
RESEARCH OPEN ACCESS CLASS OF EVIDENCE

Nusinersen Treatment in Adults With Spinal
Muscular Atrophy
Tina Duong, PT, PhD, Connie Wolford, MSN, FNP-BC, Michael P. McDermott, PhD,

Chelsea E. Macpherson, PT, DPT, NCS, Amy Pasternak, PT, DPT, PCS, Allan M. Glanzman, PT, DPT, PCS,

William B. Martens, BA, Elizabeth Kichula, MD, BA, Basil T. Darras, MD, Darryl C. De Vivo, MD,

Zarazuela Zolkipli-Cunningham, MBChB, MRCP, Richard S. Finkel, MD, Michael Zeineh, MD, PhD,

Max Wintermark, MD, Jacinda Sampson, MD, PhD, Katharine A. Hagerman, PhD,

Sally Dunaway Young, PT, DPT, and John W. Day, MD, PhD on behalf of the Stanford Neuromuscular

Coordinating Center

Neurology: Clinical Practice June 2021 vol. 11 no. 3 e317-e327 doi:10.1212/CPJ.0000000000001033

Correspondence

Dr. Duong

trduong@stanford.edu

Abstract
Objective
To determine changes in motor and respiratory function after treat-
ment with nusinersen in adults with spinal muscular atrophy (SMA)
during the first two years of commercial availability in the USA.

Methods
Data were collected prospectively on adult (age >17 years at treatment
initiation) SMA participants in the Pediatric Neuromuscular Clinical
Research (PNCR) Network. Baseline assessments of SMA outcomes
including the Expanded Hammersmith Functional Rating Scale
(HFMSE), Revised Upper LimbModule (RULM), and 6-Minute Walk
Test (6MWT) occurred <5 months before treatment, and post-treat-
ment assessments were made up to 24 months after nusinersen initation.
Patient-reported experiences, safety laboratory tests and adverse events were monitored. The mean
annual rate of change over timewas determined for outcomemeasures using linearmixed effectsmodels.

Results
Forty-two adult SMA participants (mean age: 34 years, range 17-66) receiving nusinersen for a
mean of 12.5 months (range 3-24 months) were assessed. Several motor and respiratory
measures showed improvement distinct from the progressive decline typically seen in untreated
adults. Participants also reported qualitative improvements including muscle strength, stamina,
breathing and bulbar related outcomes. All participants tolerated nusinersen with normal
surveillance labs and no significant adverse events.

Conclusions
Trends of improvement emerged in functional motor, patient-reported, and respiratory mea-
sures, suggesting nusinersen may be efficacious in adults with SMA. Larger well-controlled
studies and additional outcome measures are needed to firmly establish the efficacy of nusi-
nersen in adults with SMA.
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Classification of Evidence
This study provides Class IV evidence regarding nusinersen tolerability and efficacy based on reported side effects and
pulmonary and physical therapy assessments in an adult SMA cohort.

Spinal muscular atrophy (SMA) is an autosomal recessive dis-
order affecting 1: 7,000–11,000 live births.1,2 In SMA, survival
motor neuron (SMN) protein deficiency leads tomotor neuron
dysfunction and degeneration, causing progressive muscle at-
rophy, weakness, and early mortality.3,4 SMN protein is pro-
duced by SMN1 and SMN2 genes, with pathogenicity occurring
only with no functional copies of SMN1. SMN2 generates
protein less efficiently, but increased SMN2 gene copy number
increases SMN protein and decreases disease severity.5,6

Nusinersen is an antisense oligonucleotide that modifies
SMN2 RNA splicing, increasing protein production.7,8

Nusinersen was effective at improving motor function and
survival in infantile- and childhood-onset SMA9-15 leading to
US Food and Drug Administration (FDA) approval in De-
cember 2016 for SMA in all ages. Notably, at the time of its
approval, trials of nusinersen did not include adults.

Understanding of infantile- and childhood-onset SMA has
progressed rapidly because of molecular confirmation of the
diagnosis coupled with multicenter natural history studies that
enabled stratification by age, functional ability, and rate of
change.10,11,16-20 Older, more chronically affected patients vary
in functional ability and disease course, and tolerate fewer as-
sessments without considerable fatigue, making research more
difficult. An inverse relationship between motor function and
disease progression for ages >1520 and >20 years21 have been
described in treatment-naive adults.

This is a case series of SMAadults inwhomnusinersenwas initiated.
We report motor and respiratory changes before and after nusi-
nersen treatment to better understand possible treatment effects.

Methods
This study is part of a multisite longitudinal study of SMA.
Data were collected based on initial functional status for all
individuals in the study (figure 1). As part of the medical
history, we also obtained information on surgical history,
medications, SMA type (historically highest functional level
achieved), age at diagnosis, disease duration, SMN2 copy
number, and current functional status.

Standard Protocol Approvals, Registrations,
and Patient Consents
Data were collected prospectively through an IRB-approved
study conducted by the Pediatric Neuromuscular Clinical Re-
search (PNCR) Network on all nusinersen-treated adults (age
≥17 years at the start of treatment) at participating centers with
genetic confirmation and clinical symptoms of SMA. Forty-two
participants provided informed consent before evaluations. Data

were collected from January 2017 to March 2019. The purpose
was to evaluate changes in clinical outcome measures and to
obtain safety information related to nusinersen treatment.

Clinical assessments were performed approximately every 4
months during clinic visits. Intrathecal loading doses of 12
mg of nusinersen were given based on the recommended
schedule (baseline, day 14, day 28, day 58, and every 4
months thereafter). Safety laboratory tests performed before
injection included platelet count, prothrombin time, partial
thromboplastin time, and urine protein.

Clinical Evaluations
Clinical outcomes were obtained during clinic visits using a
minimal data set determined by the PNCR network based on
participant functional status as well as insurance require-
ments (figure 1). Clinical evaluators were physical therapists
with consistent training in the PNCR network and other
clinical trials to administer the outcome measures. The same
evaluator was used for most visits throughout the time frame
of data collection. Clinical outcome measures were selected
based on previous natural history studies in SMA and their

Figure 1 Clinical Outcomes Based on Functional Groups

6MWT = 6-minute walk test; CHOP-ATEND = Children’s Hospital of Phila-
delphia’s Adult Test of Neuromuscular Disorders; FVC = forced vital capacity;
HFMSE = Expanded Hammersmith Functional Motor Scale; MEP = maximal
expiratory pressure; MIP = maximal inspiratory pressure; PROM = patient-
reported outcomemeasure; RULM = revised upper limbmodule; SMAFRS =
Spinal Muscular Atrophy Functional Rating Scale; TUG = timed up and go.
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sensitivity of assessment to detect change. Validated motor
outcomes in SMA were selected for each participant based
on the participant’s baseline functional status: Walker (able
to take 5 steps independently), sitter (able to sit in-
dependently for 3 seconds without support), and nonsitter
(unable to sit independently) (figure 1).

The Children’s Hospital of Philadelphia Adult Test of
Neuromuscular Disorders (CHOP-ATEND) used in this
study was a new scale modified from the original Children’s
Hospital of Philadelphia Infant Test of Neuromuscular
Disorders (CHOP-INTEND) and excluded items that can-
not be performed with adults (items 11, 15, and 16).24 Be-
cause the CHOP-INTEND was a scale designed to assess
infants with SMA type 1,25 there were minimal consider-
ations in the manual for the impact of contractures on
scoring. With adults, contractures have greater influence on
test administration and evaluation of results; therefore, cri-
teria for start positions, contracture considerations, and
grading methodology were clarified while keeping the con-
struct of the items intact. The Spinal Muscular Atrophy
Functional Rating Scale (SMAFRS),26 a patient-reported
outcome measure, and pulmonary function tests of forced
vital capacity (FVC), maximal inspiratory pressure (MIP),
and maximal expiratory pressure (MEP) were performed in
all functional groups. The Hammersmith Functional Motor
Scale Expanded (HFMSE),27 Revised Upper Limb Module
(RULM),28 6-minute walk test (6MWT), and timed up and
go (TUG)29 were performed using standardized reliable
methods established by the PNCR Network.16,17

Statistical Analysis
Five participants did not have clinical evaluations coincident
with nusinersen initiation; therefore, the most recent evalu-
ations before starting nusinersen, all within 5 months of the
first dose, were used as the pretreatment value in the analyses.
All data collected after nusinersen initiation were also in-
cluded. Linear mixed-effects models were used to estimate
the mean annual rate of change (slope) for each outcome.
This was done for the cohort of all participants as well as by
subgroups defined by SMA type (2 and 3), SMN2 copy
number (3 and 4), functional status (nonsitter, sitter, and
walker), and history of spinal surgery. The model for esti-
mating the overall mean slope included time after nusinersen
initiation (continuous, expressed in years) with random in-
tercept and slope coefficients. To estimate mean slopes in
subgroups, the above model was expanded to include the
appropriate main effect and interaction terms (e.g., SMA type
and the interaction between SMA type and year).

Data Availability
Deidentified data may be shared with any qualified in-
vestigator on request. Data can be requested by all interested
stakeholders for clinical research and trial planning. Data
requests are reviewed by the PNCR Steering Committee,
which can be contacted via the corresponding author.

Results
The 42 nusinersen-treated participants were adults with SMA
type 2 or type 3 (table 1) who were treated for a range of
3–24 months (mean treatment duration 12.5 months). The
mean age at treatment initiation was 33.7 years (range
17.7–66.1 years), 57% were male, and 62% had 3 copies of
the SMN2 gene. The distribution of functional status was
nonsitter (n = 17), sitter (n = 14), and walker (n = 11) (table
1). A broad spectrum of function was represented at baseline,
with a median HFMSE score of 19.0 (range 0–60) and a
mean RULM score of 18.2 (range 0–37) (table 1).

A total of 306 injectionswere performed. Procedure approaches
were all through lumbar access with 155 traditional blind
lumbar punctures (LPs), 136 fluoroscopy guided LPs, and 15
LPs requiring CT guidance. An interlaminar lumbar approach
took place in all but 2.3% that required a transforaminal ap-
proach. Four patients discontinued treatment: 1 for personal
reasons despite continued successful injections, 2 for a combi-
nation of insurance limitations and lack of perceived ongoing
effectiveness, and 1 due to bony overgrowth at the only thecal
access site. Of these patients who discontinued treatment, 3 had
treatment for 18 months and 1 for 10 months.

Overall, nusinersen was well tolerated with 2 reported cases of
mild thrombocytopenia (platelet counts between 100,000 and
150,000) that resolved spontaneously and 3 cases of transient
limb pain not directly related to the injection procedure that
resolvedwithin a fewmonths.Adverse eventswere rare,mild, and
transient and did not warrant discontinuation of therapy. The
most common adverse event post-LP was transient headache
that in all cases resolved spontaneously. This occurred following
16 of 234 injections (6.8%) and affected 6 patients (14.3%), an
incidence comparable to that in other studies using atraumatic
needles to reduce post-LP headaches.30,31 Other infrequently
reported adverse events included injection site pain, nausea/
vomiting, lightheadedness, and anxiety. No cases of hydro-
cephalus, bleeding/bruising, or renal compromise were identi-
fied. All adverse events resolved quickly without intervention.

Table 2 shows the mean annual rates of change (slopes) with
corresponding 95% confidence intervals (CIs) for all participants.
Notably, all mean slopes were in a positive direction, although
some were accompanied by wide CIs. For the motor measures,
the most prominent improvement was seen with the CHOP-
ATEND (mean slope = 3.59 points/year, 95% CI 0.67–6.51,
figure 2) and the SMAFRS (mean slope = 1.44 points/year, 95%
CI 0.04–2.83, p = 0.04). Improvements in the CHOP-ATEND
were most noticeable in those with more severe phenotypes
(SMA type 2, nonsitters, and those with 3 SMN2 copies; table 3).
In the small subset of participants who performed the TUG test
(n = 8), themean slope on the log scale was−0.10 (95%CI−0.21
to 0.01) with a negative value indicating improvement in the time
to complete this task. To interpret this on a time scale (seconds),
exponentiating these values reveals that, on average, the time to
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perform the TUG test at 1 year was 0.90 (or 90%) of that at
baseline (95% CI 0.81–1.01).

There was a wide range of ventilatory function among par-
ticipants (table 1). Overall, respiratory measures exhibited a
mean rate of change indicating potential improvement after
nusinersen treatment (table 2), most prominently with re-
spiratory muscles of MEP (mean slope = 6.38 cm H2O/year,
95% CI 2.52–10.25) and to a lesser extent MIP (mean
slope = −5.50 cm H2O per year, 95% CI −11.47 to 0.47).

Subcohort analyses were also performed to better understand
the influence of SMN2 copy numbers (table 3). In our study,
9 individuals had 4 copies of SMN2, 2 of whom were female.
We found broad heterogeneity in this cohort with 2 non-
sitters, 2 sitters, and 5 ambulatory participants with age
ranging from 26.7 to 65.5 years. All were diagnosed as SMA
type 3 except 1 being SMA type 2, and disease duration
ranged from 12 months to 15 years. This range in pheno-
types and small sample size explains the variation in rates of
change seen in the outcome measures.

Discussion
This study is a prospective observational study of adults with
SMA treated with nusinersen in the real-world setting. Re-
sults indicate that nusinersen is safe and tolerable in a het-
erogeneous group of adults with SMA types 2 and 3 ranging
from ages 17 to 66 years. Participants of this study were not
included in the 2 pivotal clinical trials of nusinersen and
began treatment after FDA approval of nusinersen.

Participants in this study have reported common subjective
improvements that are consistent with those of recent
reports31–33 including greater active range of motion in the
fingers and hands; louder voice; and improved jaw move-
ment and speech, which differ from reported natural history
of progressive bulbar dysfunction and decreased mouth
opening associated with fatty degeneration of the lateral
pterygoid muscles.34 These gains are consistent with a pre-
vious study of older individuals with SMA in which 8 of 12
individuals had similar improvements in upper limb and head
movement.33

Although limited natural history data in SMA are available for
the TUG,29 SMAFRS,26 and the respiratory measures in-
cluding MIP and MEP,35 our data in adults treated with
nusinersen diverge from the expected progressive course of
the disease.16,35 Further data collection and validation will be
helpful to determine the utility of these measures in moni-
toring response to treatment.

Clinical evaluations performed were based on baseline func-
tional status of the participants (figure 1). For this reason, all 42
participants did not receive the same evaluations. The HFMSE
was performed on some nonsitters showing a floor effect of

Table 1 Clinical Characteristics

Variable

Age (y); mean (SD), range 33.7 (12.6), 17.7 to 66.1

Age at onset (mo); median, range 18.0, 3.0 to 180.0

Disease duration (y); mean (SD), range 30.9 (12.3), 12.1 to 60.6

Sex; N (%)

Male 24 (57.1)

Female 18 (42.9)

SMN2 copy number; N (%)a

2 1 (2.8)

3 26 (72.2)

4 9 (25.0)

SMA type22; N (%)b

2A 8 (19.1)

2B 10 (23.8)

3A 12 (28.6)

3B 12 (28.6)

Functional status at baseline; N (%)

Nonsitter 17 (40.5)

Sitter 14 (33.3)

Walker 11 (26.2)

Spinal fusion; N (%)

Yes 16 (38.1)

No 26 (61.9)

HFMSE: median, range (n = 39) 19, 0 to 60

RULM: mean (SD), range (n = 41) 18.2 (14.0), 0 to 37

CHOP-ATEND: mean (SD), range (n = 26) 23.4 (12.1), 5 to 42

6MWT distance (m): mean (SD),
range (n = 10)

300.2 (123.8), 69 to 466

TUG (s): median, range (n = 8) 10.0, 8.4 to 44.7

SMAFRS: median, range (n = 33) 15.0, 0 to 49

FVC (%): mean (SD), range (n = 31) 61.5 (33.0), 9 to 112

MEP (cm H2O): mean (SD), range (n = 29) 50.6 (26.8), 11 to 97

MIP (cm H2O): mean (SD), range (n = 29) −79.8 (44.0), −174 to −8

Abbreviations: 6MWT = 6-minute walk test; CHOP = Children’s Hospital of
Philadelphia; CHOP-ATEND = Children’s Hospital of Philadelphia Adult Test
for Neuromuscular Disorders; CI = confidence interval; FVC = forced vital
capacity; HFMSE = Hammersmith Functional Motor Scale Expanded;
MEP = maximal expiratory pressure; MIP = maximal inspiratory pressure;
RULM = revised upper limb module; SMA = spinal muscular atrophy;
SMAFRS = Spinal Muscular Atrophy Functional Rating Scale; SMN2 = survival
motor neuron 2; TUG = timed up and go.
a SMN2 copy number was missing in 6 subjects.
b 2A = able to sit unsupported and no ability to stand or walk with help; 2B =
able to sit unsupported and able to stand orwalk with help; 3A = able to walk
independently and symptom onset ≤36 mo of age; 3B = able to walk
independently and symptom onset >36 mo of age.
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only being able to complete 2 items (hip and knee flexion when
supine). For those who had a CHOP-ATEND assessment
alongside the RULM or HFMSE assessment, 90.9% (10/11)
individuals had a floor effect (score of 0) on the HFMSE and
54.5% (6/11) had a floor effect (score of 0) on the RULM.We
were able to capture a broader range of motor abilities in those
who were weaker with the CHOP-ATEND score, which
ranged from 5 to 28.

The mean HFMSE rate of change did not differ substantially
among the functional groupings in anatural history study andwas
fairly consistent with estimated decline between 0.5 and 1 points

per year.35 Unlike the recent publication performed by 10 clinical
sites in Germany, none of the subgroups or functional cohorts
we analyzed had a significant 3 point improvement on the
HFMSE.36 This may be due to our small sample size and the
heterogeneity of our cohort (range of 0–60 points on the
HFMSE, figure 3). Patients with SMA with long-standing spinal
fusions have greater truncal stability, ventilatory ability, and up-
per limb functionwith fewer compensatorymechanisms; despite
a wide CI, our observation of improved respiratory function and
RULM responses with nusinersen in adults with spinal fusions
were consistent with the German study.36

Insurance approvals for nusinersen treatment may be varied for
individuals with 4 copies of SMN2. Our study highlights a het-
erogeneous group of 9 adults with 4 copies of SMN2 including 4
participants with SMA type 2/3 classified as nonsitters and 5
participants with SMA type 3 classified as ambulatory. Despite
inherent flaws in accurately ascertaining symptom onset in the
adult population, disease duration should be monitored as a
phenotypic feature that may clarify prognosis and response to
treatment for adults with 4 SMN2 copies.

Initial reports regarding tolerability in adults assessed motor
function scores before and after loading doses of nusinersen
in 28 adults with SMA. They found that nusinersen admin-
istration was safe and tolerable, yet unsurprisingly found no
significant improvements in the 2-month follow-up period.31

Initial real-world studies reported on a cohort of 19 adults
treated for up to 10 months and found improvements in the
6MWT and RULM, but no significant changes in other
measures.37 Compared with our study, their patient cohort
was functionally stronger with 63% being ambulatory com-
pared with only 26% in our study. Similar to our findings,
there were no significant changes in FVC; however, they
found significant improvements in peak cough, which

Table 2 Average Rates of Change per Year in Outcome Measures

Outcome N Slopea 95% CI

HFMSE 31 0.86 (−0.52 to 2.24)

RULM 39 0.11 (−0.45 to 0.67)

CHOP-ATEND 24 3.59 (0.67 to 6.51)

6MWT distance (m) 10 3.29 (−28.04 to 34.62)

Log [TUG (s)] 8 −0.10b (−0.21 to 0.01)

SMAFRS 31 1.44 (0.04 to 2.83)

FVC (%) 27 0.75 (−1.87 to 3.38)

MEP (cm H2O) 25 6.38 (2.52 to 10.25)

MIP (cm H2O) 26 −5.50b (−11.47 to 0.47)

Abbreviations: 6MWT = 6-minute walk test; CHOP-ATEND = Children’s Hospital of Philadelphia Adult Test for Neuromuscular Disorders; CI = confidence
interval; FVC = forced vital capacity; HFMSE = Hammersmith Functional Motor Scale Expanded; MEP = maximal expiratory pressure; MIP = maximal
inspiratory pressure; RULM = revised upper limb module; SMAFRS = Spinal Muscular Atrophy Functional Rating Scale; TUG = timed up and go.
a Slope is expressed as the unit change in outcome per year.
b The negative slopes for TUG and MIP are consistent with functional improvements in those measures.

Figure 2 Average Annual Rate of Change in CHOP-ATEND

Children’s Hospital of Philadelphia Adult Test for Neuromuscular Disorders
(CHOP-ATEND) results for the entire population studied (n = 24) Individual
subject trajectories are shown. The dark line (with standard error bars) depicts
the average trajectory, as estimated from a linear mixed-effects model.
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Table 3 Average Rates of Change per Year in Outcome Measures in Participant Subgroups

Outcome N Slopea 95% CI

HFMSE

Type 2 11 0.66 −1.63 to 2.95

Type 3 20 0.99 −0.77 to 2.74

3 SMN2 copies 18 0.55 −0.97 to 2.06

4 SMN2 copies 7 −0.15 −2.41 to 2.10

Nonsitter 9 −0.24 −3.57 to 3.09

Sitter 11 1.13 −1.11 to 3.36

Walker 11 1.09 −1.26 to 3.44

No spinal fusion 21 1.24 −0.53 to 3.01

Spinal fusion 10 0.13 −2.21 to 2.47

RULM

Type 2 16 0.43 −0.44 to 1.31

Type 3 23 −0.12 −0.81 to 0.57

3 SMN2 copies 24 0.22 −0.41 to 0.85

4 SMN2 copies 8 −0.23 −1.11 to 0.66

Nonsitter 16 −0.17 −1.09 to 0.74

Sitter 12 0.74 −0.32 to 1.80

Walker 11 −0.01 −1.02 to 0.99

No spinal fusion 25 −0.22 −0.77 to 0.33

Spinal fusion 14 1.01 0.03 to 1.98

SMAFRS

Type 2 12 0.74 −1.57 to 3.06

Type 3 19 1.89 0.21 to 3.58

3 SMN2 copies 19 1.32 −0.37 to 3.02

4 SMN2 copies 8 0.43 −1.81 to 2.66

Nonsitter 13 0.69 −1.67 to 3.04

Sitter 9 2.88 0.56 to 5.19

Walker 9 0.51 −1.98 to 3.00

No spinal fusion 23 1.28 −0.35 to 2.91

Spinal fusion 8 1.85 −1.06 to 4.77

CHOP-ATEND

Type 2 14 3.75 −0.16 to 7.66

Type 3 10 3.26 −1.34 to 7.86

3 SMN2 copies 18 3.62 −0.10 to 7.35

4 SMN2 copies 3 3.05 −5.96 to 12.05

Nonsitter 15 6.44 2.25 to 10.62

Sitter 9 −0.29 −5.07 to 4.50

No spinal fusion 14 3.12 −0.77 to 7.01

Continued
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parallels the improved MEP that was found to be a sensitive
indicator of change in our study. Studies have shown that
peak cough is correlated with MIP and MEP38 and that MEP
plays an important role in peak cough ability.39 More re-
cently, a larger German cohort reported on 139 participants
indicating efficacy in treatment using HFMSE, RULM, and
6MWT.36 Comparing our patient cohorts, individuals in our
study had a more varied and severe phenotype with 38%
spinal fusion compared with 25%, and 14% more individuals
who were nonambulatory.

The primary limitation of this study is the lack of a concurrent
control group as all patients in our clinics were treated with nusi-
nersen. Selection bias may be present because patients unable to
tolerate intrathecal treatments are also most likely to be severely
affected with scoliosis. The lack of blinding is an especially note-
worthy limitation to this study, but because the FDA approved
nusinersen for individuals of all ages affected by SMA, a randomized
placebo-controlled trial is no longer feasible for any population of
patients with SMA in the United States. It is possible that the
observed improvements in our study could be ascribed, at least in

Table 3 Average Rates of Change per Year in Outcome Measures in Participant Subgroups (continued)

Outcome N Slopea 95% CI

Spinal fusion 10 4.41 −0.25 to 9.07

FVC (%)

Type 2 11 2.61 −1.66 to 6.89

Type 3 16 −0.31 −3.65 to 3.04

3 SMN2 copies 18 1.81 −2.06 to 5.68

4 SMN2 copies 7 −2.13 −7.50 to 3.25

Nonsitter 11 1.36 −2.31 to 5.03

Sitter 11 2.25 −2.33 to 6.83

Walker 5 −1.97 −7.78 to 3.85

No spinal fusion 16 −1.03 −4.14 to 2.09

Spinal fusion 11 5.31 0.36 to 10.25

MEP (cm H2O)

Nonsitter 10 1.95 −4.84 to 8.74

Sitter 10 3.92 −4.54 to 12.38

Walker 5 18.25 6.86 to 29.64

No spinal fusion 16 7.68 2.23 to 13.12

Spinal fusion 9 3.61 −4.38 to 11.59

MIP (cm H2O)

Type 2 11 −4.34 −13.68 to 4.99

Type 3 15 −6.27 −13.82 to 1.28

3 SMN2 copies 18 −1.88 −8.73 to 4.97

4 SMN2 copies 6 −8.67 −17.91 to 0.58

Nonsitter 11 −7.63 −16.83 to 1.58

Sitter 10 −1.12 −12.04 to 9.81

Walker 5 −7.79 −22.42 to 6.83

No spinal fusion 16 −4.51 −11.81 to 2.78

Spinal fusion 10 −6.74 −18.12 to 4.64

Abbreviations: 6MWT = 6-minute walk test; CHOP-ATEND = Children’s Hospital of Philadelphia Adult Test for Neuromuscular Disorders; CI = confidence
interval; FVC = forced vital capacity; HFMSE = Hammersmith Functional Motor Scale Expanded; MEP = maximal expiratory pressure; MIP = maximal
inspiratory pressure; RULM = Revised Upper Limb Module; SMAFRS = SMA Functional Rating Scale; TUG = timed up and go.
a Slope is expressed as the unit change in outcome per year.
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part, to placebo effects or a learning curve of the assessments.
Longer follow-up will be valuable to assess durability of the
response, which is more likely for biological than placebo
effects of treatment. Furthermore, subgroup analyses were
limited by the relatively small number of patients and the
broad range of their functional abilities, which can only be
addressed by longitudinal assessments of more adult patients
on nusinersen, or other SMN restoring treatments.

Other limitations resulted from variable timing of and cir-
cumstances surrounding evaluations. Forty-three percent of
participants had evaluations on the same day of injections,
and only 1 participant had a 1-week delay in dosing. For these
reasons, the real-world data obtained in this study are in-
herently more variable than the published data of nusi-
nersen’s effects on infantile- and juvenile-onset patients in
more structured randomized controlled trials.

This study attempts to fill some of the knowledge gaps identified
in nusinersen treatment of SMA,40 which included more severely
weak individuals than is true of currently published studies of
nusinersen in adults with SMA. The high cost of treatment as-
sociated with nusinersen is a consideration that must be
addressed particularly in a value to health care–based system.
Typical motor outcome measures used in clinical trials may not

show improvements in this older more heterogeneous pop-
ulation. Given the range of subjective improvements reported by
participants in this study, future directions should focus on de-
velopment and validation of novel outcome measures that may
better assess treatment responses, such as patient-reported out-
comemeasures;measures of endurance and fatigability;measures
of bulbar function including voice, speech, swallow, jaw, or tongue
movement; and measures of trunk and neck movements.
Quantification of these features in the severely and chronically
weak adults may be more responsive to the effects of interven-
tions. Careful clinical guidance should be considered in the
management of expectation for older individuals as efficacy may
be affected by other clinical factors such as disease duration,
contractures, spinal fusions, and adherence to standards of care.

Although improvedmotor function is always a goal of treatment,
stabilization of the otherwise progressively declining disease
course of SMA would itself be of tremendous benefit to indi-
viduals affected by this chronic degenerative disorder. Stabiliza-
tion and improvement of respiratory function is also of value to
this population for whom respiratory infection is a considerable
cause of morbidity andmortality. Ongoing studies of nusinersen,
and development of biomarkers and novel outcome measures
that canmore completely ascertain response to treatment, will be
important to confirm and extend the results of this initial study
and to provide greater understanding of the changing natural
history of adults with SMA in this new era of genetic treatments.
These measures will also help determine when the cellular
pathophysiology of SMAhas been controlled andwill help define
unmet needs in the adult SMA population that can be addressed
with approaches complementary to SMN protein restoration.
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TAKE-HOME POINTS

This natural history study of nusinersen in adults
identifies different responses to treatment in the
real-world setting.

Nusinersen is safe, feasible, and well tolerated in
adults with SMA.

Initial results show an emerging positive trend in
both motor and respiratory function in a heteroge-
neous cohort, including severely weak adults,
contrary to the natural history.

Future studiesmust address unmet needspertaining
to patient-reported outcomes, endurance, bulbar
function, and motor assessments for those who are
very weak and contracted to better understand the
impact of changes with nusinersen and comple-
mentary approaches to SMN protein restoration.
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