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Abstract: Three-dimensional V2O5 hollow structures have been prepared through a simple
synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5

materials are composed of microspheres 2–3 µm in diameter and with a distinct hollow interior.
The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion
batteries, can deliver a specific capacity as high as 273 mAh·g−1 at 0.2 C. Benefiting from the hollow
structures that afford fast electrolyte transport and volume accommodation, the V2O5 cathode also
exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance
demonstrates the great potential of this unique V2O5 hollow material as a high-performance cathode
for lithium-ion batteries.
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1. Introduction

Rechargeable lithium-ion batteries (LIBs) are considered to be one of the most promising energy
storage devices for portable devices and electric vehicles (EVs) owing to their high energy densities,
environmental friendliness, and long cycle lifetime [1–4]. However, the challenges of high cost and
the low capacity of the currently used cathode materials hinder their widespread applications [5,6].
In order to obtain high specific energy, considerable efforts have been devoted to developing materials
with a higher specific capacity than the current commercial ones, such as LiCoO2 (140 mAh·g−1),
LiMn2O4 (146 mAh·g−1), and LiFePO4 (176 mAh·g−1) [7,8].

Among the alternative candidates, vanadium pentoxide (V2O5) has drawn considerable
attention as a cathode material for lithium-ion batteries because of its advantages of layered
structure, low cost, rich abundance in nature, and a high theoretical capacity of about 294 mAh·g−1

(intercalation/deintercalation of two Li+ ions between 2.0 and 4.0 V) [9–11]. Nevertheless, the poor
cycling stability, low electronic conductivity, and low lithium ion diffusion rate restrict its practical
application [12–14]. Developing nanostructured materials has been demonstrated to be an effective
method to address these critical issues because nanomaterials have a large surface area to provide
more reaction sites and can effectively shorten the diffusion distance of lithium ions during the
insertion/extraction, thereby resulting in an enhanced cycling performance and rate capability [15,16].
A variety of V2O5 nanostructures, such as nanourchins [17], nanotubes [18], nanospikes [10],
nanorods [8], nanowires [19–21], and nanobelts [22–25], have been fabricated, and improved

Materials 2017, 10, 77; doi:10.3390/ma10010077 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/journal/materials


Materials 2017, 10, 77 2 of 9

electrochemical performance has been achieved with these materials when used as cathodes for LIBs.
In particular, hollow structures are rather favorable because the unique hollow structure can effectively
buffer the volume expansion of the V2O5 cathode to improve the cycling performance [9,26–28].
Lou et al. reported a carbon-templating method to synthesize V2O5 hollow spheres with an excellent
electrochemical performance [9]. However, the complex synthesis procedures and the expensive
reactant materials limit the scale-up production. Therefore, it remains a great challenge to controllably
synthesize V2O5 hollow structures through a simple and low-cost method.

In this work, we report a facile one-step solvothermal method to controllably synthesize V2O5

hollow microspheres by employing a copolymer surfactant of poly(ethylene oxide)-block-poly(propylene
oxide)-block-poly(ethylene oxide) (P123) as a soft template and low-cost NH4VO3 as the vanadium
source. The effects of the annealing temperature on the crystallinity, morphology, and electrochemical
properties of V2O5 have been studied. The optimized V2O5 hollow microspheres, when used as LIB
cathodes, exhibit a satisfactory lithium-ion storage performance.

2. Discussion and Results

2.1. Structure and Morphology of the V2O5 Microspheres

Figure 1 shows the typical SEM images of the as-prepared samples. As shown in Figure 1a,
the V2O5 precursor was composed of three-dimensional (3D) microspheres with diameters in the
range of two to three microns. The magnified image in Figure 1a2 indicates that the microspheres were
assembled with petal-like nanosheets. The hollow structure can be clearly observed in some broken
microspheres (Figure 1a3). V2O5 was obtained by annealing the precursors, and the morphology
evolution with the annealing temperature is exhibited in Figure 1b–d. The microsphere morphology
was well maintained within the annealing temperature range of 300–500 ◦C. However, the building
blocks changed with the temperature. At a low annealing temperature of 300 ◦C (V2O5-300), as shown
in Figure 1b2, the petal-like nanosheet structure was preserved on the V2O5 microsphere surface,
which was almost identical to that of the precursors. As the temperature increased to 400 ◦C (V2O5-400),
the surface of the V2O5 hollow microspheres became constructed by interconnected nanoparticles
(Figure 1c2). The nanoparticles became larger irregular structures at a higher temperature of 500 ◦C
(V2O5-500, Figure 1d2). The morphology evolution can be attributed to the different growth rate and
crystallization degree of V2O5 at different annealing temperatures [27].
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voltammogram (CV). Figure 3 shows the first five CV curves of the V2O5-400 cathode at a scan rate of 
0.1 mV·s−1 in a potential range from 2.0 to 4.0 V. Four main pairs of redox peaks were observed at 
around 3.59/3.64, 3.36/3.45, 3.16/3.34, and 2.26/2.51 V, respectively, which are associated with the 
reversible lithium intercalation/deintercalation into/from V2O5 to form α-LixV2O5, ε-LixV2O5, 
δ-LixV2O5, and γ-LixV2O5, as expressed in Equations (1)–(4) [25,26,31,32]. In addition, the CV curves 

Figure 1. SEM images of the (a1–a3) V2O5 precursor and V2O5 microspheres annealed at 300 ◦C
(b1–b3); 400 ◦C (c1–c3); and 500 ◦C (d1–d3).

The crystallographic structure of the samples was characterized by X-ray powder diffraction
(XRD). Figure 2a shows the XRD patterns of V2O5. Clearly, the main diffraction peaks can be well
indexed to the orthorhombic phase of V2O5 (JCPDS Card No. 41-1426). In addition, the characteristic
peaks showed a stronger diffraction intensity and narrower shape at an elevated annealing temperature,
suggesting a higher crystallinity at a higher temperature [16,29]. Raman spectra were employed to
further confirm the structure of the samples. As shown in Figure 2b, the samples shared identical
Raman peaks, which are characteristic of orthorhombic V2O5 [29,30]. The typical Raman peaks V2O5

included the skeleton bent vibrations of the V-O-V bonds at 145 and 193 cm−1, the bending vibration
of the V=O bonds at 281 and 402 cm−1, the bending vibrations of V3=O at 302 cm−1 and V-O-V bonds
at 480 cm−1, and the stretching vibrations of V3=O bonds at 527 cm−1, V2=O bonds at 701 cm−1,
and V=O bonds at 995 cm−1.
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2.2. Electrochemical Performance

The electrochemical performance of the V2O5 samples was first evaluated using the cyclic
voltammogram (CV). Figure 3 shows the first five CV curves of the V2O5-400 cathode at a scan
rate of 0.1 mV·s−1 in a potential range from 2.0 to 4.0 V. Four main pairs of redox peaks were observed
at around 3.59/3.64, 3.36/3.45, 3.16/3.34, and 2.26/2.51 V, respectively, which are associated with
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the reversible lithium intercalation/deintercalation into/from V2O5 to form α-LixV2O5, ε-LixV2O5,
δ-LixV2O5, and γ-LixV2O5, as expressed in Equations (1)–(4) [25,26,31,32]. In addition, the CV
curves were well overlapped, indicating the highly reactive reversibility and good cycling stability of
the cathode.

V2O5 + xLi+ + xe− ↔ α-LixV2O5 (x < 0.1) (1)

V2O5 + xLi+ + xe− ↔ ε-LixV2O5 (0.35 < x < 0.7) (2)

V2O5 + xLi+ + xe− ↔ δ-LixV2O5 (0.9 < x < 1) (3)

V2O5 + xLi+ + xe− ↔ γ-LixV2O5 (1 < x < 2) (4)
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theoretical value (294 mAh·g−1). The specific capacity is also superior or comparable to most of the 
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The electrochemical behavior of the V2O5 cathode was further investigated using the
charge/discharge technique. Figure 4 exhibits the initial discharge/charge curves of V2O5-300,
V2O5-400, and V2O5-500 cathodes at a current density of 0.2 C (1 C = 300 mA·g−1). It is observed
that the three cathodes share almost identical curve shapes, indicating a similar electrochemical
behavior. More specifically, four voltage plateaus at around 3.58, 3.37, 3.18, and 2.26 V in the discharge
curve correspond to the multi-step lithiation of V2O5 to form α-LixV2O5, ε-LixV2O5, δ-LixV2O5,

and γ-LixV2O5, respectively, which is consistent with the CV analysis. The voltage plateaus clearly
confirm the reverse-phase transformations in the discharge curve.
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The cycling performance of the hollow-structured V2O5 materials was examined using the
galvanostatic charge/discharge test. As shown in Figure 5, all of the V2O5 cathodes exhibited
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a reasonably good cycling performance over the 50 cycles at 0.2 C. It is important to note that the
V2O5-400 cathode delivers an initial discharge-specific capacity of 273 mAh·g−1, which is close to
the theoretical value (294 mAh·g−1). The specific capacity is also superior or comparable to most
of the reported results based on differently structured V2O5 cathodes, such as the V2O5 nanorods
(272 mAh·g−1) [8], V2O5 hollow microspheres (291 mAh·g−1) [9], V2O5 nanowires (278 mAh·g−1) [16],
V2O5 nanosheets (272 mAh·g−1) [33] and V2O5/PEDOT/MnO2 (185 mAh·g−1) [21]. In addition,
the initial specific capacity of the V2O5-400 cathode was higher than that of V2O5-300 (221 mAh·g−1)
and V2O5-500 (229 mAh·g−1), indicating that the annealing temperature exerts a considerable influence
on the electrochemical performance. Moreover, the V2O5-400 cathode retains a specific capacity of
about 189 mAh·g−1 after 50 cycles.
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In order to further demonstrate the performance of V2O5 hollow microspheres, the rate capability
of the cathodes at different current rates was evaluated, as shown in Figure 6. As the current rate
increased from 0.2 to 8 C, the V2O5-400 cathode showed the smallest capacity decrease, indicating the
best rate capability among the three cathodes. The discharge capacities of V2O5-400 cathode at the
current rates of 0.2, 0.5, 1, 2, 4, and 8 C were 256, 212, 198, 173, 144 and 114 mAh·g−1, respectively.
Even after deep cycling at 8 C, the V2O5-400 cathode could recover a specific capacity of about
210 mAh·g−1 when the current rate was returned to 0.2 C, further suggesting the good reactive
reversibility of V2O5-400.
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Electrochemical impedance spectroscopy (EIS) analysis was performed to better understand the
rate performance. Figure 7 shows the resulting Nyquist plots of the three cathodes. The Nyquist plots
are composed of a depressed semicircle in the high- to medium-frequency region and an inclined
line in the low-frequency region [33,34]. The x-intercept on the Z’ axis at the very high frequency
corresponds to the bulk resistance of the electrode, and this is identical for the three cathodes (~4 Ω),
as shown in the inset. The diameter of the semicircle in the high- to medium-frequency region
represents the charge-transfer resistance (Rct). The inclined line in the low-frequency region is related
to the Li-ion diffusion in the electrode materials. The EIS spectra of the cathodes were obtained in
the same frequency range of 10 mHz–100 kHz. It is noted that the V2O5-400 cathode showed much
smaller impedance in the low-frequency range, leading to the impedance of no more than 600 Ohms.
The Rct of V2O5-400 was estimated to be about 250 Ω, which is much lower than that of V2O5-300
(450 Ω) and V2O5-500 (1250 Ω). The reduced Rct could afford fast reaction kinetics for the Li-ion
intercalation-deintercalation in the V2O5-400 cathode, thereby rendering an excellent rate capability.
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The good electrochemical performance of the V2O5-400 cathode can be ascribed to the unique
hollow structure of the microspheres [9,29]. First, the nanoscale thickness of the shells can shorten the
ion/electron transport distance for rapid charge transfer reactions; Second, the hollow space within
the microspheres facilitates adequate electrolyte penetration and enlarges the effective contact area
of the electrode/electrolyte interfaces; Third, the hollow structure could accommodate the volume
change of V2O5 during the electrochemical processes, thus ensuring the good structural integrity
of the electrode. In addition, the superior performance of V2O5-400 cathode can be ascribed to
the moderate annealing temperature (400 ◦C) that renders high crystallinity of bulk materials and
a uniform nanoparticle-assembled shell structure.

3. Materials and Methods

Materials Synthesis: V2O5 precursor microspheres were prepared by a solvothermal method.
In a typical synthesis procedure, NH4VO3 (0.9 g) and poly(ethylene oxide)-block-poly(propylene
oxide)-blockpoly(ethylene oxide) copolymer (P123) (1.5 g, Mw = 5800) and 6 mL of 2 mol·L−1 HCl
were first dissolved in 90 mL of absolute ethanol under stirring. The clear mixture solution was then
transferred to a Teflon-lined autoclave and solvothermally treated at 200 ◦C for 24 h. The precipitates
were filtered and washed thoroughly with distilled water. Subsequently, the as-collected V2O5

precursor microspheres were annealed at 300, 400, and 500 ◦C for 2 h in air to obtain the final
V2O5-300, V2O5-400, and V2O5-500 samples, respectively.

Materials Characterization: the phase structure information was obtained by X-ray diffraction
(XRD, X’Pert Pro MPD, Philips, Almelo, The Netherlands) with Cu-kα radiation (1.5418 Å). The Raman
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spectrum was collected by Renishaw Invia RM200 (London, UK) in the spectral range of 90–1200 cm−1.
The morphology of the samples was observed by a field emission scanning electron microscopy
(FE-SEM, NanoSEM 450, FEI, Portland, OR, USA).

Electrochemical Measurements: the working electrodes were prepared by mixing active materials,
carbon black, and PVDF (in a weight ratio of 70:20:10). The mixture slurry was uniformly pasted on the
Al foil with a blade. The slurry-coated Al foil was dried at 120 ◦C in a vacuum oven overnight,
followed by punching into circular electrodes with a diameter of 12 mm. The thickness of the
cathode without Al foil is about 35 µm, which is more thicker than most of V2O5-based cathodes.
Electrochemical measurements were carried out using coin-type cells (CR2032). Lithium plates were
used as the counter electrode, and a 1 M solution of LiPF6 in ethylene carbon (EC)/dimethyl carbonate
(DMC)/diethyl carbonate (1:1:1 w/w/w) was used as the electrolyte. Cyclic voltammetry (CV) and
electrochemical impedance spectroscopy (EIS) were tested with a Solartron electrochemical workstation
(1260 + 1287, Bognor Regis, UK). Galvanostatic charge/discharge cycling test was conducted using
a Land Battery Testing system (Land, Wuhan, China). The specific capacities are calculated based on
the mass of the active material.

4. Conclusions

In summary, V2O5 hollow microspheres were solvothermally synthesized by using P123 surfactant
as the soft template and NH4VO3 as the low-cost vanadium source. The hollow-structured V2O5

can serve as an excellent cathode material for lithium-ion batteries, and it delivers a specific capacity
as high as 273 mAh·g−1, a high-rate capacity of 114 mAh·g−1 at 8 C and good cycling stability.
The superior electrochemical properties can be attributed to the unique hollow structure that promotes
the electronic/ionic transport and accommodates the structural change. The present study also
demonstrates that V2O5 hollow microspheres can be a promising alternative cathode material for
next-generation lithium-ion batteries.
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