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a b s t r a c t

Nanotechnology has been applied in consumer products and commercial applications,

showing a significant impact on almost all industries and all areas of society. Significant

evidence indicates that manufactured nanomaterials and combustion-derived nano-

materials elicit toxicity in humans exposed to these nanomaterials. The interaction of the

engineered nanomaterials with the nervous system has received much attention in the

nanotoxicology field. In this review, the biological effects of metal, metal oxide, and

carbon-based nanomaterials on the nervous system are discussed from both in vitro and

in vivo studies. The translocation of the nanoparticles through the bloodebrain barrier or

nose to brain via the olfactory bulb route, oxidative stress, and inflammatory mechanisms

of nanomaterials are also reviewed.

Copyright ª 2014, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan

LLC. Open access under CC BY-NC-ND license. 
1. Introduction

As a rapidly growing emerging science, nanotechnology has

shown a significant impact on almost all industries and all

areas of society. Nanomaterials, defined by the National

Nanotechnology Initiative, have at least one dimension in

the range of 1e100 nm. Due to their small size, the properties

of nanomaterials may differ from those of their bulk mate-

rials, showing unique chemical, physical, optical, and elec-

trical properties. Nanotechnology involves creating and

applying engineered materials at the nanoscale to take

advantage of these specific properties. Humans have been

exposed to many nanoparticles (NPs) originating from
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various activities such as combustion, welding, and

biomedical applications. People working in certain in-

dustries, for example, automobile, aerospace, electronics

and communications, and chemical and paint industries are

at high risk of being exposed to a large amount of NPs [1e10].

As NPs persist in the environment, people living in those

environments are at higher risk of NP exposure. Copper,

zinc, iron, cerium, silver, gold, iron, manganese, titanium,

aluminum, silica, and other carbon-based nanomaterials are

some of the NPs to which humans are exposed significantly

and may cause several health-related problems including

neurotoxicity.
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In recent years, a significant number of neurodegenerative

diseases such as Alzheimer’s disease, Parkinson’s disease, or

Huntington’s disease have been diagnosed and treated. The

increased amount of environmental pollutants, including

NPs, may be responsible for increasing the number of these

neurodegenerative diseases. The role of the bloodebrain

barrier (BBB) is crucial in understanding NP toxicity in the

brain. BBB separates blood from cerebrospinal fluid in the

central nervous system (CNS). The BBB is an extended plasma

membrane that contains tight junctions between the adjacent

endothelial cells of the cerebral capillaries. The permeability

properties of the BBB are of interest [1,11]. Unlike noncerebral

capillaries, the cerebral endothelium does not have vesicles

for macromolecular transport. Astrocytic end feet cover most

(85%) of the cerebral capillary endothelial cells and they also

contain a thick basement membrane [12]. The presence of

such complex combinations of astrocytes, cerebral capillaries

and basement membrane strongly supports the BBB function

[11,13], even though establishing the clear cut roles of the

basal lamina and/or astrocytic end feet in maintaining BBB

permeability needs further study. When NPs reach the circu-

lation, they may interfere with the function of the endothelial

cell membrane. The effect of NPs on the cell membrane may

be due to their direct toxicity, or indirectly, they may induce

some cascade mechanism that disrupts the tight junctions in

the BBB or alters the permeability of the membrane. It has

been shown that intravenous, intraperitoneal, or intracerebral

administration of Ag, Cu, or Al NPs (50e60 nm) reportedly

disrupts the BBB, as indicated by stainingwith albumin-bound

Evans blue [14]. Vesicular transport may also be stimulated by

NPs in order to gain access to the CNS microenvironment to

exert toxic effects in the CNS. The unique size and surface

modification of NPs could deliver drugs or therapeutic agents

to the brain in the development of nanomedicine. Additional

research is, however, necessary in order to understand fully

how NPs are translocated from the blood to the brain across

the BBB.

Nanomaterials could enter the human body by different

routes including inhalation, dermal penetration, ingestion,

and systemic administration, by which NPs may be accumu-

lated in different tissues and organs including the brain

[15,16]. It has been indicated that the olfactory nerve pathway

may serve as a portal of entry for NPs into the CNS in humans

who are environmentally or occupationally exposed to

airborne NPs [17e19]. De Lorenzo [18] showed that when

silver-coated colloidal gold particles (50 nm) were intranasally

instilled in squirrel monkeys, the NPs anterogradely moved in

the axons of the olfactory nerve to the olfactory bulbs. Olfac-

tory epithelium that has been exposed to manganese, cad-

mium, nickel, and cobalt nanomaterials can translocate the

nanomaterials to the brain via olfactory neurons [20e25].

Therefore, full understanding of the neurotoxicity of these

nanomaterials may lead to the design of safer therapeutics

and reduce the side effects of these nanomaterials in future.

Having a greater surface area than their bulk counterparts,

metal oxide NPs are used in various fields such as water

treatment, medicine, cosmetics, and engineering, and provide

superior performance in their applications. Unfortunately,

almost no federal or state laws have specifically established

regulations for the manufacture, transportation, use, sale, or
disposal of nanomaterials [26]. For metal oxide NPs, their

widespread application, small size, and large specific surface

area endow them with high chemical reactivity and intrinsic

toxicity, and their health effects in living creatures, especially

on the nervous system, have been of concern. Metal oxide NPs

are capable of translocating along the olfactory nerve pathway

to the brain after intranasal instillation, and accumulating in

the olfactory bulb, cortex, and cerebellum. Moreover, NP

deposition in the brain can stimulate oxidative stress, in-

flammatory responses, and pathological changes. These ob-

servations have provided evidence that metal oxide NPs can

reach the brain and cause a certain degree of tissue damage.

Metal oxide toxicity can also be induced by dissolvedmetal

ions from the oxides. Brunner et al [27] studied the toxicity of

NPs in human and rodent cell lines. They divided the tested

NPs into soluble and insoluble NPs, and showed that the

toxicity of soluble NPs was from the soluble metal ions

released from NP dissolution prior to or after the NPs entered

the neural cells. Considering the unique physicochemical

properties, including small size effect, large specific surface

area, and high biological surface reactivity, NPs might induce

the neurotoxicological behavior and effects in organisms.
2. Neurotoxicity and mechanism of
nanomaterials

2.1. Titanium dioxide NPs

Among several metal-based NPs, those originating from tita-

nium have been used widely and in large quantities. Titanium

dioxide (TiO2) is themost common compound of titanium that

has found a variety of uses in our lives. TiO2 is a white,

odorless, water-insoluble material that was believed to have

low toxicity [28e31]. TiO2 is a relatively stable, nonflammable

material that is found naturally in the form of various ores

such as rutile, anatase, and brookite. TiO2 can also be

extracted from an iron-containing mineral (FeTiO3) known as

ilmenite [32e36]. TiO2 possesses certain physiochemical

properties that make it useful for multiple applications.

Corrosion resistance, biocompatibility, mechanical strength,

whitening property, opacity, and photocatalytic, optical, and

electrical activity are some of the attractive properties that

have paved the way for large-scale applications of TiO2 [37].

The National Nanotechnology Initiative of America classifies

nanoparticulate TiO2 particles as one of most widely manu-

factured NPs globally [38].

Industrially, 80% of TiO2, including its nanoparticulate

form (globally), is used to produce paints, varnishes, plastic,

and papers. Besides these applications, nanoparticulate TiO2

has major uses in developing various products such as cos-

metics, foodstuffs, toothpaste, sun blocks, printing ink, car

materials, rubber, cleaning products, materials for industrial

photocatalytic applications including solar cells, and catalysts

for remediation of organic matter in wastewater [39]. Toxicity

of nanosized TiO2 has yet to be completely understood despite

its widespread uses. Recent toxicological studies have indi-

cated harmful effects of TiO2 NPs in biological systems, which

is of major concern [40]. It has been recently recognized that

TiO2 may be carcinogenic to humans if inhaled [31]. As a

http://dx.doi.org/10.1016/j.jfda.2014.01.012
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result, it is of great importance to understand the risks and

hazards including neurotoxicity associated with nano-

particulate TiO2 exposure and its dose-dependent response

[41]. Irrespective of the different forms of TiO2, exposure route

and particle size, it has been found that TiO2 NPs translocate

to different parts of the brain [39,42e46]. The NPs accumulate

in this organ and induce structural changes in the neuronal

architecture [39,43,45]. As mentioned previously, when NPs

are inhaled, they can translocate to the CNS using the olfac-

tory nerve as a means of entry. Several studies in mice have

indicated that rutile NPs can translocate to the brain and

accumulate throughout the organ, primarily in the hippo-

campus regions [39,43,45]. Such a neuronal translocation

pathway of TiO2 NPs may be responsible for neurotoxicity.

TiO2 NPs when instilled intratracheally in mice accumulate in

the brain via the blood circulation and penetration of the BBB.

This type of accumulation is responsible for inducing tissue

damage [42]. Accumulation of nanoparticulate TiO2 in the

brain induces release and metabolism of neurotransmitters

such as norepinephrine and 5-hydroxytryptamine

[39,43,45,46]. After intranasal exposure of TiO2 NPs,

enhanced levels of the above-mentioned compounds were

detected [43]. However, a decrease in response was detected

when anatase TiO2 NPs were administered intragastrically

[45]. Reduced levels of homovanillic acid, dopamine, 5-

hydroxyindole acetic acid, and 3,4-dihydroxyphenylacetic

acid were detected when TiO2 NPs were administered intra-

nasally or intragastrically [43,46]. Enhanced catalase and

acetylcholinesterase activity was detected during intranasal

instillation of rutile [39] and intragastric administration of

anatase TiO2 NPs [46]. Acetylcholine, glutamic acid, soluble

protein carbonyl, and nitric oxide content were also increased

by such NP treatments. When anatase TiO2 NPs were intra-

peritoneally injected, increased nitric oxide but decreased

acetylcholine and glutamic acid were detected [44]. Hu and

colleagues [46] showed that the levels of sodium, potassium,

magnesium, calcium, iron, and zinc in the brainwere changed

after nanoparticulate TiO2 exposure. In that study, the treated

mice had impaired spatial recognition memory, which could

be linked to the disturbed homeostasis of neurotransmitters,

trace elements, and enzymes in the brain [46]. Proteomic

analysis showed differentially expressed proteins in the brain

in response to TiO2 NP exposure, even though no NPs were

detected in the tissue [47]. Oxidative-stress-related damage

with a consequent change in the balance between oxidative

and antioxidative activities was observed both in vitro [48e50]

and in vivo [39,42,44,45,47]. Levels of malondialdehyde, an

oxidativemarker, increased after intranasal instillation [39,44]

of TiO2 NPs. A similar effect was also found with intra-

abdominal injection and intratracheal instillation of TiO2

NPs in mice [42]. Reactive oxygen species (ROS) such as su-

peroxide [42], hydrogen peroxide [42,45], and hydroxyl radical

[42] were also found to be increased in animals treated with

TiO2 NPs. Increased cytokine levels, which are indicative of

inflammatory effects in the brain, were detected in animals

treated with TiO2 NPs [44,51]. TiO2 NPs (P25 Degussa TiO2 and

rutile forms) when injected intraperitoneally in mice induce

an increase in lipopolysaccharides, and alter the mRNA levels

of interleukin IL-1b and tumor necrosis factor (TNF)-a, as well

as IL-1b protein. Lipopolysaccharide induction was necessary
to cause this phenomenon, which suggests the importance of

a trigger element or a possible synergistic role in tissue re-

sponses to nanoparticulate TiO2. The embryotoxic role of TiO2

was also studied by maternal intravenous injection of TiO2

NPs, which yielded no characterized TiO2 NPs [52], and by

subcutaneous injection of TiO2 NPs in the anatase form

[53e55].

In the case of subcutaneous injections, TiO2 accumulation

was found in the offspring cerebral cortex and olfactory bulb.

A large number of olfactory bulb cells were found to be posi-

tive formarkers of apoptosis [53]. Altered gene expressionwas

detected for prenatal TiO2 NP exposure, whichwas involved in

cell death, brain development, and the response to oxidative

stress in newborn pups [54]. Finally, the influence of prenatal

TiO2 NP exposure on the dopaminergic system was estab-

lished as increased levels of homovanillic acid, dopamine, 3,4-

dihydroxyphenylacetic acid, and 3-methoxytyramina hydro-

chloride in the prefrontal cortex and neostriatum of exposed

mice [55]. These findings indicate that TiO2 NPs can be carried

from the mother to the fetal brain, which ultimately has a

toxic effect on fetal brain development, leading to several

nervous system disorders. More in-depth studies are neces-

sary in order to understand fully the toxic effect of TiO2 NPs on

neurons in various stages of life, including during pregnancy

and early stages of development.

2.2. Zinc oxide NPs

Like TiO2, another metal-based NP is zinc oxide (ZnO), which

has broad uses and applications. ZnO is also white, thermally

stable, and a naturally occurring material. It can be used to

develop sunscreens, biosensors, food additives, cement, rub-

ber, ceramics, pigments, plastic, catalysts, and electronic

materials. ZnO shows antibacterial activities and in recent

years studies have also focused on the effect of nano-

particulate ZnO on various microorganisms [56,57].

In recent years, ZnO toxicity has been demonstrated both

in vitro and in vivo in various mammalian cells. Dissolved Zn2þ

from the NPs is responsible for the toxicity. ROSwere detected

in these studies and may have been responsible for the in-

flammatory effects associated with ZnO toxicity. The neuro-

toxic effect of ZnO has not been studied much. In one of the

early works, neurotoxicity of different-sized ZnO NPs

(10e200 nm) in mouse neural stem cells (NSCs) was investi-

gated. As determined by cell viability studies, ZnONPs showed

dose-dependent toxic effects towards NSCs. However no size-

dependent toxic effects on NSCs were found in this study [58].

Using confocal microscopy, transmission electron micro-

scopy, and flow cytometry, apoptotic cells were detected and

analyzed in this toxicity study. Like previous studies, the re-

sults indicate that ZnO NP toxicity originates from the dis-

solved Zn2þ in the culture medium or inside the cells [58]. The

effects of ZnO NPs on voltage-gated sodium and potassium

pumps and action potential generation have been studied by

Zhao et al [59]. The study on isolated rat hippocampal CA3

pyramidal neurons demonstrated that ZnO NP solution was

able to generate neuronal injury by inducing depolarization

through activation of voltage-gated sodium channels, and led

to higher Naþ influx and intracellular accumulation of Naþ

and Ca2þ, release of glutamate, and neuron excitability. ZnO

http://dx.doi.org/10.1016/j.jfda.2014.01.012
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NPs are also able to induce neuronal apoptosis by depleting

intracellular Kþ level due to increased ion efflux [59]. An in vivo

toxicity study involving rats showed that intraperitoneal ZnO

altered synaptic plasticity, which changed spatial learning

and memory ability [60]. In that study, 20e80-nm ZnO NPs

(4 mg/kg body weight) twice weekly for 8 weeks were

administered to rats. ZnO NPs synthesized using the solegel

method and starch as a template have been tested for in vitro

cytotoxicity in neuro2A cells. A dose-dependent toxicity pro-

file was obtained, whereas nontoxic effects were seen at a

concentration < 6 mg/mL [61].

More studies have shown that the antibacterial activity or

adverse effects of ZnO NPs are partly due to the generation of

ROS [62e69], or causingmembrane damage through the direct

NPecell membrane interaction or generation of ROS [56,65], or

release of Zn2þ ions in the ZnONP suspensions [27,67]. Studies

in mammals have suggested that oral exposure of ZnO NPs

causes an increase in blood viscosity and pathological lesions

in the stomach, liver, kidney, pancrea, and spleen [70]. How-

ever, the potential hazards of high concentrations of manu-

factured nanoscale ZnO on the CNS need further

investigation.

2.3. Manganese oxide NPs

Manganese is an important metal. It is a trace element and

necessary for survival. In plants in photosystem II, a

manganese-containingmetal cluster is responsible for oxygen

generation from water activity and there are several enzymes

that use manganese for their activity [71]. Manganese has

found several other uses in our lives. Manganese is a major

component of making different types of steel and cast iron

[72]. Manganese chloride is used in batteries, disinfectants,

dyes, paint driers, and dietary supplements. Oxides of man-

ganese, such as manganese oxide (MnO), are used in colored

glass, ceramics, paints, textile printing, fertilizers, and in food

supplements and additives.Manganese dioxide (MnO2) is used

in batteries and may also be generated from the welding of

manganese alloys. Use of manganese-containing welding

rods is a major source of occupational exposure to welders.

Manganese tetroxide (Mn3O4) may be generated in situations

where other oxides of manganese are heated in air [73].

Methylcyclopentadienyl manganese tricarbonyl is used as an

antiknocking agent in some unleaded gasolines. The com-

pound is released to the environment during fuel combustion

in the form of manganese sulfate, phosphate, and oxides.

Farm workers who work with Maneb (manganese ethylene-

bis-dithiocarbamate) may also be exposed to a significant

amount of manganese [74].

As manganese is known for its neurotoxicity, toxicity

studies associated with manganese-containing nano-

materials provide a useful test case in the evaluation of

nanomaterial toxicity [75]. The occupational disease associ-

ated with manganese exposure and toxicity is known as

manganism. The disease in later stages resembles Parkinson’s

disease [76]. It has been found that if manganese is inhaled in

water-soluble and water-insoluble forms, it is translocated to

the brain, crossing the BBB via the olfactory nerve pathway

[77]. It has been found that, among many metals, manganese

is preferentially taken up via the olfactory nerve route [21,78].
After nasal exposure to manganese oxide NPs (MnO, MnO2,

Mn2O3, and Mn3O4), the concentration of manganese in the

olfactory bulb, striatum, frontal, and other brain regions is

increased. Macrophage inflammatory protein-2, glial fibrillary

acidic protein, and neuronal cell adhesion molecule mRNA is

also increased in the olfactory bulb. The results indicate that

the olfactory neuronal pathway is efficient for translocating

inhaled manganese oxide as solid ultrafine particles to the

CNS and can result in inflammatory changes [24]. Although

absorption ofmanganese in the lungs is dependent on particle

size and solubility [24,79], for neuronalmanganese uptake and

further translocation into the CNS, dissolution of manganese

is not necessary. As mentioned earlier, major sources of ul-

trafine manganese oxide particles include the iron and steel

industries, battery production, ferroalloy production, and

power plant and coke oven combustion emissions [80]. Use of

glass, paints, and ceramics may also provide major sources of

manganese oxide. Methylcyclopentadienyl manganese tri-

carbonyl is presently used in gasoline, mainly in Canada and

Australia [81,82], and decomposition and oxidation of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)

during combustion may release manganese oxide of nano-

particulate size into the environment. In all of these cases, the

most likely route of human exposure is through inhalation.

Toxicity of various manganese oxide nanomaterials has been

investigated in a neuronal precursor cell model. The Promega

CellTiter Aqueous One Solution Cell Proliferation (MTS) assay

was used to evaluate mitochondrial function in living cells

and the lactate dehydrogenase (LDH) assay was used to

quantify the release of the enzyme as a result of damage to the

cell membrane. Both assays indicated that manganese

toxicity was dependent on the type of manganese oxides and

their concentration. State of cell differentiation also contrib-

uted to varying NP toxicity. Manganese oxide NPs are

responsible for the generation of ROS and cell death due to

apoptosis, as revealed by flow cytometry. During cell division,

exposure to manganese oxide NPs results in elevated levels of

the transcription factor nuclear factor NF-kB. Such enhanced

levels of NF-kB mediate the cellular inflammatory response

[83]. In another study, Hussain et al [84] investigated the effect

of manganese oxide NPs (40 nm) on dopamine production in

PC12, neuronal phenotype cells. Manganese oxide NPs

induced depletion of dopamine and its metabolites dihy-

droxyphenylacetic acid and homovanillic acid in PC12 cells,

with a similar mechanism as Mn2þ [84]. In an in vivo study,

adult male Wistar rats were exposed to MnO2 NPs of w23 nm

diameter. The experiment was a model study to understand

the inhalational risks associated with MnO2 NPs. MnO2 NPs

were instilled into the trachea for several weeks in daily doses

of 2.63 mg/kg and 5.26 mg/kg. The endpoints of functional

neurotoxicity (open field behavior and electrophysiology) and

general toxicity (body and organ weights) were investigated.

Animals treated with MnO2 did not gain weight after 6 weeks

exposure. High levels of manganese were detected in brain

and blood samples of the treated animals after 9 weeks

exposure. The open field behavior of treated rats showed

decreased ambulation and rearing, and increased local activ-

ity and immobility were observed. Electrophysiological

studies of animals treated for 9 weeks indicated a shift in

spontaneous cortical activity to higher frequencies,

http://dx.doi.org/10.1016/j.jfda.2014.01.012
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lengthened cortical evoked potential latency, and slowed

nerve conduction. Many of these neurofunctional and general

parameters were significantly correlated with the tissue

manganese levels. It can be concluded that the instilled

manganese in the NP form was absorbed and the NPs were

responsible for the neurotoxic effects [85].

The acute oral toxicity of MnO2 NPs and MnO2 bulk parti-

cles in female albino Wistar rats was investigated [86]. MnO2

NPs (45 nm) exhibited higher absorption and tissue distribu-

tion compared with MnO2 bulk particles. The histopatholog-

ical analysis revealed that MnO2 NPs caused alterations in the

liver, spleen, and brain. The neurotoxicity of 45-nmMnO2 NPs

in the brain and red blood cells, as determined through

acetylcholinesterase activity, was significantly inhibited at

doses of 1000 mg/kg and 500 mg/kg. MnO2 NPs (45 nm) dis-

rupted the physicochemical state and neurological system of

the animals through alterations in ATPases via the total

NaþeKþ, Mg2þ, and Ca2þ levels in the brain. Toxicity of Mn3O4

NPs was investigated in ST-14 rat striated neuroblasts, a

neuronal precursor cell model, using the MTS assay to eval-

uate mitochondrial function in living cells and the LDH assay

to quantify the release of the enzyme as a result of damage to

the cell membrane [87]. Both assays showed that the toxicity

ofMnwas dependent on the type ofmanganese oxide NPs and

their concentration, as well as the state of cell differentiation.

Following exposure to manganese oxide NPs, ROS were

generated, and flow cytometry experiments suggested that

cell death occurred through apoptosis. During exposure to

manganese oxide nanomaterials, increased levels of the

transcription factor NF-kB (which mediates the cellular in-

flammatory response) were observed.

2.4. Silver NPs

Silver is a bright, silvery white, soft metal that has been used

for thousands of years. Silver ornaments, utensils, and art

work have been around for a long time. Silver has monetary

value and silver coins and jewelry are considered as valu-

ables. Silver is used in large quantities as catalysts, mainly in

the production of ethylene oxide. It is also used industrially

for conductors, mirrors, and photographic applications. One

of the interesting properties of silver is its antibacterial and

antifungal activity. As a result, the use of nanoparticulate

silver is one of the fastest growing areas of commercial NP

applications [88]. Due to their excellent antibacterial proper-

ties, silver NPs have been used in food services, building

materials, textile industry, medical instruments, personal

care products, and washing machines [89]. Silver NPs (Ag

NPs) are used as room sprays, deodorants, wall paints, and

laundry detergents, and are also used for indoor air purifi-

cation and water detoxification [90,91]. As a result of these

widespread uses and exposure of silver NPs to humans, it is

likely that Ag NPs enter the body and accumulate in various

tissues and organs [92]. Previous research has indicated that

Ag NPs can accumulate in several organs, which includes the

kidney, liver, testis, lung, and brain [93].

In vitro studies have shown that Ag NPs are capable of

inducing toxicity in cells derived from a variety of tissues,

including liver, skin, vascular system, lungs, and reproductive

organs. Previous studies have shown that Ag NPs induce cell
death and oxidative stress in human skin carcinoma and

fibrosarcoma cells [94]. The same group have also reported

that Ag NPs can enter cells, causing DNA damage and

apoptosis in liver cells and fibroblasts [95]. Cell viability is

decreased when alveolar macrophages and lung epithelial

cells are treated with Ag NPs [96]. In vitro studies have shown

Ag NP toxicity in neural-like cell lines, such as PC12 cells,

which is a rat cell line with a neuronal-like phenotype [97].

It has been shown that Ag NPs could come across through

and be accumulated in brain microvessel vascular endothelial

cells. An in vitro BBB model composed of primary rat brain

microvessel vascular endothelial cells, it has been shown

crossing and accumulation capability of silver nanoparticles

[98]. Ag NPs can induce inflammation and affecte the integrity

of this BBBmodel, and be readily translocated to the brain [99].

Ag NPs can also induce BBB damage, astrocyte swelling, and

neuronal degeneration [100]. Ag NPs can translocate to the

brain using the nasopharyngeal system as a gateway during

inhalation exposure [17]. In vivo studies by Liu and coworkers

have shown the effects of Ag NPs on hippocampal synaptic

plasticity and spatial cognition in rats. Their studies have

revealed that intranasally administered Ag NPs induce

impairment of hippocampal function [101]. These results

suggest that Ag NPs cause neurotoxicity in humans and other

animals. More recently, a significant finding indicated that 7-

nm Ag NPs decreased motor activity and body weight in a

time- and dose-dependent manner after intravenous injec-

tion, suggesting that the nervous system may be targeted by

Ag NPs [102]. Yin and coworkers tried to establish the mech-

anism of Ag NP neurotoxicity both in vitro and in vivo using rat

cerebellar granule cells. Their studies indicated that Ag NPs,

depending on the caspase-activation-mediated signaling,

drastically decreased the survival of primary neuronal cells

through apoptosis coupled to oxidative stress [103].
3. Iron oxide (FeO, Fe2O3, Fe3O4) NPs

Iron oxide or superparamagnetic iron oxide nanoparticles

(SPIONs) have become one of the most favorable and exciting

choices in both the industrial and biomedical fields, due to

their superparamagnetic property and other physicochemical

characteristics unique to nanomaterials. SPIONs (Feridex) are

small NPs composed of a Fe3O4 (magnetite) or Fe2O3 (maghe-

mite) core. Although maghemite is naturally ferromagnetic,

with the decreasing size (< 30 nm), it becomes super-

paramagnetic. Their potential application ranges from

biomedical imaging (magnetic resonance imaging, positron

emission tomography, or ultrasound as contrast agent), gene

and drug delivery, tissue regeneration, hyperthermia in can-

cer treatment, catalysis, and magnetic storage [104]. They are

extensively used specifically for brain imaging or brain-

targeted drug and gene delivery, due to their ability to move

across the BBB [105]. SPIONs are metal oxide NPs that have

been clinically approved, although recently they have been

taken off the market [106,107].

In spite of their desirable traits, there is a critical need to

investigate their toxicity both in vivo and in vitro. SPIONs have

already been shown to have potential toxicity that can lead to

altered gene expression, actin modulation, interference with

http://dx.doi.org/10.1016/j.jfda.2014.01.012
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cell cycle regulation and signaling pathways, excessive ROS

generation, and disruption of iron homeostasis [108]. Ac-

cording to the recent findings, environmental factors are a

major contributor to the development of neurodegenerative

diseases, such as Parkinson’s disease and Alzheimer’s disease

[109]. Peters et al [110] have emphasized the significance of

oxidative stress generated by NPs in the brain, along with the

evaluation of the possible connection between long-term NP

exposure and neurodegenerative disease. With increased use

of Fe3O4 NPs in industry and biomedical sciences, the risk

related to occupational exposure has escalated considerably.

Involvement of ultrafine particulate materials in polluted air

leads to protein fibrillation. Fibrillation of specific proteins, for

example, Ab42 and a-synuclein, may play a role in the devel-

opment of Alzheimer’s disease and Parkinson’s disease [111].

SPIONs have further been shown to form a corona with

plasma proteins. This corona can lead to several toxic side

effects because the initial cellular interaction of magnetic

nanoparticle (MNP) changes lead to downstreammodification

of cellular and tissue interaction [112,113]. In 2007, Pisanic et al

[114] used PC12 cells as a quantifiable in vitro model system to

study the toxic effect of anionic Fe3O4 MNPs in a dose-

dependent manner. In that study, it has been established

that when PC12 cells were exposed to the anionic MNPs at an

increasing concentration ranging from 0.15mM to 15mM iron,

they lost their viability and were unable to generate normal

neurite growth in the presence of nerve growth factor. They

have concluded that the anionic MNPs were possibly inter-

fering with transcriptional regulation and protein synthesis,

for example, Growth associated protein (GAP)-43 leading to

cellular death and phenotypic changes.

In 2009, Wang et al [115] discussed the ability of submicron

level Fe3O4 NPs to be transported to the brain via the olfactory

nerve pathway, leading to oxidative-stress-related damage in

the brain. They also discussed changes in the ultrastructure of

the olfactory bulb nerve cells. Recently, Wu et al [116] have

focused on the neurotoxicity of iron oxide NPs in the rat brain

(in vivo). The study investigated the effect of uptake and

retention of Fe3O4 NPs in rat brain hippocampus and striatum,

including oxidative injuries. The olfactory bulb, striatum, and

hippocampus seemed to be the main sites for Fe3O4 NP

deposition after intranasal instillation [117]. Approximately

80% of NPs were still found in the striatum at 7 days after

instillation and about 50% were found in both the striatum

and hippocampus after 14 days. The striatum in the instilla-

tion groups exhibited comparatively more susceptibility to

oxidative stress, as indicated by increased levels of H2O2 and

decreased Glutathione peroxidase (GHS-PX) activity in the

control group at 7 days after exposure. The group also inves-

tigated the effect of Fe3O4 NPs in PC12 cells in vitro. The PC12

cells showed dose-dependent cytotoxicity, as measured by

LDH release and MTT assay, demonstrating membrane

disruption and mitochondrial enzyme activity, respectively.

The oxidative stress was also evident by the reduced GSH-PX

and superoxide dismutase activity, and increased ROS level

and lipid peroxidation. Fe3O4 NPs also had a substantial

cytotoxic effect on PC12 cells by modulating the cell cycle and

inducing apoptosis. JNK is usually activated by oxidative

stress andmodulates apoptosis, neurodegeneration, cell cycle

control, and cellular proliferation [118]. The cells also
exhibited phosphorylation of p53 protein at ser15 position and

elevated levels of bax and bcl-2 proteins upon exposure to

NPs.

It has been demonstrated that intranasally instilled Fe2O3

NPs are transported into the brain via the olfactory route [119],

and additional investigation has beenmade of the size-related

effect. After a single intranasal exposure of 21-nm Fe2O3 NPs,

there was a significant increase in iron content in almost all

the brain regions, from the olfactory bulb, hippocampus, ce-

rebral cortex, and cerebellum to the brainstem [120]. However,

a single intranasal exposure of 280-nm Fe2O3 NPs led to a

significant increase in iron content only in the olfactory bulb

and hippocampus, with no significant alteration of iron con-

tent in other brain regions. At 30 days after instillation of 280-

nm Fe2O3 NPs in mice, the iron content in the olfactory bulb

and hippocampus also increased but was lower than that in

mice treated with 21-nm Fe2O3 NPs.

It is widely known that brain iron accumulation is associ-

ated with the oxidative stress induced by the formation of the

highly reactive �OH via the Fenton reaction [121e123]. The

excess iron in the brain suggests an association with the

oxidative stress response. The generation of ROS is a well-

established paradigm to explain the toxic effects of NPs [40].

It has been demonstrated that intranasal exposure of iron

oxide NPs causes a certain degree of oxidative stress response

in mouse brain [119]. Significant oxidative stress responses in

the brain of mice have also been observed after intranasal

exposure of 21-nm and 280-nm Fe2O3 NPs [124]. Alterations of

iron and zinc levels in the brain are more evident in mice

exposed to nano-sized than submicron-sized Fe2O3. Further-

more, the strong positive correlation between the iron and

zinc levels in the sub-brain regions may contribute to the

understanding of zinc homeostasis in the brain after Fe2O3

particle inhalation.

The biomarkers of oxidative stress, activity of nitric oxide

synthases, and release of monoamine neurotransmitters in

the brain have been studied as well [115]. It was shown that

significant oxidative stress was induced by the two sizes of

Fe2O3 NPs. The activities of GSH-PX, copper, zinc superoxide

dismutase, and constitutive nitric oxide synthase were

significantly elevated and the total glutathione and gluta-

thione/glutathione disulfide ratio were significantly decreased

in the olfactory bulb and hippocampus after treatment with

nano- and submicron-sized Fe2O3 particles. The nano-sized

Fe2O3 generally induced greater alteration and a more signif-

icant doseeeffect response than the submicron particles did.

Transmission electron microscopy showed that nano-sized

Fe2O3 treatment induced some ultrastructural alterations in

nerve cells, including neurodendron degeneration, membra-

nous structural disruption, and increased lysosomes in the

olfactory bulb, dilation in the rough endoplasmic reticulum,

and increased lysosomes in the hippocampus. The results

indicated that intranasal exposure of Fe2O3 NPs could induce

more severe oxidative stress and nerve cell damage in the

brain than the larger particles did.

Fe3O4 NPs also exert cytotoxic effects by influencing the

cell cycle and apoptosis [116]. For example, cells are arrested

at the G2/M phase after 24 hours exposure to NPs. Arrest at the

G2/M phase provides time for these cells to instigate DNA

repair and delay cell death. However, cells with impaired DNA
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repair processes enter apoptosis. The study indicates that

Fe3O4 NPs are deposited and retained in the striatum after

intranasal instillation, and the NPs may then cause oxidative

damage in the striatum. The results of in vitro studies on

dopaminergic neurons have demonstrated that Fe3O4 NP

exposure decreases cell viability and induces marked oxida-

tive stress. Furthermore, Fe3O4 NPs mediated apoptosis

signaling pathway included JNK and c-Jun phosphorylation,

p53 phosphorylation, Bax upregulation, Bcl-2 downregulation,

and apoptosis.

3.1. Copper and copper oxide NPs

Copper is one of the essential trace elements for energy pro-

duction in biological systems. Copper is a requirement for the

synthesis of different enzymes, including cytochrome c oxi-

dase, superoxide dismutase, tyrosinase, lisyl oxidase, and

cupro-protein [125,126]. Copper is also responsible for stimu-

lating the production of neurotransmitters such as epineph-

rine and norepinephrine in the brain and can be found there at

a high concentration [127]. However, at higher than normal

levels, unbound copper become toxic to the human body

because it disrupts homeostasis. Its redox activity can give

rise to ROS, leading to oxidative stress and modification of

protein, lipid, and nucleic acid [128,129]. Compounds of cop-

per such as copper oxide (CuO) NPs have found a broad use in

various areas. CuO NPs are used in inks, lubricants, coatings,

semiconductors, heat transfer fluids, antimicrobial prepara-

tions, and intrauterine contraceptive devices [130]. Copper-

based NPs are used as lubricant additives because they

reduce friction and wear, and worn surfaces can be repaired

by an addition of copper NPs in lubricants. As more copper

NPs are currently in use, it is likely that human exposures to

copper NPs will increase gradually.

Due to their nanolevel size, CuONPs are capable of crossing

the BBB and pose a threat to the CNS. Studies have shown that

copper NPs can cause BBB dysfunction, swelling of astrocytes,

and neuronal degeneration once introduced into the blood-

stream [1,131]. Li et al [132] showed neurotoxicity of CuO NPs

in a dose-dependentmanner in H4 neurogiloma cells using an

automated image analysis technique.

Primary cultures of dorsal root ganglion of neonatal rat

pups were investigated to measure neurotoxicity of copper

NPs of varying size and concentration by Prabhu et al [133].

After exposured to 10e100mM copper NPs (40 nm, 60 nm, and

80 nm) for 24 hours, the neurons started to develop vacuoles

and became detached from the substratum. They also

exhibited disruptive neurite growth. LDH and MTT assays

have also shown the significant toxicity of copper NPs, and the

smaller size is associated with higher toxicity.

The whole-cell patch-clamp technique was used to study

the influence of CuO NPs on voltage-dependent potassium

current in acutely isolated rat CA1 pyramidal neurons of the

hippocampus [134]. Although the CuO NPs did not have a

significant effect on the outgoing potassium current, they did

inhibit the delayed rectifier potassium current at a relatively

high concentration. CuO NPs shifted the inactivated curve of

rectifier potassium current negatively but did not show any

significant effect on transient outgoing potassium current.

These blockades of the potassium current might inhibit the
normal functional activity of nerve cells. In another study,

Trickler et al [135] has determined the effect of copper NPs on

induction of proinflammatory mediators, followed by their

influence on rat brain microvessel endothelial cells. At a low

dosage, the copper NPs enhanced cellular proliferation,

whereas at a high concentration, they started to express

toxicity. NP exposure increased prostaglandin E2 release.

Extracellular levels of TNF-a and IL-1b were considerably

higher in the exposed cells. This resulted in the disruption of

cerebral microvasculature by increasing its permeability.

According to Karlsson [136], nano-CuO is highly toxic when

compared with other metal oxide NPs. However, few studies

have investigated the direct effects of nano-CuO on neuro-

toxicity and the potential mechanisms involved in these

effects.

A study explored the potential neurotoxicity of nano-CuO

on ion channels of neuron, voltage-dependent sodium current

(INa) in rat hippocampal slices with whole cell patch-clamp

technique [137]. The results showed that nano-CuO inhibited

the peak amplitude of INa, which might have decreased

intracellular Naþ concentration due to decreased Naþ influx.

This could inhibit the exchange of Naþ for Ca2þ by NaþeCa2þ

exchangers [138]. The exchanger was shown to generate in-

ward current during the repolarization phase of the action

potential [139], thus, the effect on INa could contribute to the

change in action potential shape by nano-CuO.

It is well established that voltage-gated sodium current

(VGSC) plays a role in neurotransmitter release [140]. Thus, the

effects of nano-CuO on INa also mean that modulation may

produce functional effects on neurotransmission in the CNS.

It has been shown that nano-CuO produces a hyperpolarizing

shift in the activation curve. The S4 segment in a subunit of

VGSCs contains 4e8 positively charged residues at three res-

idue intervals. They serve as voltage sensors and initiate the

voltage-dependent activation of VGSCs by moving outward

under the influence of the electric field [141,142]. The results

suggest an effect on the S4 segment of the activation gating,

resulting in conformational changes of the channel. The

findings also confirm that the effects of nano-CuO on hippo-

campal neurons are mediated through activation of

ROSeINaeaction potential signaling cascades and are inde-

pendent from the G-protein pathway. These results show the

primary mechanisms underlying nano-CuO-induced INa

amplitude inhibition and improve our understanding of nano-

CuO neurotoxicology.

To determine the potential neurotoxicity of CuO NPs,

human SH-SY5Y neuroblastoma and H4 neuroglioma cells

were exposed at a concentration range of 0.01e100 mM for 48

hours [132,143]. The data indicated that exposure of CuO NPs

induced differential toxic effects in both SH-SY5Y and H4

cells, and the cells had dose-dependent toxic responses to the

CuO NPs. The toxic effects of CuO NPs were also investigated

in a semiadherent, fast-growing, mouse neuroblastoma cell

line (N2A cells), to provide a better understanding of the

toxicological risks of CuO NPs in future nanotechnology de-

velopments [144]. N2A cells were less sensitive to CuO NP ef-

fects than other cultured cells were. The lower sensitivitymay

have been due to the agglomeration of CuO NPs in the culture

medium, which resulted in an average particle size > 300 nm.

Agglomeration of CuO NPs reduced surface-specific effects
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specific to nanoscale materials, and increased the contribu-

tion of particle solubilization in the toxic response induced in

N2A cells. Agglomerated CuO NPs induced both cytotoxic and

genotoxic effects in N2A cells.

3.2. Aluminum oxide (alumina, Al2O3) NPs

In recent years, the areas of nanotechnology and nano-

medicine have expanded rapidly, aluminum oxide (alumina)

NPs, having good electric and abrasive properties, are widely

used as abrasive agents or insulators in motor vehicles, elec-

tronics, energetics, exterior coatings, personal care products,

scratch-resistant coatings, alloys, and sensors [145]. This has

led to increased human exposure to aluminum oxide NPs

(nano-alumina).

An in vivo study in ICRmice aimed to investigate the effects

of nano-alumina, with a focus on the effects on neuro-

behavioral defects and possible mechanisms of action. It

showed that nano-alumina induced apoptosis via increased

caspase-3 gene expression and impaired spatial learning

behavior, which suggests that mitochondrial impairment

plays a key role in the neurotoxicity of nano-alumina [146].

The research could help to understand the underlying

mechanisms of toxicity of nano-alumina, particularly with

respect to neurobehavioral function. The authors declared

that impairment of themitochondria played an important role

in the neurotoxicological effects of nano-alumina and might

be a direct cause of neurobehavioral defects.

The possible neurotoxic effects of nano-alumina and

bulk alumina have been compared in nematodes [147]. The

relatively large surface area of nano-alumina compared

with bulk alumina might also explain the differences in

toxicity between nano-alumina and bulk alumina. The

decrease in locomotive behavior in nematodes chronically

exposed to nano-alumina was associated with both an in-

crease in ROS generation and disruption of ROS defense

mechanisms. Drosophila was used as another model organ-

ism to explore the effects of nano-alumina on the CNS [148].

The rhythmic and electrophysiological activities in the

antennal lobe of Drosophila were recorded using patch

clamps. Fifteen minutes after application of nano-alumina,

the average frequency of spontaneous activity was signifi-

cantly decreased compared with that of the control groups.

The results indicate that nano-alumina might have adverse

effects on the CNS in Drosophila.

The hypothesis that nano-alumina can affect the BBB and

induce endothelial toxicity has been proposed [149]. In the

first series of experiments, human brain microvascular

endothelial cells were exposed to nano-alumina and control

NPs in dose- and time-responsive manners. Treatment with

nano-alumina markedly reduced human brain microvascular

endothelial cell viability, altered mitochondrial potential,

increased cellular oxidation, and decreased tight junction

protein expression as compared to treatment with control

NPs. Alterations of tight junction protein levels were pre-

vented by cellular enrichment with glutathione. In the second

series of experiments, ratswere infusedwith nano-alumina at

a dose of 29 mg/kg and brains were stained for expression of

tight junction proteins. Treatment with nano-alumina resul-

ted in marked fragmentation and disruption of integrity of
claudin-5 and occludin. The results indicate that the cere-

brovasculature could be affected by nano-alumina. In addi-

tion, the data indicate that alterations of mitochondrial

function might be the underlying mechanism of nano-

alumina toxicity.

As far as the assessment of toxicological properties of

nanoparticles is concerned, it is important to know whether

cultured neural cells take up NPs, and if so, what mechanisms

are involved [150]. Ultrastructural examination has shown

that nano-alumina penetrates the cell membrane and that

some particles are engulfed by the cells and mainly accumu-

lated in the cytoplasm. It has been demonstrated that the NPs

entering the cells are likely to have an effect on cellular

function. Bulk-alumina-treated cells show apoptotic charac-

teristics, whereas nano-alumina-treated cells demonstrate

both apoptotic and necrotic morphological changes. Photo-

micrographs show that the vesicles with individual particles

and aggregates remain in the cytoplasm and the nucleus.

According to transmission electron micrographs, NPs form

aggregates inside the lysosomal vesicles and their internali-

zation in lysosomal bodies is arranged in a perinuclear

fashion. The presence of an elevated amount of lysosomes

might reflect enhanced phagocytosis of exogenous particles.

Microglia and astrocytes are dominant glial and major

immune cells in the CNS. They are sensitive to changes in the

microenvironment of the CNS and are rapidly activated in

almost all conditions that affect normal neuronal functions.

Activation of microglia and astrocytes in the cortex and hip-

pocampus following peripheral administration of nano-

alumina have been analyzed in SpragueeDawley rats [151].

There was significant glial activation induced in rat brain after

nano-alumina administration.

3.3. Silicon dioxide (silica) NPs

Silica (SiO2) NPshave beendeveloped formechanical polishing,

additives to food and cosmetics, and have various applications

in biomedical fields, including diagnosis, optical imaging, tar-

geted drug delivery for the CNS, cancer therapy, and controlled

drug release for genes and proteins. In particular, being

considered more biocompatible than other imaging NPs, silica

NPs are emerging as ideal materials for medical applications.

For applications of potential drug delivery, imaging, and di-

agnostics in the CNS, silica NPs are also beingmodified or used

for coating or stabilization of other optical materials. However,

to date, little is known concerning the potential adverse effects

on the brain associated with exposure to silica NPs.

Research has indicated that silica NPs via intranasal

instillation enter the brain and show a distinct pattern of

biodistribution, and are especially deposited in the striatum,

except for the olfactory bulb [152]. Such an accumulation

could result in oxidative stress, inflammatory changes, and

functional damage of the striatum. In addition, silica NPs

appeared to induce depleted dopamine in the striatum, and

the main contribution was downregulation of tyrosine hy-

droxylase protein.

In vitro studies on dopaminergic neurons have demonstrated

that silica NPs have marked cytotoxic effects and oxidative

stress activity against PC12cells [152]. Furthermore, activationof

the p53 pathway is involved in the mechanism of the silica-NP-
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inducedG2/Marrest and apoptosis. Additionally, the decrease in

dopamine levels is most likely attributable to the reduction of

dopamine synthesis. The authors have claimed that although

extrapolation of the animal effects to humans remains a chal-

lenge, their results for the neurotoxic effect on rat brains could

be suggestiveofhumanexposure,becausedifferent speciesmay

respond differently to the same substance.

Another study demonstrated that exposure to 300 ppm

silica NPs in differentiating cells showed less cytotoxicity than

in undifferentiated cells [153]. Silica NPs at 100 ppm had no

significant effect on the viability of either undifferentiated or

differentiating neuroblastoma (SH-SY5Y) cells. Neurite

outgrowth in differentiating cells after 48 hours exposure to

100 ppm silica NPs was not significantly changed. Thus, silica

NPs appeared to have no effects in the early initiation of

neurites. Although the production of ROS was not induced,

neurotoxicity induced by silica NPs may be the result of

increased DNA damage, apoptosis, and cell cycle arrest in

undifferentiated and differentiating cells, which is indepen-

dent of neuronal differentiation of SH-SY5Y cells.
4. Carbon-based nanomaterials

Owing to their unique chemical and physical properties,

carbon-basednanomaterials have a potential use in a variety of

biomedical applications, including early diagnosis of cancer,

imaging, targeted photothermal therapy, drug delivery, and

tissue engineering. Based on the shape, organic carbon-based

nanomaterials are categorized as carbon nanotube, fullerene,

graphene, or carbon NPs. Carbon nanotubes are one-

dimensional forms of graphitic material and are present in

many forms, depending on the number of graphene sheets

used: single-walled carbon nanotubes, double-walled carbon

nanotubes, andmulti-walledcarbonnanotubeswithdiameters

of 1e2 nm and lengths of 0.05e1 mm. Graphene has similar

chemical compositionandcrystallinestructurewithaflat sheet

with a single layer or multilayer graphene with several layers.

The fullerenes (C60) are named after Richard Buckminster

Fuller as buckminsterfullerene, or the “bucky ball”. This allo-

trope of carbon consists of 60 carbon atoms joined together to

form a cage-like structure. C60 is soluble in aromatic solvents

(e.g., toluene or benzene), but insoluble in water and alcohol.

However, C60 can be functionalized (e.g., witheOH,eCOOH, or

eNH2) to increase its hydrophilicity. By contrast, aqueous

fullerene aggregates can be generated by mixing pure C60 in

wateror throughsolvent extraction. Some fullereneshavebeen

shown to inhibit human immunodeficiency virus (HIV) activity

through inhibiting an HIV-associated protease, an essential

enzyme for viral survival. It has been reported that some ful-

lerenes can interact with biological membranes to elicit anti-

microbial action, antitumor activity, enzyme inhibition, DNA

photo cleavage, and neuroprotective activity via antioxidant

actions. At present, fullerenes are commercially used in prod-

ucts including fuel cells, semiconductors, andproduct coatings,

for example, bowling ball surfaces.

Studies of carbon nanomaterials have indicated the po-

tential neurotoxic effects after inhalation or systemic expo-

sure. Oberdörster and co-workers [17] showed that inhalation

of elemental 13C NPs of 36 nm by rats, which were exposed for
6 hours whole-body exposure, led to a significant and persis-

tent increase in the accumulation of 13C NPs in the olfactory

bulb, and the NP concentration gradually increased. A recent

study has shown that different shapes of carbon nano-

materials elicit different toxicity in neuronal culture models.

Specifically, pure graphene is less toxic than highly purified

single-walled carbon nanotubes in a concentration-

dependent manner after 24 hours exposure of PC12 cells,

involving the apoptosis pathway [154]. Subsequently, the

impact of surface functionalization on the toxicity of carbon

nanotube has been demonstrated using the same culture

model. Carbon nanotubes with surface-coating polyethylene

glycol are less toxic than uncoated carbon nanotubes, by

measuringmitochondrial function andmembrane integrity. A

mechanistic study has shown that oxidative stress is involved

in this toxic pathway, with surface coating playing an

important role [155]. It has been reported that 14-nm carbon

black particlesmight translocate to the olfactory bulb through

olfactory neurons, resulting in the activation of microglial

cells, which induces proinflammatory cytokines and chemo-

kines, suggesting an inflammatory response [156]. Additional

systematic evaluations and mechanistic in vivo studies are

needed to understand the effect of surface coating on the

biocompatibility of these carbon-based nanomaterials prior to

use in humans.
5. Future perspectives

Physical and chemical characterization is considered to be the

key element in assessing the neurotoxicity of nanomaterials.

The nanomaterials used in the study require a comprehensive

physicochemical characterization before during, and after the

biological testing models are exposed to nanomaterials. As

mentioned previously, the size, size distribution, purity,

shape, crystal structure, composition, surface coating, surface

charge, and surface reactivity may result in a different dis-

tribution, accumulation, and transport of the nanomaterials

to the target organs, as well as across the BBB. Research

findings are meaningless for hazard identification in the

absence of adequate evaluation of the physical and chemical

properties of nanomaterials. For example, impurities that

contaminate the nanomaterials being tested may contribute

most to neurotoxicological responses. The dissolution of

metal ions from metal oxide nanomaterials may play an

important role in neurotoxicity. The size or surface charge of

nanomaterials might change the biokinetics of the nano-

materials, resulting in different pharmacological or toxico-

logical actions in biological systems. However, batch-to-batch

inconsistency is a major challenge when nanomaterials are

produced by different manufactures/laboratories.

The exposure dose level should be carefully considered

when laboratory animals or in vitro models are exposed to

nanomaterials. The practically exposure level to human

should be used as a reference when calculateing the relevant

dose exposed to the animals or in vitro models. This will

support studies for understanding the dosimetry in the ner-

vous system. The characteristics of the nanomaterials should

also be considered in physiologically based pharmacokinetic

modeling to better predict the environmental hazard of the
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nanomaterials. To date, the data gap of well-designed

neurotoxicity assessment of nanomaterials still exists, and

further in vivo studies will be considered as an urgent demand

in the future.

Appropriate doseeresponse research should be considered

in neurotoxicological studies. Recent inhalation studies have

shown that the surface area or particle number, instead of the

nanomaterials mass, is considered as the major dosimetry

unit in term of the dose-response relationship. Cellular or

target organ dose will provide a better understanding of the

neurotoxicological responses, because the physical properties

might change quickly in the biological system under the

experimental conditions. Sensitive and specificmethods need

to be developed to quantify the nanomaterials, including

metal NPs or carbon-based nanomaterials. The nanomaterials

may interfere with the enzymatic assay during the measure-

ment of neurotransmitters (such as acetylcholine or dopa-

mine) using traditional methods. Therefore, the traditional

approaches using chemicals should be carefully validated

because they are used in nanoneurotoxicological studies.
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