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ARTICLE

Longitudinal Tumor Size and Neutrophil-to-Lymphocyte 
Ratio Are Prognostic Biomarkers for Overall Survival in 
Patients With Advanced Non-Small Cell Lung Cancer 
Treated With Durvalumab

Sergey Gavrilov1,2,*, Kirill Zhudenkov1, Gabriel Helmlinger3,5, James Dunyak3, Kirill Peskov1,4 and Sergey Aksenov3

Therapy optimization remains an important challenge in the treatment of advanced non-small cell lung cancer (NSCLC). We 
investigated tumor size (sum of the longest diameters (SLD) of target lesions) and neutrophil-to-lymphocyte ratio (NLR) as 
longitudinal biomarkers for survival prediction. Data sets from 335 patients with NSCLC from study NCT02087423 and 202 
patients with NSCLC from study NCT01693562 of durvalumab were used for model qualification and validation, respectively. 
Nonlinear Bayesian joint models were designed to assess the impact of longitudinal measurements of SLD and NLR on pa-
tient subgrouping (by Response Evaluation Criteria in Solid Tumors 1.1 criteria at 3 months after therapy start), long-term 
survival, and precision of survival predictions. Various validation scenarios were investigated. We determined a more distinct 
patient subgrouping and a substantial increase in the precision of survival estimates after the incorporation of longitudinal 
measurements. The highest performance was achieved using a multivariate SLD and NLR model, which enabled predictions 
of NSCLC clinical outcomes.

Advanced non-small cell lung cancer (NSCLC) is a com-
mon cancer type that remains associated with poor 
survival prognosis.1 Treatment options for NSCLC have 
recently increased in complexity, with the emergence of 
novel targeted and immune checkpoint inhibitor thera-
pies.2,3 NSCLC treatment guidelines from the American 
Society of Clinical Oncology and the European Society for 
Medical Oncology propose treatment algorithms based 

on testing for specific mutations in the epidermal growth 
factor receptor (EGFR) gene for tyrosine kinase inhibitors, 
programmed death-ligand 1 (PD-L1) expression levels for 
PD-L1 inhibitors, and so on. These biomarkers are pre-
dictive of improved survival on a particular treatment vs. 
standard of care.4–8 However, survival outcomes remain 
poor, even in NSCLC patients harboring specific mutations 
or exhibiting high PD-L1 expression. Further research is 
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STUDY HIGHLIGHTS

WHAT IS THE CURRENT KNOWLEDGE ON THE  
TOPIC?
✔  The success of novel therapies has enabled a new 
paradigm in the targeted treatment of patients with ad-
vanced non-small cell lung cancer. Integrative quan-
titative analytics are necessary to allow for the early 
identification of patients with good vs. poor survival 
prognosis and to optimize therapy and clinical study  
designs.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  Can multiple, early longitudinal biomarkers provide ad-
ditional inference for survival prediction and patient differ-
entiation? How can they be systematically identified and 
evaluated?

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  We show an impact of longitudinal sum of the longest di-
ameters and the neutrophil-to-lymphocyte ratio on survival 
prediction. We also show feasibility in predicting long-term out-
comes in patient subgroups stratified by Response Evaluation 
Criteria in Solid Tumors 1.1 criteria based on 3-month data 
after the start of therapy in a modeling workflow that mimics 
an analysis that would make use of interim trial data.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  Multivariate longitudinal biomarker analyses by means 
of statistical joint modeling provide a robust methodology 
for clinical study outcome prediction incorporating base-
line and early response biomarker data.

mailto:
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needed to identify and qualify molecular markers of sur-
vival response to further reduce uncertainty in treatment 
outcomes.

A link between tumor size dynamics and survival in can-
cer has been sought in the past 3 decades.9 Today, tumor 
size is typically characterized by the sum of the longest di-
ameters (SLDs) of target lesions, as defined in Response 
Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria.10 
SLD has been considered both as a baseline covariate and 
a longitudinal biomarker in various models. Different sta-
tistical approaches to assess the baseline and longitudinal 
behaviors of SLD, as well as its link to survival, have been 
developed.11–13 Among these, longitudinal SLD has been 
quantitatively characterized using empirical parameters 
(e.g., time to tumor regrowth, regrowth rate),14 mixed effects 
models,11,12,15 and joint models (JMs).13 Univariate JMs of 
longitudinal and time-to-event data have improved the im-
pact and significance of longitudinal SLD as a biomarker for 
survival in patients with NSCLC.13,16

Neutrophils (NEUs) play an important role in the defense 
against pathogens by initiating and amplifying inflammatory 
reactions.17 NEU counts and the neutrophil-to-lymphocyte 
ratio (NLR) have also been quantitatively investigated as 
survival biomarkers for NSCLC and other cancers (colon, 
breast, etc.).18–23 In these studies, blood biomarkers were 
typically assessed as baseline covariates and linked to 
survival either via Cox proportional hazards models or via 
the estimation of an optimal cutoff value to differentiate 
patients with poor vs. good prognosis. In some studies, 
the importance of not only baseline but also 6-week NLR 
values has been investigated.24 In addition, dynamics in 
tumor size have been analyzed and differentiated in pa-
tients with progressive disease (PD), complete response 
(CR), partial response (PR), and stable disease (SD; nei-
ther CR/PR nor PD) according to RECIST 1.1 criteria.10 
Although RECIST 1.1 is useful to categorize patterns of 
tumor progression or response to treatment, it may not 
predict overall survival (OS) or longitudinal biomarker 
trends in clinical studies.10,25

The prognostic value of SLD and NLR/NEU suggests that 
their combination in a multivariate longitudinal JM may im-
prove predictions of individual patient survival. To address 
this question, we developed JMs13,26–29 to evaluate the prog-
nostic potential of longitudinal SLD and NLR for survival in 
patients with advanced NSCLC treated with durvalumab, a 
human immunoglobulin G1 kappa monoclonal antibody that 
blocks the interaction of PD-L1 with the programmed cell 
death protein 1 (PD-1). We considered a common clinical 
development scenario in which a new study is initiated and 
early SLD and NLR responses in patients as well as OS were 
evaluated in a 0- to 3-month interval after start of treatment, 
when a RECIST 1.1 framework for tumor response assess-
ment may be used. Having garnered this information, we 
performed long-term predictions of OS, assessed prediction 
precision, and performed patient subgroup stratification for 
this study using survival models that were previously devel-
oped and qualified using the data for the same compound in 
an earlier NSCLC clinical study. Survival predictions as well 
as patient stratification results were tested against the ac-
tual long-term outcomes of the investigated study. This joint 

modeling approach thus allowed us to make a quantitative 
inference from early longitudinal biomarker data to predict 
survival outcome in the clinical study.

METHODS
Clinical trial data
Data from the original clinical trials were included in our 
model-based analysis for those patients who had provided 
informed consent for data reuse. In this modeling research, 
we used two data sets, a “training” set and a “validation” set, 
derived from two distinct NSCLC clinical trials of durvalumab. 
The training set, which was used for model qualification, 
included 335 patients with NSCLC extracted from the 
NCT02087423 (ATLANTIC) study of durvalumab (10  mg/kg 
intravenously every 2 weeks).7 Patients from this study had 
locally advanced or metastatic NSCLC and were previously 
treated with platinum-based chemotherapy and at least one 
additional treatment regimen. The validation data set included 
202 patients with advanced NSCLC extracted from study 
NCT01693562 (CD-ON-MEDI4736-1108)30 who received the 
same therapy as patients in the training data set. NCT01693562 
patients were either refractory to, intolerant to, ineligible for, or 
declined receiving the standard therapy. Although the training 
data set was primarily used for obtaining parameters of sur-
vival models and performing comparisons across models, the 
validation data set was used for model assessment (further 
detailed below) and patient survival prediction.

Both data sets were built based on the inclusion criteria. 
Patients with known survival information (death or censor-
ing time) and known Eastern Cooperative Oncology Group 
(ECOG) performance status31 were included. Also, for each 
patient, we required the availability of both baseline SLD and 
NLR data as well as a minimum of two measurements of 
SLD and NLR at time points following start of treatment.

From a total number of 372 patients extracted from study 
NCT02087423 with known survival data, 22 patients exhib-
ited missing baseline values of SLD or NLR and 15 patients 
had less than two longitudinal measurements. Thus, 335 
patients were included in the training set. The validation 
set from study NCT01693562 initially contained information 
on 233 patients. A total of 202 patients with known survival 
data was retained: 22 patients had missing baseline values 
of SLD or NLR, 1 patient had a missing ECOG value, and 
8 patients had less than two longitudinal measurements. 
Demographic and baseline characteristics of the data sets 
used are presented in Table 1.

Tumor size, NLR, and survival data modeling
For model-based analysis, we considered the following 
two types of survival model structures: Cox proportional 
hazards models (COX),32 which made use of baseline 
covariates only, and longitudinal JMs,33,34 which were qual-
ified using the training data set.

COX is a regression model that describes the associa-
tion between an event risk and several predictor variables 
via coefficients in the hazard function. JM is a more inte-
grative model that combines the following two submodels: 
A survival COX submodel and a linear or nonlinear mixed 
effects (LME or NLME, respectively) submodel with random 
effects describing longitudinal trajectories of biomarkers.
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To address our research objectives, the following set of 
models for OS with varying amounts of longitudinal data 
were developed and qualified using the training data set:

• COX model with SLD and NLR as baseline covariates 
(COX)

• Univariate JM with longitudinal SLD and baseline NLR 
(JM SLD)

• Multivariate JM with both longitudinal SLD and NLR 
(JM SLD&NLR)

The structures of these models were chosen to assess 
changes in prediction precision with the incorporation of lon-
gitudinal values for the chosen biomarkers.

Apart from SLD and NLR, all three models also fea-
tured PD-L1 expression and ECOG status as baseline 
covariates. PD-L1 and ECOG were selected as important 
covariates based on the results derived from a preliminary 
covariate search procedure. The list of all tested baseline 
covariates and the corresponding results are provided in the 
(Supplementary Material), section 1.2.

The COX model was generated using the coxph() func-
tion from the survival package, version 2.44-1.1, of the R 
software.35 JMs were developed using the Stan software 
platform, which incorporates Bayesian inference capabilities 

into statistical models.36 A Weibull distribution was chosen 
to describe the baseline hazard function, an exponential 
linear model11,37 was selected for longitudinal SLD, and a 
hyperbolic model mimicking saturation kinetics38 was used 
for longitudinal NLR. For further technical details, see the 
(Supplementary Material).

Survival predictions for patient subgroups in the 
validation study
The generated models were used to evaluate the OS pre-
diction performance for specific patient subgroups (CR/
PR, SD, and PD) from the validation data set by generating 
survival predictions based on the 3-month SLD stratifica-
tion using RECIST 1.1 criteria. This classification of patient 
responses was based on the full set of clinical data, which 
accounts for progressions due to target as well as nontar-
get lesions.7,10,30

From a total of 145 patients known to be surviving at 
3 months, 31 patients were classified in the CR/PR sub-
group, 44 in the SD subgroup, and 70 in the PD subgroup. 
OS for these subgroups were obtained using each of the 
three survival models, initially qualified on the training data 
set. For each patient subgroup, the survival curve was 
computed as an average (mean) of predicted individual 
survival curves. To estimate the accuracy of predictions for 
each subgroup, we compared the predicted survival to ac-
tual Kaplan–Meier (KM) curves from the validation data set.

Precision of individual survival predictions
A specific scenario was proposed to estimate the precision 
of individual survival predictions obtained with all tested 
models. Precision was determined for both training and 
validation data sets.

For the COX model, individual predictions were based on 
an individual hazard ratio calculated using the values of the 
respective baseline covariate coefficients. To perform indi-
vidual predictions using the JMs, we estimated individual 
random effects for the longitudinal process given the ob-
served longitudinal data, up to a certain cutoff time, and the 
posterior distribution of individual SLD or NLR trajectory 
parameters.34 Since one may expect different precision esti-
mates of JM predictions for different longitudinal biomarker 
cutoffs (both for the training and validation data sets), we 
assessed several cutoff times ranging from 0 to 6 months 
upon start of therapy.

To estimate and compare prediction precision and dis-
crimination performance of the developed models, we used 
two well-established metrics: the area under the receiver–
operating characteristic curve (ROC-AUC) score39 and the 
Brier Score (BS).40

ROC-AUC is a commonly used metric for prognostic 
statistical models with binary outcomes. It can be inter-
preted as the probability of a model to generate a lower 
survival estimate for a randomly chosen patient who would 
have experienced an event (death, in our case) vs. a ran-
domly chosen event-free patient, at a timepoint of interest. 
ROC-AUC may take values ranging from 0 to 1, with a 
higher value representing an improved model discrimina-
tion ability; a value of 0.5 would signify no discrimination 
ability.

Table 1 Demographic and baseline characteristics of training and 
validation data sets

Characteristic Training Validation

Patients, n 335 202

Sex, female, n (%) 142 (42) 88 (44)

Mean age at primary diagnosis, 
years (95% range)

61 (38–79) 64 (42–83)

Smoking history, n (%)

Never smoked 84 (25) 27 (13)

Current smoker 23 (7) 21 (11)

Former smoker 228 (68) 154 (76)

Stage at primary diagnosis, n (%)

Stage I 7 (2) 0 (0)

Stage II 3 (1) 1 (0)

Stage III 54 (16) 17 (9)

Stage IV 271 (81) 184 (91)

ECOG performance status, n (%)

ECOG 0 122 (36) 48 (24)

ECOG 1 213 (64) 154 (76)

EGFR mutation status, n (%)

Positive 67 (20) 15 (7)

Negative 268 (80) 187 (93)

PD-L1 expression, n (%)

<25% 97 (29) 83 (41)

≥25% 222 (66) 105 (52)

Unknown 15 (5) 14 (7)

Mean baseline SLD, mm (95% 
range)

86.1 
(16.1–209.3)

74.6 (15.2–191.0)

Mean baseline NEU, ×109 (95% 
range)

6.2 (2.3–13.8) 6.5 (2.7–15.4)

Mean baseline NLR (95% 
range)

5.6 (1.2–20.7) 7.0 (1.3–21.6)
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BS is another performance metric that describes pre-
cision of predictions. It represents a mean square error of 
individual survival probability estimates. BS may take values 
ranging from 0 to 1; values closer to 0 represent better pre-
cision, and values above 0.25 are considered as evidence 
of an incorrect model. Since the data sets are characterized 
by a high rate of right censoring, we used adjusted ROC-
AUC and BS metrics with an inverse probability of censoring 
weighting.41,42

Both ROC-AUC and BS were calculated for survival es-
timates obtained at a particular timepoint of interest (e.g., 
12 months from start of therapy). Since the precision of pre-
dictions could vary depending on time (i.e., short-time or 
long-time predictions), we examined the trends in ROC-AUC 
and BS behavior at different times of assessment.42

Prediction of survival for selected biomarker trends
To demonstrate the impact of longitudinal trajectories of 
SLD and NLR on patient survival differentiation, we simu-
lated the multivariate JM SLD&NLR model by contrasting 
the effect of increasing vs. decreasing SLD and NLR in the 
training data set. For all comparisons performed, we consid-
ered three scenarios in which either SLD or NLR increased 
(or decreased) one at a time (keeping the other biomarker 
constant) or both SLD and NLR increased (or decreased) 
while the rest of the baseline covariates were the same.

To identify typical changes in biomarker levels, we esti-
mated quartiles of changes in SLD and NLR from baseline 
values to the 3-month timepoint after start of therapy. 
Lower and upper quartiles for SLD were −16% and + 20% 
from baseline. NLR changed over a wider range: −29% 
and + 56% from baseline. The average values of SLD and 
NLR from the training data set were set at baseline levels. 
Three different scenarios of longitudinal behavior, repre-
sentative of poor and good prognoses, were simulated to 
compare impact on survival:

1. 20% increase in SLD at 3  months vs. 16% decrease 
in SLD; NLR was kept constant at baseline level for 
both simulations

2. 56% increase in NLR at 3 months vs. 29% decrease in 
NLR; SLD was kept constant at baseline level for both 
simulations

3. increases in both SLD and NLR (20% and 56%, re-
spectively) at 3 months vs. decreases in both SLD and 
NLR (16% and 29%, respectively)

For each scenario, we used the JM SLD&NLR model and 
generated and compared predicted individual survival prob-
abilities in the 3- to 12-month time interval.

RESULTS

A graphical comparison of the training and validation data 
sets is presented in Figure 1, which displays the KM esti-
mates and the marginal (averaged across populations) SLD 
and NLR profiles computed using a moving average with 
2-month time intervals. The marginal trend for SLD is one 
of a gradual decrease over time, which differs from indi-
vidual patient trends in SLD. Individual SLD patterns tend 
to first decrease following the start of treatment and then 
tend to increase again due to tumor regrowth (as effectively 
captured by the SLD linear exponential NLME submodel 
used in this research), while we also observe, over time, 
censoring of patients due to death or study dropout, leaving 
patients with lesser tumor burden in the study. This techni-
cally results in a monotonically decreasing averaged SLD, 
which should not be construed as a “typical” response of 
an individual patient.

Our analysis next shows how additional inference, as 
derived from longitudinal biomarkers, can be used to make 
predictions of survival, i.e., predictions for patient sub-
groups stratified by RECIST 1.1 criteria in the validation data 
set. Simulation results basing on interim data are shown in 
Figure 2. The cutoff value for external longitudinal data in 
JMs was 3 months. OS for patient subgroups was not well 
predicted, regardless of the model considered, possibly due 
to inherent limitations in biomarker data (see the Discussion 
section). Survival predictions, as compared to observed 
KM estimates, are in better agreement with the actual data, 
when using longitudinal JMs vs. the COX model. The mul-
tivariate JM SLD&NLR provided narrower OS prediction 
intervals, suggesting improved patient subgroup differen-
tiation. Thus, treatment outcome can be more accurately 
predicted if longitudinal data are collected and incorporated 
into the analysis vs. baseline SLD and NLR data only.

The precision of individual predictions and discrimination 
performance are provided in Table 2 and Table S4. Table 2 
describes ROC-AUC and BS estimates at 12 months from 
start of treatment using different cutoffs (0–6  months) of 
the longitudinal data for the validation data set. Starting 
from a 3-month cutoff value, JMs outperformed the COX 
model in survival discrimination. Moreover, the multivariate 

Figure 1 Comparison of training and validation data sets: (a) Kaplan–Meier estimates. (b) and (c) - marginal SLD and NLR profiles 
computed using a moving average within a 2-month time interval respectively. Mean estimates with 95% confidence intervals are 
shown. NLR, neutrophil-to-lymphocyte ratio; SLD, sum of the longest diameters.
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JM SLD&NLR model showed improved performance vs. 
the univariate JM SLD. In all scenarios, the use of longi-
tudinal data via multivariate JM SLD&NLR resulted in an 
increase in ROC-AUC values by more than 0.1, in com-
parison to COX model making use of baseline biomarker 
values only.

Upon fixing the longitudinal data cutoff time at 3 months, 
we next examined the behavior of ROC-AUC and BS over 
time in 4- to 24-month time intervals (Supplementary 
Material). For these intervals, JMs provided higher dis-
crimination performance; in particular, the multivariate 
JM SLD&NLR exhibited the highest performance among 
all models tested. This indicates that the inclusion of 
longitudinal information for multiple biomarkers is of im-
portance to more precisely predict and discriminate patient  
survival.

To illustrate the degree to which temporal changes in 
SLD and NLR may help differentiate patients with longer vs. 
shorter survival, we studied the impact of different longitu-
dinal SLD and NLR trends (either growing or decreasing for 
each biomarker) on individual survival predictions obtained 
via the multivariate JM SLD&NLR model (Figure 3). We thus 
estimated survival for hypothetical patients with matching 
baseline covariates (SLD = 86 mm, NLR = 5.6 × 109), yet 

experiencing different dynamics of SLD and NLR within a 
plausible range of changes vs. the baseline observed in the 
training data set at 3  months (20% increase or 16% de-
crease for SLD; 56% increase or 29% decrease for NLR). 
Survival predictions were differentially affected for various 
sets of temporal changes in longitudinal biomarkers. For 
example, the impact of the considered changes in NLR re-
sulted in a more profound difference in survival prediction 
vs. the impact of changes in SLD. Simultaneous changes in 
SLD and NLR biomarkers resulted in the largest difference in 
survival predictions.

DISCUSSION

Current biomarker research in advanced NSCLC is highly 
focused on the identification of prognostic biomarkers as 
well as their use in predicting clinical study outcomes. SLD, 
for example, has been studied extensively as a predictive 
metric at both baseline and longitudinal levels. Empirical 
NLME models may be used for SLD description.11,37 In the 
present modeling research, we used a linear exponential 
model, which adequately described longitudinal SLD, as 
shown in the corresponding visual predictive check plots 
(Figure S3).

Figure 2 Simulated vs. observed survival for Response Evaluation Criteria in Solid Tumors–based subgroups: (a) COX model, (b) JM 
SLD model, (c) and multivariate JM SLD&NLR model. JM simulations made use of 3 months of longitudinal SLD and NLR data. Ranges 
(in various colors) represent the 50% range for the simulated survival curves. Solid lines represent simulated median survival. Dashed 
lines represent observed Kaplan–Meier estimates for subgroups of patients. COX, Cox proportional hazards model; CR, complete 
response; JM, joint model; NLR, neutrophil-to-lymphocyte ratio; PD, progressive disease; PR, partial response; SD, stable disease; 
SLD, sum of the longest diameters.

Table 2 ROC-AUC and BS at 12 months from the start of treatment for the following three survival models: COX, baseline SLD and NLR as 
covariates; JM SLD, baseline NLR and longitudinal SLD; and JM SLD&NLR, longitudinal NLR and SLD

ROC-AUC and BS at 12 months from start of treatment, estimated for the validation data set

Diagnostics type AUC BS

Model name COX JM SLD JM SLD&NLR COX JM SLD JM SLD&NLR

Baseline biomarkers SLD, NLR, 
ECOG, PD-L1

NLR, ECOG, PD-L1 ECOG, PD-L1 SLD, NLR, 
ECOG, PD-L1

NLR, ECOG, PD-L1 ECOG, 
PD-L1

Longitudinal biomarkers SLD SLD, NLR SLD SLD, NLR

Cutoff time, months

0 (baseline only) 0.776 0.733 0.765 0.193 0.210 0.203

1 0.765 0.722 0.805 0.199 0.214 0.187

2 0.752 0.780 0.829 0.203 0.189 0.170

3 0.734 0.777 0.833 0.203 0.182 0.163

4 0.741 0.779 0.836 0.193 0.178 0.157

5 0.724 0.777 0.838 0.182 0.169 0.146

6 0.702 0.770 0.804 0.172 0.157 0.148
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Less has been studied regarding the longitudinal be-
havior of other available biomarkers. The impact of NLR 
on OS has been assessed in several analyses of NSCLC 
data.43,44 Although NLR has been identified as an im-
portant prognostic biomarker, to date there are no widely 
accepted empirical or mechanistic models for quantitative 
NEU or NLR trajectory descriptions and their impact on 
survival, except for simple LME models qualified against 
sparse data.45 Here we introduced an empirical nonlinear 
hyperbolic mixed effects model, which adequately de-
scribes NLR data and generates long-term predictions of 
NLR (Figure S3).

In a recent publication, Ameratunga et al.45 reported an 
association of the NLR biomarker with patient survival in 
various advanced solid tumors. Interestingly, these authors 
discussed that the decreasing longitudinal kinetics of NLR 
in responding patients may be directly related to immune 
checkpoint inhibitor treatment and tumor microenvironment 
dynamics. A gradual decrease in NLR and a similar associa-
tion of longitudinal NLR with survival benefit was also found 
in the present modeling research (see Figure 1c).

A survival analysis scenario using the interim data was 
implemented to investigate the importance of longitudi-
nal SLD and NLR vs. corresponding baseline data only for 
selected patient subgroups in the validation data set and 
based on early assessment RECIST 1.1 criteria. Admittedly, 
such a scenario does not mimic an actual clinical oncology 
interim study analysis in real context since patients enter a 
study at different times, which results in varying amounts 
of interim longitudinal information made available for these 
patients. Our proposed modeling framework allows for an 
analysis of patient outcomes with differing amounts of accu-
mulated longitudinal data. However, in the investigated data 
sets, visit dates were not available due to de-identification 
procedures; consequently, we considered equal longitudinal 
data cutoffs for all patients, as typically performed in prior 
research.27

The COX model could not differentiate patient subgroups 
by OS, while the JMs did provide patient group differentia-
tion by OS (Figure 2). All tested models, however, exhibited 
limitations in their ability to predict subgroup survival. These 
limitations may be due to the following: (1) The biological 
relevance of the biomarkers because the predicted survival 
estimates may not be derived with high precision, regard-
less of the modeling approach used, owing to the nature of 
the biomarkers, which may be only partially related to the 

outcome under study; and (2) the model structure choice 
because we do not claim that the selected paradigm of joint 
modeling and of specific mixed effects submodels for SLD 
and NLR are optimal in terms of establishing the strongest 
statistical relationship between biomarkers and survival. 
Obviously, there is a room for model improvements—a 
subject for further modeling research. In the current inves-
tigation, we aimed at revealing an increase in prediction 
precision through the exploitation of accumulating longitu-
dinal data, and the proposed JMs could efficiently capture 
this effect.

The models we developed were next tested for their sur-
vival discrimination using ROC-AUC and BS assessment 
metrics. For most of the longitudinal data cutoffs examined 
in the validation data set, the multivariate JM SLD&NLR 
model exhibited the highest performance (highest ROC-
AUC and lowest BS). We further determined that, for JMs, 
a substantial increase in model discrimination performance 
was achieved with a biomarker data cutoff time of 3 months, 
while additional longitudinal data did not provide a sub-
stantial increase in the prediction precision (Table  2). We 
observed that the impact of incorporating longitudinal data 
was stable for a large interval of timepoints (6–18 months; 
Figure S1, Figure S2).

We also tested the survival discrimination performance for 
the training data set (Figure S1, Table S4). For some points 
of the ROC-AUC and BS assessments, model performance 
was better for the validation data set vs. the training data 
set. Survival discrimination results are typically data driven 
and can be directly compared only within the same data set, 
thus it is reasonable to compare discrimination performance 
of the tested models in each data set separately.

Our assessment of the potential impact of longitudinal 
SLD and NLR on OS for simulated individual patient sce-
narios (Figure 3) further showed that the multivariate JM 
SLD&NLR model provided distinct prognosis differentia-
tion. In particular, the model showed a substantial impact 
of NLR on risk of death—to a greater extent than the 
impact of SLD. Also, there may be other important longi-
tudinal biomarkers that may further strengthen the survival 
prediction performance of JMs, for example, serum creat-
inine, lactate dehydrogenase, circulating tumor DNA, and 
others. Some of these biomarkers have been investigated 
in the context of various survival analyses in NSCLC.46–49 
However, rich-sampled data sets may be required for the 
proper evaluation of multiple longitudinal biomarkers in JMs 

Figure 3 Estimated survival with 95% confidence intervals for two simulated patients with matching baseline SLD and NLR values: 
good vs. poor prognosis represented by biomarker changes over 3 months after start of treatment. (a) SLD is either increased or 
decreased, and NLR remains constant. (b) NLR is either increased or decreased, and SLD remains constant, (c) Both SLD and NLR 
are either increased or decreased. NLR, neutrophil-to-lymphocyte ratio; SLD, sum of the longest diameters.



73

www.psp-journal.com

SLD and NLR as Survival Biomarkers in NSCLC
Gavrilov et al.

and their application for patient- and study-level survival 
predictions. Supportive data mining and machine-learning 
techniques may also be used on the front end of this sur-
vival modeling process to determine which combinations 
of biomarkers to use as baseline covariates and/or longi-
tudinal data for incorporation as submodels into the JM 
predictive of survival.

Overall, this modeling research aimed at determining 
the impact of longitudinal biomarker data use on the pre-
cision of NSCLC survival predictions at individual level as 
well as for marginal survival estimates within a patient sub-
group. In the future, improved survival estimates obtained 
from such statistical JMs could be useful for dynamic risk 
profiling, leading to improved clinical study outcome pre-
dictions, better guided combination choices of cancer 
therapeutics, and support toward personalized medicines 
in oncology.27,50

CONCLUSIONS

We here investigated the value of longitudinal biomarkers, 
SLD and NLR, in performing survival predictions based on 
clinical study data of durvalumab in patients with NSCLC. A 
set of statistical survival models was qualified against train-
ing data from one clinical study and validated against a data 
set from another clinical study by means of ROC-AUC and 
BS assessment criteria. NLR exhibited a higher prognostic 
impact on survival differentiation vs. SLD, within a range 
of typical changes for these two biomarkers, in a 3-month 
time window following the start of treatment. The largest 
difference in survival prognosis was found when using lon-
gitudinal data for both biomarkers (NLR, SLD) in a statistical 
JM for survival prediction.

The JMs we developed integrate longitudinal data of bio-
markers and time-to-event data to allow for OS predictions 
and differentiation for patient subgroups, as stratified by 
RECIST 1.1 criteria at 3 months, using an external valida-
tion scheme that mimicked an analysis that would make use 
of interim trial data. The survival prediction performance of 
the JMs presented was superior to the performance of the 
tested COX model, which makes use of biomarker data at 
baseline only. Multivariate longitudinal JMs with SLD and 
NLR resulted in the best survival discrimination and may 
provide a robust computational methodology to predict clin-
ical study outcomes in advanced NSCLC.

Given the flexibility of the joint modeling approach in in-
corporating other biomarkers of choice and with a growing 
amount of patient-level data in clinical trials, we also propose 
to test newly identified biomarkers for survival prediction in 
various NSCLC therapies.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).
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