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ABSTRACT

Objective: To propose a paradigm for a scalable time-aware clinical data search, and to describe the design, im-

plementation and use of a search engine realizing this paradigm.

Materials and Methods: The Advanced Cohort Engine (ACE) uses a temporal query language and in-memory

datastore of patient objects to provide a fast, scalable, and expressive time-aware search. ACE accepts data in

the Observational Medicine Outcomes Partnership Common Data Model, and is configurable to balance perfor-

mance with compute cost. ACE’s temporal query language supports automatic query expansion using clinical

knowledge graphs. The ACE API can be used with R, Python, Java, HTTP, and a Web UI.

Results: ACE offers an expressive query language for complex temporal search across many clinical data types

with multiple output options. ACE enables electronic phenotyping and cohort-building with subsecond re-

sponse times in searching the data of millions of patients for a variety of use cases.

Discussion: ACE enables fast, time-aware search using a patient object-centric datastore, thereby overcoming

many technical and design shortcomings of relational algebra-based querying. Integrating electronic phenotype

development with cohort-building enables a variety of high-value uses for a learning health system. Tradeoffs

include the need to learn a new query language and the technical setup burden.

Conclusion: ACE is a tool that combines a unique query language for time-aware search of longitudinal patient

records with a patient object datastore for rapid electronic phenotyping, cohort extraction, and exploratory data

analyses.
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INTRODUCTION

In a learning health system, the capability to search large collections

of patient records is essential.1–3 Many tools have been developed

for searching patient data that are designed for a range of use cases

including data entry and retrieval to inform clinical care,4–7 identify-

ing patient cohorts from clinical data warehouses for research stud-

ies,8–14 securely federating search across clinical data warehouses,15

data delivery,16 creating clinical dashboards,17 exploring clinical
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text,18 and “always on” alerting systems that flag patients for poten-

tial enrollment in clinical trials based on electronic medical records

in health systems.19,20

Querying patient data typically relies on a form-based inter-

face13,16,21,22 which allows specifying a cohort of interest by select-

ing 1 or more features from a list of possible features, using elements

such as text boxes and dropdown lists of possible values to specify

the restrictions on features. Such form-based modes of interaction

are in contrast to search which dominates content access on the

World Wide Web. Search minimizes the structured elements re-

quired to initiate a search and emphasizes speed and scalability.

These 2 approaches—of structured query versus search—have dif-

ferent trade-offs: form-based interfaces enable complex and detailed

queries with high precision, but require a high level of user expertise;

search engines prioritize simplicity at the expense of ambiguity in

the meaning of searches, potentially resulting in a mismatch between

the intent of a given search and its results.

To combine the ease of search with the expressivity and precision

of structured queries, we developed the Advanced Cohort Engine

(ACE).23 Central to ACE is a temporal query language (TQL) that

operates over an in-memory datastore of patient objects in which all

the data of a single patient are stored together and indexed both by

a precomputed patient feature index and by the time they occurred.

This design avoids the performance issues that arise in relational

databases,24 which have no inherent notion of time and rely on com-

putationally expensive join operations to query across record types

and sequences of events. As an example of the kind of search ACE

enables, consider a scenario in which a user wishes to find type II di-

abetic patients for whom first line therapy proved ineffective.25

They have to identify type II diabetic patients who received a first

line diabetes medication for the first time after their diagnosis, and

then restrict this group to those whose glycated hemoglobin

(HbA1c) remained high after that medication appeared in their re-

cord. Doing so requires the ability to query diagnosis records, medi-

cation records, and laboratory test results and to express complex

temporal relationships between them including before, after, and for

the first time. In addition, this task requires specifying what

“diabetes medications” are and which ones qualify as “first line.”

ACE can traverse multiple knowledge graphs during search for this

purpose, to retrieve patient records of any drug used to treat diabe-

tes via parent-child and used-to-treat relationships from public

ontologies.

ACE enables a conversational approach for interacting with data,

wherein a user initiates a search to get a response within a few seconds

and can inspect the results retrieved to validate the search criteria. This

is especially useful for electronic phenotyping, the process of defining

the necessary and sufficient criteria for identifying patients with a condi-

tion of interest. Moreover, the “conversation” between the user and

dataset, which ACE facilitates, enables rapid iteration, so that users can

quickly devise new searches based on the results of prior searches, essen-

tially combining electronic phenotyping and cohort-building into a sin-

gle iterative search process. This combined functionality supports high-

value use cases that health systems and academic medical centers have,

such as data vending, quality metric reporting, rapid clinical trial re-

cruitment, generating labeled data for machine learning, and using ag-

gregate patient data at the bedside.

In the remainder of the article, we describe the design and archi-

tecture of ACE, the TQL, and the user interface. We describe de-

tailed use cases for ACE with example searches, and present the

results of experiments to evaluate ACE performance. Lastly, we dis-

cuss the benefits and limitations of ACE.

OBJECTIVE

The objective of this work is to propose a new paradigm for scalable

search of longitudinal patient records via an expressive TQL cou-

pled with an in-memory patient datastore and to describe the imple-

mentation, use cases, and performance of a search engine realizing

this paradigm.

MATERIALS AND METHODS

The existing industry standard in cohort-building tools is a combina-

tion of a relational database back end with a front end to translate

form-generated queries from a user interface into SQL queries. Solu-

tions that assist in query formulation via a form-based visual query

UI (such as ATLAS by the observational data science and informat-

ics [OHDSI] community26) determine the time from question idea-

tion to query formulation. Query execution time and result retrieval

time are based largely on the performance of the underlying data-

base engine.

A conversational approach to interacting with data requires the

time from question ideation to query formulation as well as the sub-

sequent query execution and result retrieval to be extremely short.

We first describe the TQL and query execution process that enables

such rapid search followed by how ACE uses knowledge graphs to

expand search results as well as details of the in-memory datastore

search and the different retrieval mechanisms. We then describe the

2 user interfaces for search and result inspection. ACE is designed to

be compatible with OHDSI and the Observational Medical Out-

come Partnership (OMOP) Common Data Model (CDM). Details

of the ACE extract-transform-load (ETL) from the OMOP CDM

are provided in the Supplementary Materials, along with details on

how to license ACE for commercial or (free) academic use. ACE can

operate over data structured using other schemas provided they con-

tain at least 1 of the search elements that ACE supports (eg, ICD

codes or medication records). ACE can also be used with other clini-

cal CDMs such as i2b2 via custom ETLs. We have tested this func-

tionality by developing custom ETLs for other source databases,

such as IBM MarketScan and the Optum Clinformatics Data Mart.

The temporal query language
The Structured Query Language (SQL) underlying most relational

databases does not natively support expressing temporal relation-

ships among data elements or executing temporal queries. Searching

by timing of events in a patient’s longitudinal record with SQL is de-

pendent on the table structures that capture information about

when in time a clinical event occurred. Prior efforts have either fo-

cused on developing novel temporal language commands extending

the SQL language itself and implemented in the underlying SQL en-

gine27 or on developing interfaces that allow translating a temporal

query into a SQL query.26,28–32 Our effort focused on developing a

novel TQL implemented in a non-SQL datastore.33,34

The ACE TQL introduces a temporal algebra which allows ex-

pression of complex temporal relationships in a human readable way

that is agnostic of the source data structure. Schema agnosticism is

necessary to allow consistent querying over multiple datasets poten-

tially structured using multiple schemas. Therefore, we abstract the

language algebra from the features seen in individual datasets. TQL

thus consists of 2 components: an immutable language algebra and

feature-specific commands. Feature-specific commands depend on

the source data. In the case of electronic health records and insurance

claims data, the features include diagnosis and procedure codes
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(ICD9, ICD10, CPT), drug codes (RxCUI and ATC), visit types, note

types, mentions of clinical terms in notes, encounters, insurance plan

enrollment information, laboratory and vitals measurements, ages,

years, and demographics. To search clinical notes content, the TEXT

command allows users to specify a word or phrase to search for as

well as modifiers (including the kind of note, whether the word/

phrase is negated, and whether the word/phrase occurs in the context

of family history). The set of possible words and phrases that can be

searched depends on the text processing system used to generate the

processed data that ACE ingests during ETL, such as Trove35 (a sys-

tem we developed for concept and relation extraction that is OMOP

CDM compatible), cTAKES,36 and MedLEE,37 among many others.

ACE’s feature-specific commands can be modified for different needs

since they exist separately from the language algebra.

The TQL algebra encapsulates the Boolean and temporal rela-

tionships that can be expressed in TQL. TQL’s Boolean algebra con-

sists of AND (return patients with a record of all specified features

at any time), OR (return patients with a record of any of the speci-

fied features at any time), and NOT (return patients without any of

the specified features). The corresponding temporal algebra consists

of INTERSECT (return time intervals where it was true that a pa-

tient had a record of all specified features occurring at the same

time), UNION (return the time intervals where it was true that a pa-

tient had a record of any of the specified features occurring at any

time), INVERT (return the time intervals where it was not true that

a patient had a record of any of the specified features) and SE-

QUENCE (return time intervals if 2 events happen in a particular

time sequence). TQL supports over 100 different commands, many

of which are built upon these core commands, providing high ex-

pressivity in temporal queries. As an example, consider the follow-

ing cohort definition: Male patients over 65 years old who have type

II diabetes (defined by at least 2 occurrences of type II diabetes

ICD9 codes or 2 elevated A1C lab results) with no history of stroke

and who went on to have a stroke within 3 months after administra-

tion of glipizide.

This cohort definition is shown as TQL commands in Box 1. The

first few lines define what we mean by stroke, patients older than 65

years, and glipizide, each item becoming their own variable. A vari-

able definition starts with the keyword var followed by the name of

the variable, which is followed by the TQL expression defining the

variable. The variables can then be used in subsequent variables, or

as a query, by referencing their name preceded by the $ character.

• Stroke is defined as ICD9 code 434.91
• Male patients over 65 is an intersection of people with male

GENDER and with AGE over 65.
• Glipizide is defined as RX 310490 (RX codes are drawn from

RxNorm’s RxCUI set). We could expand the definition to other

medications of the same class (glucose-lowering drugs) by using

mappings from RxCUIs to the Anatomic Therapeutic Code

(ATC) classification system.
• No history of stroke uses the NO HISTORY OF command to re-

turn either the entire patient’s timeline (if stroke never occurred

for a patient), or the part of the timeline before any stroke oc-

curred.
• Type II diabetes is a bit more complicated. It takes patients who

had at least 2 instances of ICD9¼“250.00” (the ICD9 code for

type II diabetes mellitus) or 2 instances of high HbA1c measure-

ment (indicated by the LOINC code 4548-8). The UNION

command takes the combination of both of these, and FIRST

MENTION returns the earliest of the intervals returned by the

UNION, to determine the start of each patient’s diabetes diag-

nosis.
• Diabetes with no history of stroke uses INTERSECT to return

the temporal intersection of the first occurrence of diabetes with

the portion of each patient’s record where they had not experi-

enced a stroke event. This query will exclude patients who had a

stroke prior to their diabetes diagnosis.
• Diabetes then glipizide is a SEQUENCE command that looks for

patients with an occurrence of diabetes (with no history of

stroke) followed by a prescription of glipizide. The “*” modifier

indicates which time intervals to return. In this case, we want the

glipizide time intervals to be returned, so they can be used to re-

strict the search for subsequent stroke events.
• Glipizide then stroke takes the result of the previous variable and

looks for a stroke in the following 3 months. The SEQUENCE

command is very versatile and can be followed by parameters to,

for example, specify the presence or absence of events within a

given time range (see the ACE TQL documentation in the Sup-

plementary Materials for a full description of the SEQUENCE

command syntax).

The final command, executed as a query, looks for the intersec-

tion of stroke events following glipizide prescriptions in male

patients over the age of 65.

Use of knowledge graphs in specific commands
For features such as ICD9 and 10 codes, which have a hierarchy

among them, ACE stores the hierarchical expansion resulting from a

transitive closure on the parent-child relationship in the in-memory

patient object38,39 motivated by prior work on incorporating

ontology-derived knowledge into database querying examples.40–45

If a child node exists in a patient’s data, a query for any of its parent

nodes will return that patient record. For example, if

ICD9¼“250.02” exists in a patient’s timeline, then during the ex-

traction process, all the parent nodes of the “250.02” code are also

associated to the same time point in the patient object. Querying

ICD9¼“250.0” and ICD9¼“250”, as well as ICD9¼“250.02” will

return the patient record. When such hierarchical expansion is not

desired, it can be turned off by using the ORIGINAL command,

which returns only the codes that were originally present in the

source data.

Hierarchical expansion is available for ICD9 and ICD10 codes

as well as for drugs via the Anatomic Therapeutic Chemical (ATC)

classification system hierarchy. Every drug’s RxNorm46 identifier

(RxCUI) is expanded to the appropriate ATC parent nodes based on

mappings between RxCUIs and ATC codes and ATC child nodes to

their parent nodes. For example, patient records for acetaminophen

(RxCUI 161) will include the following ATC classes:

• N02BE (Anilides)
• N02B (OTHER ANALGESICS AND ANTIPYRETICS)
• N02 (Analgesics)
• N (Nervous System)

This means that instead of having to list all analgesics in a query,

we can use the ATC class (N02) to find patients who received an an-

algesic.

Fast search over a datastore of patient objects
In the ACE search engine, instead of grouping and storing data into

tables by feature (for example, all ICD diagnosis codes in 1 table, all
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laboratory test results in another, with additional dictionary tables

for ICD codes and laboratory test codes), ACE data are grouped and

stored as patient objects (one per patient record), and organized by a

feature index.47–49 As a result, it is possible to perform very fast

lookup operations using single features to determine which patient

objects need to be further evaluated to determine whether they

should be included in the result of a search. A full evaluation—ex-

amining all features against all declared search constraints—is done

on only the subset of patient objects that have a chance to produce a

positive result. This second evaluation is very fast since all the data

for a given patient can be inspected without having to perform addi-

tional queries or table joins.

Consider the example of identifying patients over 65 with diabe-

tes and high blood glucose from the 2.8 million Stanford Health

Care patients in our local ACE instance. ACE fully evaluates only

the patients with the following features:

1. Male patients over 65 years old (�270 000 patients)

2. Patients with ICD9 250.00 (�58 000 patients)

3. Patients with a blood glucose lab (�260 000 patients)

Fewer than 21 000 patient records have all 3 of these features.

The operation to determine the number of patients to be fully evalu-

ated further to decide if they are a valid match to the query takes 38

milliseconds—far less time than sequentially evaluating 2.8 million

patient records to find the 58 000 with the code 250.00 and then se-

quentially determining the overlap with those that are over 65 and

have a blood glucose lab.

This setup overcomes the main limitation of relational data-

bases where data are separated into specific tables and wherein a

search for a specific feature value requires examining the entire ta-

ble. While indexing certainly speeds up this process, increasing

the size of the table decreases performance; this makes it difficult

to scale up without a substantial increase in resource usage. In ad-

dition, as features are added to a query, it requires a search in

other tables. In the worst-case scenario (a search criteria that

includes every feature type such as diagnosis codes, drugs, age,

demographics, procedure codes, laboratory results, etc), the

search must touch every table in the database. Relational data-

bases also rely on dictionaries, where a data table contains values

that are mapped to 1 or more other tables (a dictionary), which

contains a record for each unique feature value. While this

decreases the size of the primary data table, a query requires a

JOIN operation with the dictionary table(s) to execute a search.

This process is computationally expensive and, in the case of large

data tables and large dictionary tables, can result in queries taking

days to complete.

Scalability with distributed computing
The ACE datastore is separated into shards, which can be partially

or fully loaded into memory. Optimal performance is achieved by

loading all the shards into the memory, which leads to query times

of less than 1 second. Increasing the number of shards read from

disk reduces the hardware requirements but leads to query perfor-

mance degradation. Shards are autonomous and self-contained such

that the entire patient datastore can be split into different subsets,

which can be then instantiated on different computers. One com-

puter then functions as a primary node that distributes queries into

other secondary nodes in a cluster, which can further speed up query

execution performance. In the results, we present 2 server configura-

tions and the average query times these configurations achieve for

core TQL commands.

ACE user interfaces
ACE shows search results in 2 ways: (1) a summary view of patient

records (Figure 1) retrieved by a search, which includes the number

of patient records meeting the search criteria, a summary of the

demographics (histograms of age, race/ethnicity, and length of re-

cord), and the most frequently occurring diagnosis, procedure, medi-

cation, and laboratory test records; and (2) a patient timeline view

(Figure 2) that represents each patient record retrieved as a horizon-

tal timeline, highlighting the time(s) that a given search criterion

was true. The patient timeline view, motivated by prior work dem-

onstrating the value of such visualization,18,50–56 allows a user to

rapidly inspect search results to determine if they are what the user

intended to retrieve.

Data retrieval
ACE is a representational state transfer (REST) application pro-

gramming interface (API) search engine, so its functionality is avail-

able both via a Web UI and by directly querying the underlying API.

We have also developed Java, Python, and R libraries for calls to the

ACE API. These libraries also provide the ability to convert the

JSON responses from ACE API calls into data objects that can be di-

rectly used with these programming languages. Complete API docu-

mentation is available in the Supplementary Materials. The API

code is available at https://github.com/som-shahlab/ACEapi and the

R package at https://cran.r-project.org/web/packages/ACEsearch/.

RESULTS

ACE’s unique combination of a TQL for expressing complex tempo-

ral relationships among data elements with fast retrieval enabled by

Box 1. Temporal query language commands to define a cohort of male patients over 65 years old who are type II diabetic,

with no history of stroke, and who went on to have a stroke within 3 months after administration of glipizide

var stroke ¼ ICD9¼“434.91”
var male_patients_over_65¼INTERSECT(GENDER¼”male”, AGE(65 YEARS, MAX))

var glipizide ¼ RX¼310490
var no_history_of_stroke ¼ NO HISTORY OF ($stroke)

var diabetes ¼ FIRST MENTION(UNION(COUNT(ICD9¼“250.00”, 2, MAX),

COUNT(LABS(“4548-4 [%]”, 8, MAX), 2, MAX)))

var diabetes_no_hx_stroke ¼ INTERSECT($diabetes, $no_history_of_stroke)

var diabetes_then_glipizide ¼ SEQUENCE($diabetes_no_hx_stroke, $glipizide*)

var glipizide_then_stroke ¼ SEQUENCE($diabetes_then_glipizide, $stroke*)þ(-3 MONTHS, 0)

INTERSECT($male_patients_over_65, $glipizide_then_stroke)

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 7 1471

https://github.com/som-shahlab/ACEapi
https://cran.r-project.org/web/packages/ACEsearch/


an in-memory datastore of patient objects supports a variety of use

cases. We describe these, along with example queries. We then re-

port on experiments to profile ACE’s performance and provide a

comparative summary with existing search tools for clinical data in

the Supplementary Materials.

Use cases
Electronic phenotyping is the process of defining the necessary and

sufficient criteria that a patient’s record must satisfy to consider an

exposure or outcome to have occurred for that patient.57 Combining

the process of defining the phenotype with the ability to retrieve and

inspect the patient records that satisfy those criteria in a patient

timeline view allows real-time review and rapid iteration of pheno-

type definitions, enabling multiple use cases.

Using aggregate patient data at the bedside

The first use of ACE was to support the vision of using aggregate

patient data at the bedside2 via an informatics consultation service,

which was an IRB-approved study of the use of routinely collected

data on millions of individuals to provide on-demand evidence in

Figure 1. Summary view showing the number of patients meeting the search criteria, a summary of their demographics (histograms of age, race/ethnicity, and

length of record), and their most frequently occurring diagnosis, procedure, medication, and laboratory test records.
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situations where good evidence is lacking.58 ACE was used to de-

termine the size of patient cohorts meeting a set of specific criteria

and to retrieve the patient records for subsequent statistical analy-

ses. These tasks subsume activities referred to as electronic pheno-

typing, or a cohort definition if sufficiently complex, and cohort

retrieval.59

Over the course of 1.5 years, ACE was used to define an esti-

mated 5000 electronic phenotypes and retrieve the associated pa-

tient cohorts. Offering consultations thus served as a functional

assessment of the utility of ACE and its ability to address the cohort

discovery and creation needs of users. The criteria expressed ranged

in complexity from single 1-line queries (eg, patients who underwent

spinal surgeries, as defined by a series of CPT codes) to queries that

combined many commands (eg, adult patients with a diagnosis of

diffuse B-cell lymphoma who received Neulasta, but not Neupogen,

as well as chemotherapy within the 3 days preceding or 8 days fol-

lowing Neulasta administration, and then went on to have neutrope-

nia, defined as an absolute neutrophil count less than 500 within 28

days of the start of their chemotherapy regimen).

ACE made it possible to iterate on complex query definitions, in

partnership with clinicians, until the desired patient cohort was re-

trieved for each consultation. To assess feasibility, often a derivation

of simple summary statistics (eg, the mean of a value) was required,

which was enabled by data export functions allowing patient-level

retrieval of laboratory test results and other numeric values (eg,

height, weight, body temperature). Being a clinician-facing service,

consultations had to be completed within 1–3 days, which was only

possible by reducing the time spent on phenotyping and cohort-

building to a few hours, allowing sufficient time to be spent on sta-

tistical analyses required by the consultation request.

Since then, a number of other use cases have emerged, all pow-

ered by the ability to combine electronic phenotyping and cohort-

building into a rapid, unified, and iterative process.

Quality metric reporting

Hospital operations teams require mechanisms to generate reports

summarizing hospital performance along many axes, including pa-

Figure 2. Patient timeline view, displaying each patient as a row and showing the time intervals where a given search criterion was satisfied in different colors.

For example, glipizide prescription records following type II diabetes diagnosis are shown in green, and subsequent stroke events are shown in pink.
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Box 2. ACE variables for HEDIS measure on the avoidance of antibiotics to treat bronchitis

var age ¼ AGE(18 YEARS, 64 YEARS)

var bronchitis ¼ ICD9¼“466.0”
var hiv ¼ ICD9¼“042”
var mal_neo ¼ UNION(ICD9¼“140”, ICD9¼“141”, ICD9¼“142”, ICD9¼“143”, ICD9¼“144”, ICD9¼“145”,

ICD9¼“146”, ICD9¼“147”, ICD9¼“148”, ICD9¼“149”, ICD9¼“150”, ICD9¼“151”, ICD9¼“152”, ICD9¼“153”,
ICD9¼“154”, ICD9¼“155”, ICD9¼“156”, ICD9¼“157”, ICD9¼“158”, ICD9¼“159”, ICD9¼“160”, ICD9¼“161”,
ICD9¼“162”, ICD9¼“163”, ICD9¼“164”, ICD9¼“165”, ICD9¼“170”, ICD9¼“171”, ICD9¼“172”, ICD9¼“173”,
ICD9¼“174”, ICD9¼“176”, ICD9¼“180”, ICD9¼“182”, ICD9¼“183”, ICD9¼“184”, ICD9¼“186”, ICD9¼“187”,
ICD9¼“188”, ICD9¼“189”, ICD9¼“190”, ICD9¼“191”, ICD9¼“192”, ICD9¼“194”, ICD9¼“195”, ICD9¼“196”,
ICD9¼“197”, ICD9¼“198”, ICD9¼“199”, ICD9¼“200”, ICD9¼“201”, ICD9¼“202”, ICD9¼“203”, ICD9¼“204”,
ICD9¼“205”, ICD9¼“206”, ICD9¼“207”, ICD9¼“208”, ICD9¼“209”)

var emphysema ¼ UNION(ICD9¼“492”)
var copd ¼ UNION(ICD9¼“493.2”, ICD9¼“496”)
var cystic_fibrosis ¼ UNION(ICD9¼“277.0”)
var ccvs ¼ UNION(ICD9¼“279”, ICD9¼“491”, ICD9¼“494”, ICD9¼“495”, ICD9¼“500”, ICD9¼“506”,

ICD9¼“507”, ICD9¼“508”, ICD9¼“510”, ICD9¼“511”, ICD9¼“512”, ICD9¼“513”, ICD9¼“516”, ICD9¼“517”,
ICD9¼“518”, ICD9¼“519”, ICD9¼“010”, ICD9¼“011”, ICD9¼“012”, ICD9¼“013”, ICD9¼“014”, ICD9¼“015”,
ICD9¼“016”, ICD9¼“017”, ICD9¼“018”)

var cdvs ¼ UNION(ICD9¼“001”, ICD9¼“002”, ICD9¼“003”, ICD9¼“004”, ICD9¼“005”, ICD9¼“006”,
ICD9¼“007”, ICD9¼“008”, ICD9¼“009”, ICD9¼“033”, ICD9¼“041.9”, ICD9¼“088”, ICD9¼“382”, ICD9¼“461”,
ICD9¼“462”, ICD9¼“034.0”, ICD9¼“473”, ICD9¼“464.1”, ICD9¼“464.2”, ICD9¼“464.3”, ICD9¼“474”,
ICD9¼“478.21”, ICD9¼“478.24”, ICD9¼“478.29”, ICD9¼“478.71”, ICD9¼“478.79”, ICD9¼“478.9”, ICD9¼“601”,
ICD9¼“383”, ICD9¼“681”, ICD9¼“682”, ICD9¼“730”, ICD9¼“686”, ICD9¼“482”, ICD9¼“483”, ICD9¼“484”,
ICD9¼“486”, ICD9¼“098”, ICD9¼“099”, ICD9¼“V01.6”, ICD9¼“090”, ICD9¼“091”, ICD9¼“092”, ICD9¼“093”,
ICD9¼“094”, ICD9¼“095”, ICD9¼“096”,ICD9¼“097”, ICD9¼“098”, ICD9¼“099”, ICD9¼“078.88”,
ICD9¼“079.88”)

var antibiotic ¼ UNION(RX¼641, RX¼142438, RX¼10109, RX¼10627, RX¼723, RX¼733, RX¼8339,
RX¼10591, RX¼2177, RX¼2180, RX¼2231, RX¼20481, RX¼274786, RX¼2582, RX¼18631, RX¼21212, RX¼4053,
RX¼1272, RX¼2348, RX¼229369, RX¼22299, RX¼190376, RX¼6922, RX¼11124, RX¼7980, RX¼7984, RX¼3356,
RX¼7233, RX¼7773, RX¼9384, RX¼2176, RX¼2187, RX¼19552, RX¼2189, RX¼2194, RX¼10171, RX¼10180,
RX¼3640, RX¼6980, RX¼10395, RX¼25037, RX¼83682, RX¼25033, RX¼2186, RX¼20489, RX¼2191, RX¼20492,
RX¼2193, RX¼4550, RX¼7454, RX¼10829)

var bronchitis_cohort ¼ INTERSECT($bronchitis, $age)

var no_ccvs ¼ UNION(INTERSECT($bronchitis_cohort, NEVER HAD($ccvs)),SEQUENCE($ccvs, $bronchitis_

cohort*)-(-1 YEAR, 1 DAY))

var no_cdvs ¼ UNION(INTERSECT($bronchitis_cohort, NEVER HAD($cdvs)),SEQUENCE($cdvs, $bronchitis_

cohort*)-(-30 DAYS, 8 DAYS))

var no_emphysema ¼ UNION(INTERSECT($bronchitis_cohort, NEVER HAD($emphysema)), SEQUENCE($emphysema,

$bronchitis_cohort*)-(-1 YEAR, 1 DAY))

var no_copd ¼ UNION(INTERSECT($bronchitis_cohort, NEVER HAD($copd)), SEQUENCE($copd, $bronchitis_

cohort*)-(-1 YEAR, 1 DAY))

var no_cf ¼ UNION(INTERSECT($bronchitis_cohort, NEVER HAD($cystic_fibrosis)), SEQUENCE($cystic_

fibrosis, $bronchitis_cohort*)-(-1 YEAR, 1 DAY))

var no_hiv ¼ UNION(INTERSECT($bronchitis_cohort, NEVER HAD($hiv)), SEQUENCE($hiv, $bronchitis_

cohort*)-(-1 YEAR, 1 DAY))

var no_mal_neo ¼ UNION(INTERSECT($bronchitis_cohort, NEVER HAD($mal_neo)), SEQUENCE($mal_neo,

$bronchitis_cohort*)-(-1 YEAR, 1 DAY))

var no_antibiotic ¼ UNION(INTERSECT($bronchitis_cohort, NEVER HAD($antibiotic)), SEQUENCE($antibi-

otic, $bronchitis_cohort*)-(-1 MONTH, -1 DAY))

var denominator ¼ INTERSECT($no_ccvs, $no_cdvs, $no_emphysema, $no_copd, $no_cf, $no_hiv, $no_mal_

neo, $no_antibiotic)

var bronchitis_then_antibiotic ¼ SEQUENCE($denominator, $antibiotic*) þ (-3 DAYS, 0 DAYS)

var numerator ¼ DIFF($denominator, $bronchitis_then_antibiotic)

$numerator
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tient outcomes. Many such performance indicators are quantified

using quality metrics developed and maintained by independent en-

tities such as the National Committee for Quality Assurance

(NCQA). Quality metrics require the ability to identify patients with

a given diagnosis or who received a specific therapy, and to track

subsequent outcomes including readmission, infection, or death.

Each of these criteria are essentially an electronic phenotype and

are thus amenable for execution using ACE. For example, we can

translate NCQA Healthcare Effectiveness Data and Materials Set

(HEDIS) measures to ACE queries (see Box 2 for an example),

which can then be incorporated into performance reports.

Clinical trial recruitment

The first step in clinical trial recruitment involves using inclusion

and exclusion criteria for participants for identifying eligible

patients who meet those criteria. Trial managers need the ability to

search patient records using the clinical trial criteria to identify po-

tential eligible participants or to set up automatic alerting when a

patient meeting a given trial’s criteria receives care from their health

system,60,61 and a great number of systems have been previously de-

veloped to support eligibility screening.62,63

ACE allows the expression of clinical trial inclusion and exclu-

sion criteria as variables, which can be executed as a 1-time search

to estimate the eligible patient pool, or on an ongoing basis via the

ACE API to monitor for newly matched records. For example, Box

3 shows inclusion criteria for the Elevate! Clinical Trial as an ACE

search.

Generating labeled training data

There is a growing body of research on the benefits and tradeoffs of

using “imperfectly labeled” data to train machine learning mod-

els.64,65 This research has demonstrated that when data can be com-

putationally labeled at a scale sufficient for deep learning, the

performance gains of models learned using large training data sets

often outweigh potential inaccuracies in automated labeling meth-

ods, in comparison to models trained on smaller, expert-labeled

data (which are expensive to obtain at a large scale).66–68 For exam-

ple, we developed a weakly supervised method to identify complica-

tions of post-implant complications in hip replacement patients,69

including the time that a complication occurred. Assigning the time

of events is essential when creating labeled training data for such use

cases.

ACE enables the generation of large labeled training data sets by

combining its TQL, which expresses complex electronic phenotypes

that can determine the time that a phenotype was true for each pa-

tient, with the API that outputs data as flat files. For example, if we

define type 2 diabetes (T2D) as anyone with at least 2 T2D codes or

2 occurrences of an abnormal blood glucose laboratory test result,

and no type 1 diabetes diagnosis codes, the ACE query in Box 4

would retrieve those patients satisfying that definition, as well as the

time that definition was true, allowing us to use these data to train a

model to predict onset of T2D.

Institution wide data vending services

Hospitals and schools of medicine often rely on dedicated teams of

data analysts and scientists to provide datasets for research, clinical

care, and operational purposes. The core work of these teams, often

called “honest broker” teams,70 involves searching, retrieving, and

manipulating patient data records that meet 1 or more electronic

phenotype definitions at specific time points. As a single tool that

enables temporal querying, phenotyping, and cohort extraction in

various data output formats, ACE is well suited to support institu-

tion wide cohort extraction services for accelerating efforts support-

ing clinical data science.71

Performance
We measured the time needed to define the type II diabetes cohort in

Box 1 using ACE’s TQL and the time required to define the cohort

using SQL over an OMOP CDM v5.3 BigQuery database contain-

ing the same data. It took under 5 minutes to define the type II dia-

betes cohort in TQL. The same cohort expressed in SQL took an

experienced research engineer 2.5 hours to construct. The TQL

query is 9 lines, while the corresponding SQL query is over 240 lines

(see Supplementary Materials, Query writing times usingTQL and

BigQuery SQL on OMOP CDM).

To quantify the performance of ACE on average, we generated

100 queries for the 5 core commands (AND, OR, INTERSECT,

UNION, SEQUENCE), where the query parameters were randomly

specified as any of ICD9, ICD10, CPT, or RX, or some combination

thereof. We executed these queries on an ACE datastore composed

of records from Stanford Medicine’s clinical data warehouse (CDW)

containing data for 2.8 million patients, deployed on a single

computer with 2 cores and 37 GB of RAM. We also executed equiv-

alent SQL queries on our School of Medicine BigQuery instance

Box 3. Inclusion criteria to identify candidate participants for the Elevate! clinical trial.

var age ¼ AGE(70 YEARS, MAX)

var female ¼ GENDER¼“FEMALE”
var bcis ¼ INTERSECT(ICD9¼“233.0”, NO HISTORY OF(ICD9¼“174”))
INTERSECT($bcis, $age, $female)

Box 4. Labeling diabetic patients and the time that they first met the necessary criteria.

var t2d ¼ FIRST MENTION(UNION(COUNT(ICD9¼“250.00”, 2, MAX), COUNT(LABS(“4548-4 [%]”, 8, MAX), 2, MAX)))

var t1d ¼ OR(ICD9¼“250.01”, ICD9¼“250.03”)
var t2d_no_t1d ¼ INTERSECT($t2d, NOT($t1d))

EXPORT($t2d_no_t1d, TIME¼$t2d_no_t1d, “T2D”¼$t2d_no_t1d)
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over the same Stanford Medicine CDW records. Lastly, we executed

these queries on an ACE datastore composed of insurance claims

records for �65 million patients from the Optum Clinformatics

Datamart, deployed on a cluster of 3 computers with 4 cores each

and 127 GB of RAM. The query execution times resulting from

these experiments are summarized in Table 1.

We approximated the RAM usage for a given number of patient

records based on the Stanford OMOP CDM. The sum of the num-

ber of rows of all the tables containing medical events, including

person, visit, condition, procedure, measurement, drug exposure,

note, and note text annotation records is 2.176 billion rows. When

the data from this CDM are converted to the ACE datastore, ACE

requires 37GB of RAM to store and query these records. Therefore,

the approximate ratio is 58 million source data rows per 1GB of

RAM usage. It should be noted that this ratio may change depending

on the distribution of specific kinds of records (eg, measurement

records sometimes contain more data than diagnosis code records,

and thus require more memory). We are able to achieve such low

memory usage using techniques described in US Patent Application

US20200057767A1.23

DISCUSSION

A learning health system based on clinical practice, and which can

tailor patient care based on past experience, requires the ability to

effectively search and retrieve patient data. While many clinical data

search and retrieval tools have been previously developed—some to

support specific clinical applications72 and others to support data

access for a variety of uses21—most do not support a conversational

approach to medical data search first envisioned in the 1970s.73 The

majority of current tools are built on top of relational databases,

with form-based query interfaces which have a number of technical

shortcomings and challenges for clinical search use cases highlighted

in the Methods.

ACE was designed to address these challenges while excelling in

performance and versatility. ACE is built on an in-memory patient

object datastore to provide fast and expressive search functionality.

ACE’s TQL enables the execution of complex searches with detailed

temporal criteria across the common data types in electronic health

records and claims. Search result validation is possible using the

ACE Explorer’s graphical representation of patient timelines. ACE

supports ontology-based querying by using parent-child hierarchies

among disease and medication codes at search time. ACE uses

OHDSI vocabularies as the backbone for this automated query ex-

pansion, and thus can be used across OHDSI sites that have OMOP

CDM datasets, and with any terminologies and ontologies that are

mapped to the OHDSI vocabularies. Setting up an ACE endpoint

requires a software engineer, and ACE does require users to learn a

new query language and understand temporal algebra. However,

these requirements are comparable to that of any clinical data search

tool that requires similar effort to expose clinical data. We have cre-

ated extensive documentation and training material, which accom-

pany this manuscript to support users and engineers.

ACE, and our study of its use, also has limitations. Firstly, ACE

does not provide data error checking or cleaning functionality. It is

assumed that any ingested data is sufficiently processed and quality-

checked prior to ETL. In a similar vein, ACE searches are limited to

the temporal resolution of the source data. Taking advantage of ad-

ditional temporal information, which is only available in clinical

notes74 during search, would require sites to run their own text

processing tool. Secondly, our evaluation of ACE’s functionality and

performance did not include a formal qualitative study to assess the

information needs of intended users, and whether ACE satisfies

those needs, or assessment of ACE’s efficiency in terms of informa-

tion retrieval. Such studies are an important part of future work we

hope to enable by widely sharing the tool. Thirdly, our evaluation of

ACE’s query speed and performance is purely to illustrate the effi-

ciency of querying. We did not include an exhaustive comparison to

optimized SQL engines or cluster configurations.

The performance evaluation experiments demonstrate that ACE

is highly performant even over data from hundreds of millions of

patients and substantially reduces query time in comparison to a re-

lational database query operating over the OMOP CDM. ACE com-

bines a TQL and fast search over its patient object datastore to

enable a conversation with clinical data. This conversational ap-

proach, in combination with user interfaces that provide both co-

hort summary and patient-level views of the data, use of knowledge

graphs for result expansion, and configurable output formats sup-

port fast electronic phenotyping, cohort-building and extraction,

which in turn enable data labeling, downstream analyses, clinical

trial recruitment, and learning from aggregate patient data. Each of

these activities contribute to the vision of a learning health system in

a distinct manner. More efficient clinical trial recruitment shortens

the time from identifying potentially effective therapies to assess-

ment of their safety to their availability to patients and reduces trial

costs.75–78 On-demand analyses of aggregate patient data via

avenues such as our Informatics Consultation Service help clinicians

provide the best care for their patients.58,79 Low latency data

vending services enable data-driven operational decision-making

and clinical research to advance the science and practice of medi-

Table 1. Average query execution times in seconds for 100 randomly generated queries over electronic health records for �2.8 million

patients from the Stanford Medicine CDW, using ACE or BigQuery; and over health insurance claims records for �65 million patients from

the Optum Clinformatics Datamart, using ACE

Command Average [min-max] query response time (seconds)

Stanford Medicine CDW Claims

ACE BigQuery ACE

OR of 4 features 0.015 [0.005–0.211] 198.7 [121.0–642.0] 1.224 [0.017–1.813]

UNION of 4 features 0.018 [0.005–0.306] 167.7 [73.0–227.0] 0.205 [0.026–1.618]

AND of 2 features 0.026 [0.005–0.681] 221.5 [124.0–940.0] 0.0684 [0.026–1.530]

INTERSECT of 2 features 0.024 [0.005–0.314] 233.6 [152.0–748.0] 1.018 [0.023–0.545]

SEQUENCE of 2 features 0.017 [0.005–0.214] 202.3 [148.0–266.0] 0.0602 [0.018–0.237]

Abbreviations: ACE, advanced cohort engine; CDW, clinical data warehouse; OR, odds ratio.
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cine.80–83 Enabling machine learning via scalable data labeling serv-

ices facilitates broad adoption of artificial intelligence to improve

healthcare.67,84–86

CONCLUSION

We presented a paradigm for scalable search of longitudinal patient

records via an expressive TQL coupled with an in-memory patient

object datastore. We implemented this capability in the form of a

search tool, the Advanced Cohort Engine (ACE). ACE’s scalability

and performance support a multitude of clinical and informatics use

cases including cohort-building and extraction, quality metric

reporting, clinical trial recruitment, labeling data for machine learn-

ing applications, and decision support based on learning from aggre-

gate patient data. ACE ingests data from a standard schema (the

OMOP CDM), to make this tool broadly accessible.
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