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ABSTRACT
Background. Hepatocellular carcinoma (HCC), themain type of liver cancer in human,
is one of the most prevalent and deadly malignancies in the world. The present study
aimed to identify hub genes and key biological pathways by integrated bioinformatics
analysis.
Methods. A bioinformatics pipeline based on gene co-expression network (GCN)
analysis was built to analyze the gene expression profile of HCC. Firstly, differentially
expressed genes (DEGs) were identified and a GCN was constructed with Pearson
correlation analysis. Then, the genemoduleswere identifiedwith 3 different community
detection algorithms, and the correlation analysis between gene modules and clinical
indicators was performed. Moreover, we used the Search Tool for the Retrieval of
Interacting Genes (STRING) database to construct a protein protein interaction (PPI)
network of the key gene module, and we identified the hub genes using nine topology
analysis algorithms based on this PPI network. Further, we used the Oncomine analysis,
survival analysis, GEO data set and random forest algorithm to verify the important
roles of hub genes in HCC. Lastly, we explored the methylation changes of hub genes
using another GEO data (GSE73003).
Results. Firstly, among the expression profiles, 4,130 up-regulated genes and 471
down-regulated genes were identified. Next, the multi-level algorithm which had
the highest modularity divided the GCN into nine gene modules. Also, a key gene
module (m1) was identified. The biological processes of GO enrichment of m1 mainly
included the processes of mitosis and meiosis and the functions of catalytic and
exodeoxyribonuclease activity. Besides, these genes were enriched in the cell cycle and
mitotic pathway. Furthermore, we identified 11 hub genes, MCM3, TRMT6, AURKA,
CDC20, TOP2A, ECT2, TK1, MCM2, FEN1, NCAPD2 and KPNA2 which played key
roles in HCC. The results of multiple verification methods indicated that the 11 hub
genes had highly diagnostic efficiencies to distinguish tumors from normal tissues.
Lastly, the methylation changes of gene CDC20, TOP2A, TK1, FEN1 in HCC samples
had statistical significance (P-value < 0.05).
Conclusion. MCM3, TRMT6, AURKA, CDC20, TOP2A, ECT2, TK1, MCM2, FEN1,
NCAPD2 and KPNA2 could be potential biomarkers or therapeutic targets for HCC.
Meanwhile, the metabolic pathway, the cell cycle and mitotic pathway might played
vital roles in the progression of HCC.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the main type of liver cancer, and causes more than
700,000 deaths each year (Ni et al., 2020; Cho et al., 2019). Recently, many studies have
demonstrated that multiple genes and cellular pathways participate in the initiation and
progression of HCC. The CDKN3 might play an important role in the transformation
process from cirrhosis to HCC by analysis of the gene expression omnibus (GEO) data
(Jiang et al., 2020). Also, miR-133a-3p might inhibit the growth of HCC by analyzing the
miR-133a-3p expression and the clinicopathological characteristics of HCC based on GEO
data and the Cancer Genome Atlas (TCGA) data (Liang et al., 2018). Besides, DUXAP8
might be involved in the biological processes such as cell cycle, cell division and cell
proliferation in HCC, and the down-regulation ofDUXAP8 inhibited the proliferation and
invasion of HCC in vitro (Yue et al., 2019). Previous studies focused on the specific genes
in the initiation and progression of HCC; however, the precise molecular mechanisms
underlying HCC progression was not clear.

In the last decade, the high-throughput platforms were used to generate gene expression
profiling in HCC. However, sequencing results are often limited and inconsistent owing
to the heterogeneity of samples in independent studies, and due to the fact that most
studies focus on one cohort. As such, this study sought to analyze a range of available
HCC-related gene expression data sets by integrated bioinformatics analysis, with the goal
of identifying potential novel hub genes and key gene module for HCC treatment and
diagnosis. Currently, the Weighted Gene Co-expression Network Analysis (WGCNA), for
analysis of genetic alteration during tumorigenesis, is increasingly valued as promising
tools in medical oncology research. Based on WGCNA, we further explored the gene
co-expression network (GCN) analysis algorithm in this study. Multiple machine learning
algorithms were used to improve the reliability of the gene modules.

Besides, DNA methylation plays a role in genome stability and gene expression (Esteller
& Herman, 2002). In particular, aberrant DNA promoter methylation is an important
mechanism for loss of gene function in tumors (Ohtani-Fujita et al., 1993; Jarrard et al.,
1998). Given that methylation is now known to play important roles in cancer, it is of great
significance to detect DNA methylation of hub genes in HCC in this study.

It is vital to classify and detect the key biological pathways and hub genes participated
in the initiation and progression of HCC. Firstly, we obtained the transcriptome data set
of HCC and normal tissues from TCGA (Hutter & Zenklusen, 2018), and used the FC-t
algorithm to identify differentially expressed genes (DEGs). Next, the Pearson correlation
analysis was used to construct a GCN, and three community detection algorithms (multi-
level, label-propagation, edge-betweenness) were used to identify gene modules. Then, the
correlation analysis between gene modules and clinical indicators was performed, and a
key gene module was identified. Herein, we performed GO/Reactome enrichment analysis
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on key gene module to explore the biological significance. Then, the protein protein
interaction (PPI) network of the key gene module was constructed using the Search Tool
for the Retrieval of Interacting Genes (STRING) database (Szklarczyk et al., 2011) , and
the hub genes were identified based on PPI network. Moreover, we used the Oncomine
analysis, survival analysis, GEO data set and ROC curve to verify the important roles of
hub genes in HCC. Finally, we explored the methylation of hub genes using GEO data
(GSE73003).

MATERIALS AND METHODS
Data collection and preprocessing
A workflow of this study is shown in Fig. 1. The HCC gene expression profiles
used in this study were downloaded from TCGA (https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga), which was processed using the
RNA-sequencing platform, and contained 416 samples, including 367 HCC samples and
49 normal samples. In order to avoid the interference of genes with lower expression on
subsequent analysis, the gene whose maximum FPKM value was less than 1 in tumor or
normal samples was removed. Then, the outliers from HCC samples were removed by
hierarchical clustering with R function hclust() in the stats package (v3.6.1), and euclidean
distance was used in the clustering process. In this study, FC-t algorithm (Chen et al., 2018)
was used to identify DEGs. The fold change of each gene’s FPKM value between cancer
and normal tissues was calculated. Next, the differential expression analysis was carried
out on the basis of t -test using the t .test() in stats R package (v3.6.1). Only genes with the
fold change ≥ 2 or fold change ≤ 0.5 and P-value < 0.05 were regarded as DEGs.

Construction of GCN and identification of gene modules
Pearson correlation analysis was used to construct a correlation matrix between pairwise
DEGs with FPKM values in cancer tissues (Chang et al., 2019). And Pearson correlation
analysis was implemented using the cor.test() in stats R package (v3.6.1). Then Pearson
correlation coefficient |PCC| ≥ 0.65 and P-value < 0.05 was set as the cut-off criteria
to screen the interaction between two genes. The reserved interactions were represented
by networks, the largest of which was the GCN. We clustered all genes (nodes) in the
GCN with three different community detection algorithms, including multi-level (Blondel
et al., 2008), label-progration (Raghavan, Albert & Kumara, 2007) and edge-betweenness
(Newman & Girvan, 2004), which were performed by R functions multilevel.community(),
label.propagation.community(), edge.betweenness.community() in the igraph package
(v1.2.4) (Csardi & Nepusz, 2006). Then the modularity was used to evaluate the clustering
results, so as to select the optimal module identification result.

Association analysis between gene modules and clinical indicators
Principal component analysis (PCA) (Wold, Esbensen & Geladi, 1987) was used to analyze
the gene expression profiles in each module by using the prcomp() in stats R package
(v3.6.1). Then the first principal component was defined as the module eigengenes (MEs).
We believed that the four clinical indicators of event,T,N, andM (T referred to the primary
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Figure 1 Flow-chart of data analysis in this paper.
Full-size DOI: 10.7717/peerj.10594/fig-1

tumor stage, N referred to the regional lymph node involvement stage and M referred
to the distant metastasis stage) were of great significance for judging the initiation and
progression of tumors, so an association matrix was constructed based on the correlation
analysis between the MEs and event, T, N and M, which was calculated by the Pearson
correlation analysis. Then, the gene module which was highly related to clinical indicators
was selected as the key gene module.

To further verify the importance of the keymodule, Cox proportional hazards regression
model was used to perform survival analysis on genes in all modules, and P-values of Cox
regression results were obtained (the survival analysis results came from the online analysis
tool onclnc (http://www.oncolnc.org/)). Further, the prognostic significance (PS-value,
calculated in logs as -lgP-value) was used to measure the importance of a gene, and the
PS-value of a module is the sum of the PS-values of all genes in this module. Obviously,
the larger the PS-value of a module, the more important the module is.

GO/Reactome enrichment analysis
For the biological significance of the key gene module, the genes in which were enriched
with the biological processes provided by the GO database (http://geneontology.org/)
and the signaling pathways provided by the Reactome database (https://reactome.org/).
GO enrichment analysis was implemented with the enrichGO() in clusterProfiler R
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package (v3.12.0), and Reactome enrichment analysis was performed by logging in the
online database, P-value < 0.05 was considered statistically significant. Meanwhile,
the top 20 GO terms and signaling pathways with the lowest P-value were selected
for further research. Finally, the GO terms were categorized with QucikGO database
(https://www.ebi.ac.uk/QuickGO/).

Construction of PPI network and analysis of hub genes
The online database STRING (https://string-db.org/) was applied to construct a PPI
network of the genes in key gene module and analyze the functional interactions between
proteins. A confidence score ≥ 0.400 was set as significant. Subsequently, the result was
visualized using Cytoscape software (v3.7.1) (Shannon et al., 2003), and nine topology
analysis algorithms (DNMC, MNC, Degree, EPC, BottleNeck, Closeness, Radiality,
Betweenness, Stress) provided by the cytohubba (Chin et al., 2014) plug-in were used
to calculate the importance of nodes (genes) in the PPI network. For details of the nine
topology analysis algorithms, please refer to the literature (Chin et al., 2014). Further, five
genes with the highest score in each algorithm were merged together as the hub genes.

Validation of hub genes
Firstly, the mRNA expression of hub genes was explored in common cancer using
Oncomine database (https://www.oncomine.org). The parameters were set as follows:
THRESHOLD (P-VALUE) = 0.05, THRESHOLD (FOLD CHANGE) = 2. Then the
online analysis tool onclnc was used for the survival analysis of hub genes. And the
cancer was set as LIHC, lower percentile was set as 20, and upper percentile was
set as 20. Furthermore, we downloaded a test data set, GSE138485, from the GEO
(https://www.ncbi.nlm.nih.gov/geo/), and this data set included 64 paired normal and
HCC samples (Table S1). The t -test was used to verify the differential expression of the
hub gene in GSE138485. Moreover, ROC curve and AUC were used to detect the ability of
hub genes to distinguish tumors from normal tissues.

DNA methylation analysis
The gene methylation profiling data set GSE73003 was downloaded from the GEO
(Table S2). It included 40 paired normal and HCC samples from 20 patients. We found
the methylation changes of the hub genes in GSE73003, and then used t -test to identify the
genes whose methylation changed significantly.

RESULTS
Identification of DEGs in expression profiles
The HCC gene expression profiles contained 416 samples, including 367 HCC and 49
normal samples, and the original HT-Seq-FPKM data included 60,483 genes in total.
The genes with lower expression were removed. Then, the remained 14,129 genes (Table
S3) were used for hierarchical clustering to obtain a data set for further analysis. The
result showed that there were three outlier samples should be removed, TCGA-DD-AAEB,
TCGA-CC-5259 and TCGA-FV-A4ZP (Fig. S1). Using bioinformatics approaches, a
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Figure 2 Identification results of DEGs. (A) X-axis represents log2 fold-changes and Y -axis represents
negative logarithm to the base 10 of the P-values. Black vertical and horizontal dashed lines reflect filtering
criteria (log2(Fold change) =±1 and P-value= 0.05). (B) Pink and green bars are number of significantly
up-regulated (n= 4,130) and down-regulated genes (n= 471) in HCC compared with its normal tissues.

Full-size DOI: 10.7717/peerj.10594/fig-2

total of 4,601 DEGs between HCC and normal samples were identified, including 4,130
up-regulated and 471 down-regulated genes (Fig. 2, Table S4).

Construction of GCN and identification of gene modules
Pearson correlation analysis was used to construct a correlation matrix with FPKM
values between pairwise DEGs. In total, there were 21,169,201 interactions. After filtered,
2,859 genes and 57,340 interactions were kept and imported into Cytoscape software for
visualization. In total, 95 networks were built (Fig. 3). The result showed that there were
2,583 genes in the large network, while there were fewer than 20 genes in each smaller one.
After removed the small networks, the largest one which referred to GCN were kept for the
further research.

To obtain more accurate and objective clustering results, three community discovery
algorithms were used to cluster all genes (nodes) in the GCN. The modularity of each
algorithm was shown in Table 1, and the modularity of multi-level was 0.6009015,
label-propagation was 0.3748268 and edge-betweenness was 0.4815381, respectively.
The multi-level algorithm clustering result with the highest modularity was performed for
subsequent analysis. A total of nine modules were identified after removing the modules
with less than 50 genes (Fig. 4, Table S5). The network density of these nine modules was
shown in Table 2; the density of m9 was the lowest one, 0.065630124. It was worth noting
that the network density of these nine modules was greater than that of GCN (0.01704045).

Identification of key gene module and GO/Reactome enrichment anal-
ysis
The first principal component of PCA result which performed on the gene expression
profiles in each module defined as the MEs (Table S6). Furthermore, an association
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Figure 3 The GCNwas constructed by Pearson correlation analysis. The total number of gene in figure
is 2,859, and the number of gene in GCN (the largest network) is 2,583.

Full-size DOI: 10.7717/peerj.10594/fig-3

Table 1 The modularities of 3 algorithms.

Algorithm Modularity

multi-level 0.6009015
label-propagation 0.3748268
edge-betweenness 0.4815381

matrix was constructed based on the correlation analysis between the MEs and the clinical
indicators, including event, T, N and M, which was calculated by the Pearson correlation
analysis. In this process, a key gene module m1 was obtained from the association matrix,
and the correlation coefficient between m1 and T was the maximum 0.259, m1 and event
was 0.179, as well as m1 and N was 0.080 (Fig. 5). In addition, we calculated the PS-values
of all modules, and the PS-value of module m1 was the largest (Fig. 6).

To further investigate the function of identified genes inm1, GO enrichment analysis was
performed to analyze functional enrichment (Table S7). The top 20 biological processes
enriched in GO terms were shown in Fig. 7. The genes in m1 mainly participated in
biological processes associated with the process of mitosis and meiosis, and the functions
of catalytic and exodeoxyribonuclease activity. Moreover, the biological processes of key
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Figure 4 Module identification result obtained by the multi-level algorithm. The multi-level algorithm
divided GCN into 13 gene modules, the little modules with less than 50 genes were removed, and the la-
beled modules were nine gene modules for further analysis.

Full-size DOI: 10.7717/peerj.10594/fig-4

Table 2 The network densities of nine gene modules containing more than 50 genes.

Module Densities

m1 0.197628458
m2 0.29029703
m3 0.177997842
m4 0.215233881
m5 0.106922766
m6 0.090001227
m7 0.080307853
m8 0.216806723
m9 0.065630124

gene module mostly occurred in the chromosomal region. Additionally, the genes in m1
were enriched in many Reactome signaling pathways (Table S8), which mainly included
the cell cycle and mitotic (Table 3).
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Figure 5 The heat map of the correlation between gene modules and clinical indicators. The row corre-
sponds to module, and the column corresponds to clinical indicator. The m1 is key gene module in HCC.

Full-size DOI: 10.7717/peerj.10594/fig-5

Construction of PPI network and identification of hub genes
Based on the STRING database, a PPI network for all genes in the m1 was constructed
(Fig. 8). Nine topological analysis algorithms provided by cytohubba plug-in were used
to calculate the importance of node (gene) in the PPI network (Table S9). The five genes
with the highest score in each algorithm were merged together to be the hub genes in this
study. Finally, 16 hub genes were identified, NUSAP1, MCM3, TRMT6, RFC3, POLA2,
AURKA, CDC20, TOP2A, ECT2, TK1, MCM2, FEN1, NOP58, GINS2, NCAPD2 and
KPNA2 (Table 4). It was worth noting that the 16 hub genes were all up-regulated genes.

Validation of hub genes
Firstly, the mRNA expression of 16 hub genes in liver cancer was explored using Oncomine
analysis. The result showed that 13 hub genes were up-regulated in liver cancer as shown in
Fig. 9. Then we found that the expression levels of 13 hub genes were significantly related
with worse overall survival (OS) (Logrank P-value < 0.05) (Fig. 10). After the merger,
a total of 11 genes meet the above two requirements, which included MCM3, TRMT6,
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Figure 6 The PS-values of all modules.
Full-size DOI: 10.7717/peerj.10594/fig-6

AURKA, CDC20, TOP2A, ECT2, TK1, MCM2, FEN1, NCAPD2 and KPNA2. And the
following focuses on these 11 hub genes.

Further, the data of GEO (GSE138485) showed that the RPKM of 11 hub genes were
significantly (all P-values < 0.005) up-regulated in HCC samples compared with normal
samples (Fig. 11). Moreover, based on the RPKM of 11 hub genes in the GEO data set,
we used ROC curve and AUC to classify HCC and normal samples. The results showed
that the whole 11 hub genes had highly diagnostic efficiencies to distinguish tumors from
normal tissues (AUC > 0.87 and P-value < 1.0E−06) (Fig. 12).

DNA methylation analysis of the hub genes
Among the 11 hub genes, we found the methylation of gene CDC20, TOP2A, TK1, FEN1
were significantly changed in the gene methylation profiling data set (GSE73003) (P-value
< 0.05), and they were hypomethylation in the HCC samples (Table 5). It was noted that
the expression (RPKM) of CDC20, TOP2A, TK1, FEN1 were significantly higher in HCC
samples compared to normal tissues.
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Figure 7 The 20 GO Terms (biological processes) with the smallest P-value of genes in the key gene
module (m1). The size of bubbles represents the numbers of genes, the color of bubbles corresponds to
P-value, and the GeneRatio represents the ratio of the number of genes enriched to the total number of
genes in key gene module (m1).

Full-size DOI: 10.7717/peerj.10594/fig-7

DISCUSSIONS
On the global scale, HCC is a major contributor to both cancer incidence and mortality.
Understanding the molecular mechanism of HCC is of critical importance for early
detection, diagnosis, and treatment. In our study, the HCC mechanism was analyzed by
bioinformatics analysis, including DEGs screening, GCN construction, module analysis,
hub gene identification in the PPI network, validation of the hub genes, and DNA
methylation analysis of the hub genes. These findings may help us to understand the
molecular mechanism of HCC pathogenesis and identify potential biomarkers for the
diagnosis and treatment of HCC.

From the result of module identification, we found that the network density of each
module was greater than that of GCN. It might imply that compare with the other genes
in the GCN, the genes in one module perform the same biological function, which also
proved the reliability of the multi-level algorithm.

GO enrichment analyses showed that the key gene module were associated with
many biological processes. Previous reports showed that the tRNA expressed abnormal
(GO:0006409, GO:00071431, GO:0051031 and GO:0006403) had a dual role for the
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Table 3 The 20 signaling pathways with the smallest P-value of genes in the key gene module (m1).

ID Description Count P-value

R-HSA-69190 DNA strand elongation 18 1.11E−16
R-HSA-453279 Mitotic G1 phase and G1/S transition 31 1.11E−16
R-HSA-69278 Cell Cycle, Mitotic 78 1.11E−16
R-HSA-1640170 Cell Cycle 90 1.11E−16
R-HSA-73894 DNA Repair 38 1.11E−16
R-HSA-69620 Cell Cycle Checkpoints 35 1.11E−16
R-HSA-69242 S Phase 27 2.22E−16
R-HSA-69206 G1/S Transition 25 3.33E−16
R-HSA-69306 DNA Replication 24 8.88E−16
R-HSA-69239 Synthesis of DNA 23 2.33E−15
R-HSA-68886 M Phase 36 8.33E−15
R-HSA-73886 Chromosome Maintenance 20 3.18E−14
R-HSA-5693532 DNA Double-Strand Break Repair 24 3.45E−14
R-HSA-5693538 Homology Directed Repair 21 1.63E−13
R-HSA-68877 Mitotic Prometaphase 24 4.54E−12
R-HSA-69186 Lagging Strand Synthesis 11 5.40E−12
R-HSA-5693567 HDR through Homologous Recombination (HRR) or

Single Strand Annealing (SSA)
19 5.88E−12

R-HSA-73933 Resolution of Abasic Sites (AP sites) 13 1.53E−11
R-HSA-176187 Activation of ATR in response to replication stress 12 2.21E−11
R-HSA-4615885 SUMOylation of DNA replication proteins 13 2.52E−11

Table 4 Calculation results of nine algorithms. The row corresponds to gene, and the column corresponds to algorithm. Each value represents a
score.

Hub gene DMNC MNC Degree EPC BottleNeck Closeness Radiality Betweenness Stress

NUSAP1 1.0893 51 51 19.988 9 101.33333 5.09091 96.90787 1902
MCM3 0.91716 69 69 22.824 23 111.5 5.24242 372.309 7082
TRMT6 0.47733 9 11 2.093 6 69.78333 4.4 1264.09432 10640
RFC3 0.88611 60 60 20.772 10 107.25 5.19394 542.48026 7874
POLA2 1.16211 36 36 16.597 1 93.33333 4.97576 27.46845 786
AURKA 0.83591 71 71 23.302 7 112.5 5.25455 944.81247 9646
CDC20 0.75746 80 80 23.462 5 117.66667 5.33939 1556.30666 16426
TOP2A 0.81632 76 76 23.363 2 115.66667 5.30909 1108.53404 13048
ECT2 1.16516 30 30 14.084 1 89.33333 4.90303 9.41338 276
TK1 1.14366 41 41 17.127 1 95.75 5 60.29409 1056
MCM2 0.93961 69 69 22.807 5 111.58333 5.25455 827.49161 8772
FEN1 0.82386 73 73 22.298 4 114.25 5.29697 1278.36825 12488
NOP58 0.2704 15 16 2.45 10 76.91667 4.61818 2059.91502 14078
GINS2 1.15247 50 50 19.731 1 101 5.09091 105.79312 1852
NCAPD2 1.19618 38 39 17.413 7 96.25 5.05455 1216.19414 12076
KPNA2 0.97174 51 51 19.066 8 104.41667 5.21212 1504.41719 14138
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Figure 8 The PPI network of key gene module (m1). Each node corresponds to a gene, where a red node
corresponds to a hub gene.

Full-size DOI: 10.7717/peerj.10594/fig-8

Figure 9 The results returned fromOncomine database. The row corresponds to cancer, and the col-
umn corresponds to gene. The red square represents that the gene was up-regulated in cancer, the blue
square represents that the gene was down-regulated in cancer, and the value in the square represents the
number of related references.

Full-size DOI: 10.7717/peerj.10594/fig-9

promotion and suppression in cancer development (Nientiedt et al., 2016). The tRNA
might be involved in cell proliferation process, cell cycle and gene regulation process
in cancer (Balatti et al., 2017; Goodarzi et al., 2015). In tumor cells, the variation of cell
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Figure 10 Significant correlation between hub genes expression and survival. Survival curves of genes
(A) AURKA, (B) CDC20, (C) ECT2, (D) FENI, (E) GINS2, (F) KPNA2, (G)MCM2, (H)MCM3, (I)
NCAPD2, (J), NOP58, (K) NUSAP1, (L) POLA2, (M) RFC3, (N) TK1, (O) TOP2A, (P) TRMT6. X-axis
represents survival time and Y -axis represents survival rate.

Full-size DOI: 10.7717/peerj.10594/fig-10

Table 5 Methylation of hub genes. The P-value was obtained by t -test. Methylation status was obtained
by analyzing GSE73003, and expression status was obtained by analyzing the TCGA data set.

Hub gene Methylation
status

P-value Expression
status

P-value

CDC20 Hypomethylation 8.94E−05 High expression 2.11E−32
TOP2A Hypomethylation 4.41E−02 High expression 2.70E−41
TK1 Hypomethylation 4.78E−04 High expression 1.02E−49
FEN1 Hypomethylation 4.06E−02 High expression 8.23E−62

function was often influenced by the structure of DNA strand and the conformation of
chromosome (GO:0009987 and GO:0071103). DNA was regulated by different functional
regions in the nucleus due to its local strand structure abnormality, compression or
long-range proximity (Taberlay et al., 2016). Besides, signal transduction by p53 class
mediator (GO:0072331) and response to heat (GO:0009408) belonged to response to
stimulus (GO:0050896). P53 is a key tumor suppressor (Vogelstein, Lane & Levine, 2000).
As a transcription factor, p53 transcribes its target genes to regulate various cellular
biological processes, including cell cycle arrest, apoptosis, senescence, energy metabolism,
and anti-oxidant defense, to prevent tumorigenesis (Feng & Levine, 2010). P53 is an
important tumor suppressor gene, 30 to 60% of HCC patients with mutated p53 gene
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Figure 11 Te heat map of RPKM ofKPNA2,MCM3, FEN1, TRMT6, and others. in normal and HCC
samples. TA-Tf represents HCC samples, NTA-NTf represents normal samples.

Full-size DOI: 10.7717/peerj.10594/fig-11

(Hussain et al., 2007). Many GO Terms belonged to cellular process (GO:0009987), DNA
replication (GO:00006260) and protein sumoylation (GO:0016925). The post-translational
modification sumoylation is a major regulator of protein function that plays an important
role in a wide range of cellular processes (GO:0009987 and GO:0016925) (Wilkinson
& Henley, 2010). Furthermore, GO enrichment analyses results showed that the small
networks were associated with the detoxification of inorganic compound (GO:0061687),
nucleosome assembly and organization (GO:0006334, GO:0034728), metabolism, such as
fatty, hormone and neurotransmitter. Similarly, the small gene modules were associated
with antigen processing and presentation (GO:0019882), complement activation lectin
pathway (GO:0001867), RNA splicing (GO:0008380), negative regulation of lymphocyte
(GO:0050672) and centromeric sister chromtid (GO:0070601). Beyond these, previous
reports revealed the evidence of meiosis (GO:0140014 and GO:1901990) might be
responsible for the proliferation of the tumor cells, such as meiosis error invoked the
malignant transformation of germ cell tumor (Ichikawa et al., 2013). Besides, the studies
demonstrated that oocyte meiosis might induce the proliferation of the tumor cells (Li et
al., 2014). It has been reported that increased expression genes which were associated with
cell cycle and oocyte meiosis, were associated with the development and progression of
HCC (Fujii et al., 2006; Zhang et al., 2019).

According to the validation, the 11 hub genes were good biomarkers in HCC and
functioned as tumor promoter. MCM3 complex required for cell cycle regulation of DNA
replication in vertebrate cells (Madine et al., 1995). MCM3 were significantly up-regulated
in invasive ductal carcinoma (Zhao et al., 2020). Consistent with the findings reported
in previous studies (Zhuang, Yang & Meng, 2018; Yang, Pan & You, 2019), our results
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Figure 12 The ROC curves of 11 hub genes. (A) AURKA, (B) CDC20, (C) ECT2, (D) FENI, (E) KPNA2,
(F) MCM2, (G) MCM3, (H) NCAP2, (I) TK1, (J), TOP2A, (K) TRMT6. These ROC curves described the
diagnostic efficiency of the mRNA levels of 11 hub genes for HCC and normal tissues.

Full-size DOI: 10.7717/peerj.10594/fig-12

showed that higher MCM3 expression levels are associated with worse clinical outcomes
and a shorter survival times of patients with HCC, thereby highlighting the potential use
of MCM3 as a prognostic biomarker. MCM2 is a promising marker for premalignant
lesions of the lung (Yan, Merchant & Tye, 1993; Musahl et al., 1998). Besides, high MCM2
expression has been associated with poor prognosis in HCC patients (Liu et al., 2018; Li
et al., 2019). Previous report showed that the up-regulation of Epithelial cell transforming
sequence 2 (ECT2) was significantly associated with early recurrent HCC disease and poor
survival. ECT2 was closely associated with the activation of the Rho/ERK signaling axis to
promote early HCC recurrence. Moreover, knockdown of ECT2markedly suppressed Rho
GTPases activities, enhanced apoptosis, attenuated oncogenicity and reduced themetastatic
ability of HCC cells (Chen et al., 2015). The NCAPD2 is a novel candidate genes in ovarian
cancer (Tatsumoto & T, 1999; Fields & Justilien, 2009). In fact, elevated AURKA expression
was observed in several human cancers, such as pancreatic cancer, endometrioid ovarian
carcinoma and colorectal cancer liver metastasis, and was associated with poor prognosis
(Furukawa et al., 2006). Besides, AURKA promoted cancer metastasis by regulating
epithelial-mesenchymal transition and cancer stem cell properties in HCC (Chen et al.,
2017). Emerging evidence suggests that KPNA2 plays a crucial role in oncogenesis and early
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recurrence. KPNA2 expression levels were found to be markedly higher in tumor tissue
(83.33%, 25/30) (Feng et al., 2014). Besides, nuclear KPNA2 expression was significantly
up-regulated (30.3%, 67/221) in HCC tissues; however, no nuclear expression of KPNA2
in non-tumorous tissues was observed by immunohistochemical assays (Jiang et al., 2014).
Both in vitro and in vivo experiments demonstrated that knockdown of KPNA2 reduced
migration and proliferation capacities of HCC cells, while over-expression of KPNA2
increased these malignant characteristics (Xinggang et al., 2019). TOP2A encodes a 170
kDa nuclear enzyme that controls DNA topological structure, chromosome segregation,
and cell cycle progression (Isaacs et al., 1998). TOP2A over-expression, that is, increased
level of TOP2A mRNA and protein, has been detected in HCC (Panvichian et al., 2015;
Wong et al., 2009). TRMT6, which catalyzes the installation of m1A at position 58 of
tRNA, is an oncogene in HCC (Li et al., 2017). Clinical significance of TRMT6 in HCC
and colon cancers is very important (Wang et al., 2019). TRMT6 knockout HCC cells
displayed compromised stemness properties, as reflected by impaired sphere formation
and tumor initiating ability, and increased sensitivity to molecular target drug sorafenib
(Chen, 2019). TRMT6 was up-regulated in HCC tissues, and higher TRMT6 expression
levels was correlated with reduced OS (P = 0.0224) and RFS (P = 0.0146) in patients with
primary HCC (Wang et al., 2019). The above results indicated that TRMT6 might be a
promising prognostic biomarker for poor clinical outcomes in primary HCC patients.

Previous results showed that the levels of serum TK1 (thymidine kinase 1) in the primary
hepatic carcinoma group were significantly higher than those in the control group and
the benign group (P ≤ 0.05) (Shen-Jie & Li, 2018; Zhang, Lin & Li, 2015). Cell division
cycle 20 (CDC20) encodes a regulatory protein interacting with the anaphase-promoting
complex/cyclosome in the cell cycle and plays important roles in tumorigenesis and
progression of multiple tumors (Liu et al., 2015). Immunohistochemistry result showed
that, in the 132 matched HCC tissues, high expression levels of CDC20 were detected in
68.18%HCC samples, and over-expression ofCDC20 was positively correlated with gender
(P = 0.013), tumor differentiation (P = 0.000), TNM stage (P = 0.012), P53 and Ki-67
expression (P = 0.023 and P = 0.007, respectively) (Li et al., 2014). The Flap endonuclease
(FEN1) expression levels were also positively correlated with tumor size (P = 0.047 <

0.05), distant metastasis (P = 0.013 < 0.05) and vascular invasion (P = 0.024 < 0.05) in
HCC (Li et al., 2019). Combined with the study in this paper, it was reasonable to speculate
that these 11 hub genes might be biomarkers for HCC.

DNA methylation, a pretranscriptional modification, regulates the stability of gene
expression states and maintains genome integrity by collaborating with proteins that
modify nucleosomes (Jaenisch & Bird, 2003; Zhong, Agha & Baccarelli, 2016). Altered
DNA methylation such as tumor suppressor gene hypermethylation or oncogene
hypomethylation is thought to promote tumorigenesis (Ehrlich, 2019). Previous reports
found that genes including P15, P16, RASSF1A and Retinoblastoma 1 were inactivated in
HCC due to promoter hypermethylation of these genes (Fan et al., 2018). In the present
study, we identified four highly-expressed hub genes with hypomethylation, CDC20,
TOP2A, TK1, FEN1. Therefore, we might provide more effective diagnostic strategies by
these novel biomarkers of HCC.
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In accordance with our findings, previous studies have also identified hub genes that
participate in HCC (Hua et al., 2020; Song et al., 2020). Shengni et al. constructed a PPI
network based on 176 DEGs. Then four gene modules were identified with Cytoscape
MCODE plug-in and 12 hub genes were obtained with integrated survival and methylation
analysis. Finally, three genes, KPNA2, TARBP1 and RNASEH2A, were identified as
diagnostic and prognostic markers for HCC. However, 176 genes were a little too small
to construct a network and identify gene modules, and all of DEGs were up-regulated.
It would be better if this article had an association analysis between gene modules and
clinical indicators. Another study identified key gene modules with WGCNA. And 29
hub genes were identified based on PPI network. Finally, DAO, PCK2, and HAO1 were
determined as prognostic targets for HCC. It was worth noting that the study used Pearson
correlation analysis to associate gene modules with clinical indicators, which was classic
but a little simple. Besides, they used the ’’Degree’’ algorithm to identify hub genes in
the PPI network, rather than make full use of the topology of the PPI network. In our
study, data analysis was conducted using the integrated bioinformatics analysis based on
GCN analysis, which is highly suitable for the analysis of gene expression data. First of all,
4,601 DEGs (including 4,130 up-regulated and 471 down-regulated genes) were used to
construct GCN. In particular, we used three community detection algorithms to identify
gene modules, and used modularity to select the optimal module identification result.
In addition, Pearson correlation analysis and survival analysis were used to identify key
gene module, so the key gene module of HCC in this paper was more accurate, and GO
enrichment analysis results also proved the reliability of this module. Lastly, nine topology
analysis algorithms were used to identify hub genes in PPI network. And we used the
Oncomine analysis, survival analysis, GEO data set and ROC curve to verify the important
roles of hub genes in HCC. Therefore, the hub genes identified in the present study are
more reliable and comprehensive.

CONCLUSIONS
In summary, integrated bioinformatics analysis based on GCN analysis was built to analyze
the gene expression profile ofHCC, and the hub genes and biological pathways inHCCwere
identified in this study. MCM3, TRMT6, AURKA, CDC20, TOP2A, ECT2, TK1, MCM2,
FEN1,NCAPD2 and KPNA2 could be potential biomarkers or therapeutic targets for HCC.
Meanwhile, the metabolic pathway, the cell cycle and mitotic pathway might played vital
roles in the progression of HCC. However, we need more experiments to investigate these
novel, key and hub genes. Based on these results, the underlying molecular mechanisms
of HCC were explored on genetic and molecular levels, which provided new insights into
HCC diagnosis and treatment.
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