain (Fig. 2). It reflects approximately the range
of local, most significant physico-chemical interactions between its
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Fig. 1. Example of inconsistency between pairwise alignments. Each row of dots
presents residues in a protein structure. Arcs between dots denote pairwise align-
ment between residues. Three alignments between structures S1, S2 and S3 cannot
be combined into a single multiple alignment. A gap at position 4 in S2—S3 causes
ambiguity which makes several residues in e.g. S2 transitively (via S1 and S3)
aligned

Fig. 2. An exemplary descriptor built around the residue MET70 of 11g7A contains
nine contacts (dashed lines) between its central amino acid (red) and residues form-
ing the centers of its elements. Some of the elements overlap forming longer seg-
ments [in particular fragments of two B-strands (blue and yellow) and a fragment of
an a-helix (green)]. Altogether, this descriptor consists of five continuous segments

central residue and surrounding amino-acids. This constitutes a sig-
nificant difference compared to single segments so frequently used in
other studies. Single segments reflect features along the main-chain
exclusively, while descriptors are spatial, and thus add a three-
dimensional context to local properties of a protein molecule.

In the preliminary stage of computing all pairs of similar descrip-
tors belonging to compared structures are identified. Such pairs con-
stitute small, local pairwise alignments, which can be viewed as
building blocks for a larger alignment. In the following stages only
alignments which comprise such descriptor pairs are considered. It
has already been established, that this approach yields remarkably
accurate (also in terms of low RMSD) pairwise alignments (Daniluk
and Lesyng, 2011b).

The main difficulty in building a multiple alignment from de-
scriptor alignments results from the fact, that contrary to the pair-
wise case, it is not enough to select a set of descriptor pairs in which
every two of them form a valid alignment. This condition does not
prevent conflicts of a kind mentioned above. Therefore, an approach
based on computing maximal cliques cannot be straightforwardly
used in this case [It would be possible to search for maximal cliques,
and then try to resolve all conflicts. However, the problem of resolv-
ing conflicts constitutes the most difficult (and intractable) part of
the multiple alignment. Furthermore, because resolving conflicts
shrinks a clique, such a method would have to take into consider-
ation all maximal cliques, not just the largest ones.].

We have overcome this problem by building an alignment incre-
mentally. If we divide the set of structures into two sets, an optimal
multiple alignment is an optimal alignment of multiple alignments of
these subsets (Alignments of these subsets do not have to be opti-
mal.). Aligning two multiple alignments may lead to conflicts as
well, but their number is expected to be low, when similarity within
these alignments is high. This principle leads to an application of a
neighbor join (NJ) method. We use a randomized version of the NJ
algorithm to generate a set of specimens to be further improved by
an evolutionary algorithm.

3 Materials and methods

3.1 Local descriptors of protein structure

Descriptors have already been applied in several studies (Bjorkholm
et al., 2009; Daniluk and Lesyng, 2011b, 2014; Drabikowski et al.,
2007; Hvidsten et al., 2003, 2009; Strombergsson et al., 2006,
2008). Here, we use a version of the local descriptor methodology
described in (Daniluk and Lesyng, 2011a,b, 2014). Every descriptor
is built around its central residue. It contains residues that are in con-
tact with the central residue (i.e. d, < 6.5A, or dc < 8A and
d, —dc > 0.75A, where d, and d¢ denote distances between C,
atoms and geometrical centers of side-chains, respectively). In the
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second step, elements around selected residues are built by taking
four sequential neighbors, two on each side. Finally, overlapping ele-
ments are merged into segments. For more details, see Daniluk and
Lesyng (2011a, 2014).

It should be noted that this kind of similarity is totally sequence-
independent. Because elements are the smallest indivisible blocks, it
is possible that one segment will be aligned to two smaller ones
which are a few residues apart.

3.2 Pairwise alignments

Once a set of pairs of similar descriptors is computed, one can define
a graph, where nodes correspond to descriptor pairs. It can be easily
proven, that the largest alignment of two structures corresponds to a
maximal clique in such a graph.

Cliques in the graph are identified using a heuristic approach
based on the Motzkin-Straus theorem by iteratively searching for a
maximum of a certain quadratic form which corresponds to the larg-
est clique in the graph (Daniluk et al., 2019). Possible conflicts are
identified and then resolved by a branch-and-bound algorithm
searching for a set of descriptor pairs which removal should result in
the smallest possible reduction of the alignment size.

3.3 Stochastic generation of initial multiple alignments
We incorporated the progressive alignment method to generate a
starting population for the evolutionary algorithm. In order to ob-
tain several such alignments, we have developed a process of ran-
domly generating guide trees. We use a method akin to the NJ
algorithm, where at each step a pair of clusters with the highest aver-
age similarity of their elements is joined. In our implementation, a
pair to be joined is chosen randomly with a probability proportional
to the average similarity of elements.

3.4 Evolutionary algorithm
Multiple alignments generated in a stochastic progressive alignment
phase are refined using an evolutionary algorithm. It is an applica-
tion of a generic strategy mimicking evolutionary processes by main-
taining a population of specimens that correspond to solutions to a
problem.Mutation and crossover

In the case of mutation, an internal node of a spanning tree is
randomly selected and a multiple alignment connected with it is
recomputed as a pairwise alignment of multiple alignments in its
children. The process is later repeated for all nodes on a path from a
selected node to the root of a tree.

In the crossover procedure, structures are randomly divided into
two subsets and subalignments containing these subsets are
extracted from the chosen specimens. These subalignments are then
aligned to obtain a new specimen. A pair of structures is chosen
with probability proportional to their distance in spanning trees.
They form centroids of subsets for both specimens. After that, struc-
tures close to respective centroids in spanning trees are added to
subsets. If the process stops before all structures are exhausted, new
centroids are selected and iteration is resumed.Steady-state
algorithm

We applied a steady-state evolutionary algorithm (Whitley et al.,
1989). It is performed independently for each specimen immediately
after its generation. In this manner, successful individuals can con-
tribute to the new population without an unnecessary delay. To
achieve quick convergence, we used a variant of elitist selection. A
new specimen is preserved (added to population), if its fitness
exceeds the fitness of an individual most similar to it, or if the popu-
lation has not reached its maximal size. All individuals whose iden-
tity to the newly added specimen exceeds 80% are removed from the
population.Gradual extension of the search space

The evolutionary algorithm starts with refining the consensus of
pairwise alignments. After converging, the most under-performing
structure is identified by comparing its contribution to the score of
the best multiple alignment with scores of its pairwise alignments.
This structure is freed by including all descriptor pairs in which one
descriptor belongs to this structure in the set of allowed similarities.

Then the evolutionary algorithm is restarted. The process is repeated
until all structures become unconstrained.

3.5 Measure of the alignment size and quality
To evaluate the global quality we assess the spatial arrangement of
the local components. We enumerate all pairs of the aligned residues
which are in contact in at least one of the aligned structures. Then for
each such contact, we compute the RMSD of the respective five resi-
due pieces (elements) of the backbone. These distances are averaged
for each residue over all its contacts, for each pair of structures, and
after raising to the power of two for the whole multiple alignment.
The result can be viewed as an average ‘tension’ exerted on structures
when superimposed structures are treated as elastic objects.
Sometimes a pairwise alignment can be divided into regions with
no contacts between them. In such a case, possible conformational
distortions would not influence tension. Therefore, we augment the
score of all regions, except the largest one, by a factor proportional

to /152 where o is an angle between rotations required to super-

impose the largest region and the augmented one, respectively.

3.6 Core alignment and its refinement

We use a two-stage process similar to the one used by our DEDAL
method (Daniluk and Lesyng, 2011b). An optimal multiple align-
ment is built using only descriptor alignments that have at least three
segments. Such alignment in principle contains all similarities of the
protein cores, but may not cover loops and extended linkers. In the
second stage, the algorithm is rerun to extend computed alignment
with all remaining descriptor pairs which are consistent and overlap
the alignment computed in the first stage.

4 Implementation

We have implemented the described algorithm in C on the Linux
platform. For the rapid finding of cliques in large graphs we have
used CUDA-MS—a GPU accelerated library (Daniluk ez al., 2019).

We have made DAMA available online at http://dworkowa.
imdik.pan.p/EP/DAMA. Linux binaries of the software are avail-
able upon request. The server can be used to align structures identi-
fied by PDB or SCOP accession codes or supplied in uploaded files.
Superpositions can be downloaded as PDB files and also viewed
through the WebGL applet. The alignments are available in FASTA
format and as a list of corresponding residue ranges.

Scalability of implementation was shown in Supplementary
Figure S3 in Supplementary Materials.

5 Results

5.1 SISY-multiple dataset

In this study, we have used SISY-multiple—a set of multiple align-
ments created especially for assessment of the quality of multiple
structure alignment methods (Berbalk ez al., 2009). It is based on
SISYPHUS—a manually curated set of multiple structure alignments
(Andreeva et al., 2007), which has been pruned from ambiguities. It
contains 106 multiple alignments comprising from 3 to 119 struc-
tures (~13 on average). Several of them contain particular difficul-
ties such as repetitions, insertions/deletions, permutations or
conformational variabilities. This set has been used for testing sev-
eral alignment algorithms already.

Berbalk et al. use two measures to assess the similarity of a given
alignment to a reference one. A more stringent measure (Qc) is the
ratio of correctly aligned columns, while a more lenient one (Qp) is
the ratio of correctly aligned residue pairs. It should be noted, that
all alignments in SISY-multiple have all columns completely filled
(i.e. contain residues belonging to a core common to all structures).
We present values of Q¢ and Qp for alignments computed by
Caretta (Akdel et al., 2020), MASS (Dror et al., 2003), Matt (Menke
et al., 2008), MultiProt (Shatsky et al., 2004), MUSTANG
(Konagurthu et al., 2006), POSA (Ye and Godzik, 2005), 3DCOMB
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(Wang et al., 2011), MISTRAL (Micheletti and Orland, 2009),
MAMMOTH (Lupyan et al., 2005), MAPSCI (Ilinkin et al., 2010),
mTM-align (Dong et al., 2018) and DAMA. The results for the first
five methods are taken from (Berbalk ez al., 2009). For the remain-
ing ones, we have performed computations ourselves. Several meth-
ods fail in some cases either due to internal faults or incompatibility
of input data (MUSTANG, Matt and POSA are incapable of aligning
structures with multiple chains). In his study Berbalk ez al. have
chosen a set of 61 alignments for which no program has failed.

DAMA turned out to be the most accurate method on the whole
SISY-multiple dataset achieving median accuracy of 82.3% for the
QOc and 92.7% for Qp measure, second-best 3DCOMB achieved
67.1% and 89.8% respectively (67.6% and 89.9% when limited to
cases for which program has not failed). If one disregards cases for
which programs have failed, Matt (Qc: 81.4%, Op: 90.6%), POSA
(Oc: 77.4%, Op: 88.3%) and MUSTANG (Oc: 75.9%, Op: 90.6%)
perform better than 3DCOMB. However, these three methods have
the highest number of failures. Results for the remaining methods
are provided in Table 1 and Figure 3.

Performance profiles (Dolan and Moré, 2002) are convenient to
assess quality on a large dataset. In this case, however, we used them
to compare the accuracy of the algorithms tested. Let ¢, , be the ac-
curacy of the solution computed by the method 7 for the alignment
a—with either the Qc or Qp measures. We define accuracy ratio as

‘ns__ These ratios are aggregated into profiles for each

7, =
Ma T maxy Cma

method:

lae A:rg, >0
pma T

where A is a set of reference alignments, and | - | denotes the set car-
dinality. According to Dolan and Moré performance profiles may be
interpreted as probabilities for a method to achieve performance not
worse than the best method by a given ratio. Performance profiles
for all alignments in the SISY-multiple dataset for the Q¢ (a) and Qp
(b) measure are presented in Figure 4, and profiles for the subset of
61 safe alignments selected from the SISY-multiple dataset by
Berbalk et al. are presented in Supplementary Figure S2 in
Supplementary Materials. Performance profiles show that DAMA is
the most likely method to retain a satisfactory alignment regardless
of the desired accuracy. MUSTANG, Matt and POSA along with
3DCOMB perform very well on the subset of easier alignments.
However, when compared using the whole set, only 3DCOMB and
DAMA remain outstanding. There is a significant difference between
the O¢ and Qp profiles for these methods indicating that DAMA is
more likely to align whole columns correctly, and thus identify the
whole common core. The numerical values of AUC are provided in
Supplementary Table S3 in Supplementary Materials.

Table 1. Median values of Qc and Qp measures for the tested meth-
ods on the whole SISY-multiple set (106 alignments) and excluding
failures for each method (60 alignments)

Whole set No failures Failures

Oc Op Oc Op
MASS 0.00 23.44 1.59 31.38 13
Matt 58.48 83.58 81.41 90.59 22
MultiProt 55.21 65.50 59.48 66.94 4
MUSTANG 52.43 82.07 75.86 90.58 31
POSA 58.49 76.94 77.36 83.33 19
3DCOMB 67.14 89.83 88.12 93.66 0
mTM-align 71.78 88.80 83.56 92.81 0
Caretta 00.00 31.59 16.09 59.91 0
MISTRAL 42.56 64.79 70.06 78.02 4
MAMMOTH 53.57 81.05 88.10 95.21 4
MAPSCI 55.25 85.01 78.56 92.57 0
DAMA 72.68 91.93 87.78 94.07 0

SISY-multiple
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Fig. 3. Accuracy on the SISY-multiple dataset for the Q¢ and Qp measures. The
upper panel contains results for all alignments, while the lower panel contains results
only for alignments for which none of the methods have failed

Sample alignment from the SISY-multiple dataset returned by
DAMA (containing circular permutation) can be found in
Supplementary Table S6 in Supplementary Materials.

5.2 Case study: protein kinases

As reference, we have taken an alignment of 31 kinases prepared by
Scheeff and Bourne (Scheeff and Bourne, 2005). This alignment
includes 25 typical protein kinases (TPKs) and 6 atypical kinases
(AKs). The authors describe 20 features characteristic to some kinase
families or of all of them (see Supplementary Tables S1 and S2 in
Supplementary Materials). We have identified 240 aligned positions
in that curated multiple alignment corresponding to notable fea-
tures, and used them to test two methods performing best on the
SISY-multiple set—3DCOMB and DAMA.

5.2.1 Highly conserved residues

There are few residues playing important role in kinase activity
which are conserved in all structures, in particular K72, E91, D166
or D184 [positions according to PKA (1cdk)]. Residues crucial for
the ATP hydrolysis (D184) and present in the catalytic region
(D166) were aligned correctly by both methods. However, only
DAMA did equally well with residues responsible for ATP stabiliza-
tion in the binding pocket (K72 and E91), while 3DCOMB shifted
its alignment of three structures by 1-2 residues (see Fig. 5). There is
also a number of other residues which are conserved in some struc-
tures. Examples are H158 and D220 forming hydrogen bonds stabi-
lizing the catalytic region in most kinases, and N171 or equivalent
isoleucine or glutamine interacting with an Mg™? cation important
for the catalytic process. Aligning N171 or H158 caused no difficul-
ties. 3DCOMB aligned all residues at position D220, while DAMA
shifted respective residues in PDK1, GSK3 and PKB by one position
and IRK by three.

5.2.2 Secondary structure

There are several secondary structures conserved in the reference
alignment. Among them, helices denoted with letters A-F are com-
mon for all structures (except for B-helix), while G to I a-helices are
present only in TPKs and vary in length. B-helix is shared only by
AGC kinases (five out of TPKs) and ChaK, while in other structures
a loop takes its place. Also a number of f-strands numbered from 1
to 8 forming a B-sheet N-terminal domain is present in all structures
(see Fig. 6 and Supplementary Fig. S2 in Supplementary Materials).
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Fig. 4. Performance profiles for all alignments in the SISY-multiple dataset for the
Oc (a) and Qp (b) measures

Fig. 5. Alignment of two conserved residues K72 and E91 [as noted by (Scheeff and
Bourne, 2005)] by 3DCOMB (a) and DAMA (b). Structural elements corresponding
to columns in alignment are indicated with different colors

C- and D-helices or f-strand 4 were aligned correctly for TPKs
by both programs. 3DCOMB failed, however, to align correspond-
ing regions in AKs due to incorrect gap placement. Well-aligned
remaining secondary structures are F-helix, containing aspartate
D220 forming H-bond with H158, common to all kinases, as well
as, G- and H-helices present in TPKs exclusively. In the DAMA
alignment four shifts occur in F-helix and propagate further through
all following helices, but remaining structures are aligned correctly,
including AKs F-helix. 3DCOMB, on the other hand, incorrectly
aligned F-helix in AKs, but committed no errors in the case of G-
and H-helices in TPKs.

The most troublesome elements were helix B (or its substitute
loop), and a-helix I common for all TPKs. 3DCOMB aligned cor-
rectly only half of I helices, applying minor shifts in the remaining
structures, while the result from DAMA shows only shifts in four
previously mentioned structures. Helix B, on the other hand, was
aligned correctly by DAMA, while 3DCOMB found only two cor-
rect pairs out of thirty (partially aligning remaining pairs).

5.2.3 Insertions

There are four insertions present only in some kinases. One present
in the catalytic region of one structure—AFK—was not aligned with
any residues from other structures by both programs as expected.
Long insertions in CKA-2 and APH were correctly aligned by
DAMA, and 3DCOMB achieved approximately 25% accuracy (see
Fig. 7). The similarity of insertions between G- and H-helices shared
by CMGC kinases was detected by DAMA in 3 out of 5 structures,
while 3DCOMB failed to align any inserted regions in these struc-
tures. In the case of insertion preceding I-helix, shared by five ACG
kinases, DAMA missed one structure, while 3DCOMB detected
similarity for only one pair of structures.

5.2.4 Other

Summary of all identified structural features and performance of
DAMA and 3DCOMB can be found in Supplementary Tables S4
and S5 in Supplementary Materials.

Fig. 6. Superposition of the aligned helix B or equivalent loops for alignments
yielded by 3DCOMB (a) and DAMA (b)

Fig. 7. Comparison of the aligned loops from CKA-2 and APH(3')-Illa. AKs
obtained from 3DCOMB (a) and DAMA (b). Aligned residues are colored the same
way

6 Conclusion

DAMA is capable of computing multiple alignments of large sets of
structures, imposing only minor constraints in the process. It is based
on local similarities, which may comprise several disjoint segments
of a protein backbone and encompass complete physico-chemical
neighborhoods of amino-acid residues. It is constrained neither by
protein topology, thus permitting segments swaps and circular per-
mutations, nor by its global structure allowing for conformational
variability which, in particular, is essential for enzymatic and other
activities.

In our approach, the alignment algorithm searches for the largest
non-contradictory ensemble of similar descriptors. Local descriptors
are generic enough to capture most of the biologically significant
similarities present in the test set, while at the same time they are dis-
criminatory enough to prevent the emergence of larger, but meaning-
less, solutions. This result is consistent with our previous study
demonstrating the applicability of local descriptors to the pairwise
alignment problem (Daniluk and Lesyng, 2011b, 2014).

When solving a so-called black-box optimization problem, in
which an optimized function (in this case the alignment score) can-
not be differentiated and has to be independently evaluated for each
attempted solution, it is crucial to limit the number of unsuccessful
trials by reducing the number of infeasible solutions. It has been
established that the multiple alignment problem is NP-complete
(Daniluk and Lesyng, 2014), and thus the development of an accur-
ate algorithm with polynomial time complexity is highly unlikely.
However, the DAMA example shows, that an effective heuristic ap-
proach can be developed without imposing artificial restrictions (e.g.
lack of segment swaps, global RMSD threshold) which would limit
the solution space.

3DCOMB, the second-best method after DAMA tested in this
study, uses a similar definition of local similarities—so-called local
and global structure environments. Its search space is subject to the
aforementioned constraints due to the usage of dynamic program-
ming and TM-score (Zhang and Skolnick, 2004) for assessment of
the resulting alignments. This gives 3DCOMB an advantage over
DAMA in easy cases. In several cases, these simplifying assumptions
make the correct alignment infeasible which causes 3DCOMB to
perform slightly worse.
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The main goal to compute multiple alignments is not only to as-
sess whether given structures are similar, but also to discover the
exact nature of this similarity. Such an aim can be achieved only if
an alignment algorithm reliably reconstructs whole columns of the
optimal alignment. The test performed on protein kinases shows
DAMA’s capability in this respect. Performance profiles (see Fig. 4
and Supplementary Fig. S1 in Supplementary Material) also show
that advantage of DAMA over other methods are more pronounced
when using the Q¢ measure.
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