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Abstract

Type 2 diabetes mellitus (T2D) is a multifactorial and genetically heterogeneous disease which leads to impaired glucose
homeostasis and insulin resistance. The advanced form of disease causes acute cardiovascular, renal, neurological and
microvascular complications. Thus there is a constant need to discover new and efficient treatment against the disease by
seeking to uncover various novel alternate signalling mechanisms that can lead to diabetes and its associated
complications. The present study allows detection of molecular targets by unravelling their role in altered biological
pathways during diabetes and its associated risk factors and complications. We have used an integrated functional networks
concept by merging co-expression network and interaction network to detect the transcriptionally altered pathways and
regulations involved in the disease. Our analysis reports four novel significant networks which could lead to the
development of diabetes and other associated dysfunctions. (a) The first network illustrates the up regulation of TGFBRII
facilitating oxidative stress and causing the expression of early transcription genes via MAPK pathway leading to
cardiovascular and kidney related complications. (b) The second network demonstrates novel interactions between GAPDH
and inflammatory and proliferation candidate genes i.e., SUMO4 and EGFR indicating a new link between obesity and
diabetes. (c) The third network portrays unique interactions PTPN1 with EGFR and CAV1 which could lead to an impaired
vascular function in diabetic nephropathy condition. (d) Lastly, from our fourth network we have inferred that the
interaction of b-catenin with CDH5 and TGFBR1 through Smad molecules could contribute to endothelial dysfunction. A
probability of emergence of kidney complication might be suggested in T2D condition. An experimental investigation on
this aspect may further provide more decisive observation in drug target identification and better understanding of the
pathophysiology of T2D and its complications.
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Introduction

Diabetes is a serious health problem in society, and about 90%

of the diabetic population is affected with T2D [1]. According to

the International Diabetes Federation (IDF) approximately 246

million adults in the seven IDF countries were living with T2D in

2007. This number is expected to increase to 380 million by 2025

(IDF, http://www.idf.org/). The disease is characterized by

impaired glucose homeostasis, decreased insulin activity and

insulin resistance which lead to elevated blood glucose levels

[2,3]. The advanced form of the disease causes acute cardiovas-

cular, renal, neurological and organ complications [4–8].

This metabolic condition is determined by the interaction of

various environmental and genetic factors. Obesity is a major risk

factor in T2D development [9]. Elevated levels of free fatty acids

(FFA) in obesity promote interactions between FFA, lipid

metabolites, inflammatory pathways and mitochondrial dysfunc-

tion [10–12]. Research investigations to unravel the molecular

mechanism of T2D have led to the identification of multiple

signalling and metabolic pathways that get altered during the

disease. Insulin resistance is the main underlying cause of several

transcriptionally altered signalling and metabolic pathways in T2D

which later lead to defective microvascular, macrovascular and

endothelial functions [13]. Thus far, alteration in signalling

pathways mediated by insulin, adipocytokines, FFA, EGF, Jak/

STAT, MAPK, VEGF, PPAR, PI3-K and Wnt have been reported in

the pathogenesis of T2D. EGF exerts insulin like effects on glucose

transport and lipolysis and can increase the tyrosine phosphory-

lation and activation of IRS-1 and IRS-2. EGF is also capable of

activating additional PI3-K pools and, thereby augments the

downstream signalling of insulin in insulin-resistant states like T2D

[14]. It has been found that high glucose concentration causes

production of TGFB and activates Jak/STAT signalling cascade in

diabetic kidney cells. Activation of this signalling cascade can

stimulate excessive proliferation and growth of glomerular

mesangial cells, contributing to diabetic nephropathy [15,16].

Exposure to high glucose concentration has also been shown to

activate MAPK signalling pathway in skeletal muscle cells [17].

Impairment in VEGF signalling has been noticed in T2D.

Chronic coronary heart disease in diabetic patients is character-
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ized by an increased VEGF myocardial expression and a decreased

expression of its receptors along with down-regulation of its signal

transduction resulting in reduced neoangiogenesis [18]. Signalling

pathway mediated by PPAR is down-regulated in diabetes [19].

Mitogenic stimulation mediated by MAPK signalling cascade

suppresses PPARG activity [20]. PI3-K is a key molecule in insulin

signalling which is found to be down-regulated in T2D [21]. Wnt

signalling process plays an important role in pancreatic beta-cell

development by promoting expression of Pitx2 and CyclinD2

which regulate beta cell cycle progression [22]. Reactive oxygen

species (ROS) production by FFA has also been implicated in

pancreatic cell death. ROS activates NF-kB which eventually leads

to apoptosis and/or necrosis of beta cells [23]. Thus it is seen that

attenuation in insulin signalling seems to affect/induce cross-talk

among various processes responsible for apoptosis, endothelial

dysfunction and vascular dysfunction [24,25]. Other than these

pathways, a number of genes have been discovered to be

candidates to cause T2D.

The aim of this study is to put forth novel biological networks

that describe transcriptional alteration (up and/or down-regula-

tion) in genes/pathways which could contribute to the pathogen-

esis of T2D and its associated complications. Knowledge and

statistics based systematic analysis of high throughput molecular

data from normal and diseased individuals can be used to

construct candidate molecular networks. An extensive analysis of

these networks facilitates the identification of pathways and genes

affected during the disease process. Similar approach is compre-

hensively being used to identify candidate genes and biomarkers

for various complex diseases including cancers and diabetes [26–

29]. Bergholdt et al [30], identified loci showing genetic

interactions associated with Type 1 Diabetes (T1D) using genome

scan data. By elucidating possible epistasis between classic T1D

loci, major T1D predictive signals (marginal markers) were

characterized and fine mapped. In order to elucidate/identify

underlying biological interactions and novel candidate genes, the

genetic epistasis analysis data were integrated with protein

networks spanning the interacting epistatic regions and scanned

for functional sub networks.

We have applied a network biology approach which involves

the integration of co-expressed gene network with corresponding

protein interaction network to identify signature networks. In our

study, we have worked with microarray data comprising diabetic

and other complications. Instead of selecting genes from

susceptible diabetic risk loci, we have considered all those genes

that appeared differentially expressed in our analysis. The genetic

networks were integrated with corresponding protein interaction

networks. Integration of independent but biologically related

genetic, molecular and regulatory information appears as a

reliable method to obtain insights into functional modules which

allow detection of previously unknown deregulated pathways [31–

33]. Through this approach we tried to assess the interactions of

known T2D candidate genes with other molecules in different

biological pathways and a few unique interactions which could

result in new, non-obvious hypotheses that are statistically

significant.

In the work we present here, microarray gene expression data

analysis identifies transcriptionally altered key genes involved in

signalling/metabolic pathways of T2D. In addition, the protein-

protein interaction data enables understanding of the protein

complexes and their molecular organization in the overall

topology of the networks. The combined analysis of expression

profiles and protein-protein interaction data in integrated

networks have been shown to generate significant molecular

mechanisms and pathways. Our results depict their potential

involvement in diabetes progression and various associated

complications as well.

In the current study we have computationally constructed four

new sub networks and on analyzing these networks, we have

proposed different possible alterations of signalling pathways in

these networks. We have predicted novel molecular regulators

(unique genes and interactions) which could have an impact on the

pathophysiology of T2D and its complications via various

significant pathways such as insulin signalling, oxidative metabo-

lism, Wnt signalling and others. The present system level network

biology analysis from diabetes and obesity microarray expression

datasets shows that the interaction across TGFBRII, SMAD3 and

GCR along with FFA can induce vascular complications in

diabetes. It is suggested from the study that GAPDH, a significant

enzyme in carbohydrate metabolism, can induce micro vascular

complications and faulty insulin signalling in association with

SUMO4, growth factor EGFR and IRS in diabetic and obese

individuals. A careful modular dissection and examination of

networks from diabetic nephropathy datasets exhibit the interac-

tions between EGFR with PTPN1 and CAV1 through AKT1

activation. Analyses of the three large transcriptionally altered

diabetic datasets (Mexican_Hs, IR_Hs and DN_Hs) demonstrate

that the oxidative stress induced deregulation of b-catenin plays an

important role in causing kidney diabetic complications by the

down-regulation of CDH5.

Materials and Methods

Details of Microarray Datasets
Seven studies from human and one study from mouse

encompassing a set of 138 microarray expressions from human

and 12 from mouse have been selectively retrieved from GEO

(Gene Expression Omnibus) datasets and Diabetes Genome

Anatomy Project for the present analysis. The selection of

microarray expression studies is based on the following criteria:

(i) studies that examine the insulin resistance associated with T2D

pathogenesis (ii) nephropathy as one of the major T2D associated

complications (iii) obesity contributing to insulin resistance via the

development of cardiovascular disease and (iv) inflammation

caused by obesity. All the datasets have been named according to

the study type as prefix and species as suffix (Studytype_Species),

‘Hs’ indicating human dataset and ‘Mm’ indicating mouse

dataset. All the datasets along with their tissue source and

number of control and diseased samples have been detailed in

Dataset S1. Aiming to address different altered biological

pathways and gene/protein interactions in T2D, we focused on

those datasets which could be more related to the problems

associated with this disease.

Dataset IR_Hs originally reports that the differentially

expressed genes in insulin resistance of skeletal muscle cells are

susceptible genes for T2D [34]. The datasets Preadipocyte_Hs and

Adipocyte_Hs describes obesity induced inflammatory response in

preadipocytes and adipocytes cells [35,36]. Another dataset,

Obs_Hs, reports differentially expressed obesity responsive genes,

which further relates to T2D pathophysiology through insulin

resistance [37]. Expression analysis from PCOS_Hs dataset shows

that the obesity can cause polycystic ovary syndrome, which is

independent of insulin resistance in women [38]. Kidneys are

highly affected in acute diabetic condition. DN_Hs and Renalfai-

lure_Mm describe diabetic nephropathy in the kidney tissue and

loss of its damage repair capability [39,40]. Mexican_Hs dataset

reports differentially expressed genes specific to insulin resistance

and T2D [41].

Network Biology
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Data Preparation
Each dataset is normalized in order to bring the unit variance

across the data using the following two steps: (a) Calculation of

row-wise mean and standard deviation for each gene in all the

data files. (b) Subtraction of mean from each expression value

(from both control and diseased sets) followed by the division of the

resultant value by standard deviation. This is done across all the

datasets. Figure 1 illustrates the overall method.

Selection of Genes
Each dataset varies in terms of experimental conditions, types

and numbers of samples and the number of differentially expressed

genes. Therefore, identification of the significant genes from each

dataset is a crucial step in the process of analysis. DNA Chip

Analyzer [42] has been used for comparing the microarray

datasets (diseased vs. controls). Differentially expressed genes are

identified from the normalized datasets at the cut-off p-value

, = 0.05 and fold change value . = 1.5 and , = 21.5. Genes

satisfying these conditions are grouped separately as up-regulated

and down-regulated genes (Dataset S2).

Construction of Protein-Protein Interaction Network
Protein-protein interaction network for each set of up and

down-regulated genes has been constructed by APID2NET, an

implemented plug-in of Cytoscape [43]. APID2NET retrieves all

the possible information on protein-protein interaction from five

interaction databases namely, Database of Interacting Proteins

[44], Biomolecular Interaction Network Database [45], IntAct

[46], Molecular Interactions Database [47] and Human Protein

Reference Database [48]. Swissprot/Uniprot IDs for each group

of genes have been collected from APID database [49] and then

imported to Cytoscape via its plug-in. The up-regulated and

down-regulated genes from each study were separately submitted

in APID2NET and the networks were analyzed in Cytoscape

platform.

Construction of Co-Expression Network
The expression similarity across the gene datasets was derived

using Pearson’s correlation coefficient (r-value). A Pearson’s

correlation coefficient gives the measurement of the degree of

the correlation between two variables. Cladist software was used to

Figure 1. Overview of integrated network of gene-gene co-expression and protein-protein interaction information of microarray
data (1-6). (1) All the datasets have been filtered through the defined cut-off of student’s t-test and fold change value. The differentially expressed
up and down-regulated genes were sorted to make separate lists. (2) The co-expression network was constructed by calculating Pearson’s correlation
coefficient (r-value) for each gene pair. And the top-ranking genes (r-value varies for the datasets) were used to construct the co-expression network.
The corresponding gene sets were processed to generate the protein-protein interaction networks. (3) & (4) Both the networks were merged to get
the final large network. The statistical validation of the large network was done using Wilcoxon test. (5) The potential sub-networks were identified
using an in-house Java program. (6) Sub-networks were further validated through Wilcoxon test. The other validation parameters like average
clustering coefficient, average degree and network density have also been calculated to assess the statistical significance of the network.
doi:10.1371/journal.pone.0008100.g001
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construct correlation matrix based on r-values for each dataset

[50]. An in house java program was written to rank the gene-pairs

on the basis of their correlation values. It generates a symmetrical

n x n matrix at a given r cut-off value (range: 0.6–0.9). The rank

matrix was imported in Cytoscape to construct the network of co-

expressed genes.

Construction of Integrated Gene Networks Using
Expression and Interaction Data

In network organization each gene or protein is represented as a

node. The number of interactions or links that a node has with

other nodes is defined as a degree. Co-expression network

comprises nodes which correspond to genes and the edges

corresponding to co-expression links. The protein-protein inter-

action network obtained from APID includes information on co-

interacting proteins, defined as proteins that have physical

interaction. APID provides known experimentally validated

protein-protein interactions. The edges in the integrated functional

network correspond to both co-expression and physical protein-

protein interactions.

The approach underlying the present study utilizes an

integrated concept of merging the gene-gene co-expression

correlation matrix and protein-protein interaction data to

construct the complete networks (eight studies). Integration refers

to the process of combining networks by merging nodes that share

a particular GO annotation, or nodes whose gene expression

levels change significantly in one or more conditions according to

p-values loaded with the gene expression data. Integrated

networks were created by overlapping nodes that were common

to both co-expression and protein interaction networks. Both co-

expression networks and protein interaction networks were

integrated using Cytoscape plug-in which identifies the genes by

their ID types. These networks have many embedded sub-

networks with significant biological functions relevant to T2D

pathogenesis.

Searching of High-Scoring Sub-Networks
A sub-network of large protein-protein interaction network can

be defined as the set of statistically and functionally significant

interacting genes. The potential sub-networks have been identified

by a search method estimating their significance scores [30]. The

significance score (S) is calculated as, S = average (s1, s2,…, sn),

where ‘s’ is the individual node score. ‘s’ for each node is computed

by dividing the total number of direct interactions (i.e., first order

neighbors) of that node by the average degree present in the sub-

network. A cut-off value of 0.5 is set to consider those nodes which

have significant number of interactions in the network. Nodes with

higher than 0.5‘s’ value have been taken for further search. All the

individual node scores have been averaged to get the final ‘S’

score. The threshold value for ‘S’ score has been set as 1 and sub-

network showing higher than this value has been taken into

consideration. The four sub-networks showing high scores have

analyzed in the succeeding sections. Thus the sub networks were

extracted from the larger networks generated by integrating

expression data and interaction data. They were further assessed

statistically and analyzed using the information available from

literature sources and online repositories to verify their biological

functions pertaining to T2D.

Evaluation of Topological and Statistical Measures of the
Sub-Networks

The topological and statistical significance of each sub-network,

abstracted from large networks have been calculated using

Cytoscape plugins Network Analyzer [51] and CentiScaPe [52].

We have used the following network biology concepts to evaluate

the topology and extent of clustering in the candidate sub-

networks:

Topological coefficient for node n1 is computed as TC

(n1) = average (J(n1, n2)/kn1), where J(n1, n2) gives the value of

the number of nodes shared by both n1 and n2 nodes and kn1 is the

number of interactions of node n1.

Average clustering coefficient measures the average of

clustering coefficients of all nodes, which are defined as the

ratio of the number of edges between the neighbours of a node

to the maximum number of edges that could possibly exist

between them. It can be expressed as C (n) = 2en/(kn(kn-1)),

where kn is the no. of interactions of node n and en is the no. of

connected pairs between all neighbours of node n. Log-log

graphs have been constructed by plotting the number of

neighbours ‘‘k’’ on x-axis and the average clustering coefficient

‘‘C(k)’’ and topological coefficient ‘‘TC(k)’’ as the functions of k

on y-axis.

Average degree measures the average of all connectivities of a

node. This is extended by network density, which indicates the

compactness of one network distributed through its edges. The

results were further refined for all the sub-networks by estimating

Wilcoxon test in R package.

Usually centrality measures are used to capture the structure of

node in the network and identify the hub proteins. The simplest

measure of all centralities is node degree distribution. The degree

of a node v is the number of nodes that are directly connected to it

i.e. first neighbours of node v. We calculated the degree

distribution P (k), which determines the probability of node v

with k number of links, where k = 1, 2…This pattern of structure

obeys the power law P(k) , k2c, where c is a constant called

degree exponent indicating the scale-freeness of networks. By

fitting a line to the given sets of data the pattern of their

dependencies can be seen which can be used to validate the scale-

free topology of the networks. The software used here uses least

square method [53] and considers only the data points with

positive co-ordinate values for fitting the line, where the power-law

curve is y = b x a. This model is transformed into ln y = ln b+a ln x.

When a plot is made and the coefficient of determination, R2 of

the regression line is computed, the network models can be tested

based on this value [54]. The R-squared value measures how well

the data points fit to the curve.

Another centrality measure, the betweenness centrality calcu-

lates a value of a node (n1) that is located in the shortest path of

two other nodes (n2 and n3) and indicates its significance in the

communication of these two nodes [55]. The betweenness value of

n1 can be expressed as,

BC n1ð Þ~
X

n2

X

n3

r n2 , n1 , n3ð Þ=r n2 , n3ð Þ, n1 = n2 = n3

Here r (n2, n3) is the number of shortest paths starting at node

n2 and ending at node n3. The value of r (n2, n1, n3) indicates the

number of those shortest paths which pass through node n1 in the

network.

Scale-Freeness Topology of the Networks
Biological networks have been characterized by topological

features which establish their scale-freeness property [56]. Protein

interaction networks and co-expression networks also exhibit a

scale-free geometry, where the nodes are not uniformly populated

with neighbours. All the nodes of these networks do not follow the
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rule of having an average number of links per node. Most of the

nodes have few partners, while a few nodes also called ‘hubs’

interact with many partners [26]. Power law process is used for

estimating the parameters and validating the network models with

their scale-freeness property. Usually R-squared values closer to 1

indicate higher correlation and a stronger linear relationship

between the data variables. Here also the R-squared values obey

the rule emphasising that the networks are scale-free i.e., they are

unevenly populated with hubs and less dense nodes. Biological

networks are found to be very sensitive to the removal of hub

proteins. It has been observed that the deletion of hub proteins in

yeast protein-protein interaction network exerts an increased

lethal effect [57]. In the present study is has been observed that

the hub proteins are communicating with many other significant

proteins involved in many pathways reported to be affected

during T2D. Further biochemical investigation on the removal of

these hub proteins needs to be conducted to provide better

understanding in the roles played by them in the pathophysiology

of T2D.

Analysis of Functional Enrichment of the Networks
In order to identify how the networks are functionally

embellished we used GOlorize, a Cytoscape plug-in [58]. It is

based on a hyper geometric test with Benjamini and Hochberg

false discovery rate (FDR) corrected p-value and displays the

overrepresented functional gene ontology (GO) categories in a

given network. The major functional categories have been taken to

construct pie diagrams based on their overall frequencies in a

network.

Validation of Novel Interactions
Two new interactions observed in the networks were validated

by the identification of their interacting domains. InterDom

[59,60] was used to predict the interacting domains for each

protein pair and further verified using 3did [61].

Results

Larger integrated networks are constructed by the union of

gene-gene expression correlation information and protein-protein

interaction data. Microarray data analysis from studies like

obesity, insulin resistance, T2D and kidney failure in diabetes

contribute to infer some significant physiological pathways and

biological processes related with T2D pathophysiology and

complications. The statistical significance analysis of networks

has led to the identification of four signature sub-networks that

show the interaction across several important metabolic/signalling

processes, transcription factors and pathways in T2D. These sub-

networks have been further investigated to learn the functional

relevance pertaining to disease mechanism which is discussed as

follows (Table 1).

GCR Over-Expression Leads to FFA Production, which in
Turn Induces c-Fos/c-Jun Activity through the
Interactions of TGFBRII

A signature network (named as TranscriptionFactors_Kidney-

Complication) obtained from three different datasets viz.,

Mexican_Hs, Obs_Hs and PCOS_Hs delineates functional

relationship between proto-oncogenes, transcription factors,

MAPK pathway and FFA. The network topology is made of 52

nodes and 146 interactions (p value 1.0861025). From the given

network we identified c-Fos and MAPK1 as hub genes, while c-Jun

and GCR interacted directly with the hubs (Figure 2). TGFBRII is

shown to link the two hub genes. This network module suggests a

relation between FFA, interacting partners of proto-oncogenes like

c-Fos and c-Jun, transcription factor GCR, ATP dependent

chromatin remodeling factor SMAD3 and their interaction with

TGFB and MAPK pathways.

GCR has been reported to be over-expressed in obesity and

cause insulin resistance [62], and is observed in the signature

network. Potent up regulation of GCR may be considered to

represent increased glucocorticoids activity and as inferred from

literature, elevated GC action is observed in obesity, insulin

resistance, T2D and cardiovascular complications. Effect of GC

includes impaired insulin-dependent glucose uptake in the

periphery and enhanced gluconeogenesis in the liver leading to

insulin resistance. GC and TGFB aid in the production of FFA and

oxidative stress [63,64]. This network module shows TGFB-

TGFBRII interaction causing activation of transcription of several

TGFB inducible genes via Smad signalling pathway. SMAD3 is an

interacting partner for TGFBRII and is up-regulated in the

network. Increase in expression of TGFBR, c-Fos and c-Jun is also

observed clustered in co-expression gene network. TGFBR

signalling occurs mainly through the activation of Smad pathway

[65]; however it may also involve MAPK/ERK1/2 pathways in

certain cell types, such as endometrial epithelial cells and

endometrial stromal cells under certain conditions [66].

Thus the sub network displays activation of growth related

proto-oncogenes such as, c-Fos and c-Jun mediated by TGFB and

also involving GCR.

Over-Expression of SUMO4 and GAPDH in Response to
Oxidative Stress Induces EGFR Signalling to Increase
Vascular Complications and Impair Insulin Signalling

Signature network from Obs_Hs and IR_Hs consists of 48

nodes and 162 interactions (p value 1.9261027). This network

module has been named as GAPDH-EGFR_MicrovascularCom-

plication. It has GAPDH and EGFR as hub genes. SUMO4, IRS-1

and 14-3-3 zeta interact directly with these hub genes. It can be

seen that 14-3-3 zeta links the two hubs (Figure 3).

SUMO4, GAPDH and EGFR are significantly over expressed in

this study and are noted to interact with each other in the network.

Table 1. Four top-scored significant networks displaying their corresponding total number of nodes, edges and p-values.

Significant networks Number of nodes Number of edges p-values (Wilcoxon test)

TranscriptionFactors_KidneyComplication 52 146 1.0861025

GAPDH-EGFR_MicrovascularComplication 48 162 1.9261027

Akt/Pi3k pathway_VascularDysfunction 98 357 2.20610210

Wnt_VascularComplication 49 153 7.3961027

doi:10.1371/journal.pone.0008100.t001
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These interactions have not yet been described for T2D and they

appear here from the datasets of T2D and its associated

complications. Based on these observations we predicted novel

interactions between SUMO4 and GAPDH, and GAPDH and EGFR.

These interactions were further validated using domain and motif

information to strengthen the predictions as explained in the

subsequent segments.

The interaction between the glycolytic protein GAPDH and

inflammatory SUMO4 suggests a potential role in the development

of insulin resistance. EGFR, an important growth factor receptor,

is noted to be up-regulated in diabetic kidney [67,68]. EGF

suppresses proteolysis via PI3-K in renal tubular cells and increases

abundance of GAPDH [69]. The interaction of GAPDH with EGFR

as visualized in our network implicates a probable role in insulin

signalling. EGFR interacts with 14-3-3 zeta and results in its up

regulation as shown in the network. The interaction is mediated

through EGF to advance EGFR signalling [70]. 14-3-3 zeta

interacts with IRS-1 in this network. In the given network we

also observe the up regulation of serine/threonine kinase which

participates in EGF signalling.

AKT-1/PI3-K Pathway Is Up-Regulated through Increased
Expression of EGFR Eventually Exhibiting Its Two Unique
Interactions with PTPN1 and CAV1 in Diabetic
Nephropathy

Sub-network, Akt/Pi3k pathway_VascularDysfunction obtained

from diabetes associated with nephropathy datasets namely,

DN_Hs and Renalfailure_Mm consists of 98 nodes and 357

interactions (p value 2.20610210). AKT1 and IRS-1 are identified as

hub genes which interact with each other directly. Figure 4 displays

the causal relationships of EGFR with AKT1/PI3-K pathway in

diabetic nephropathy. It also suggests two new interactions between

EGFR, PTPN1 and CAV1 reported for the first time in kidney

complications associated with T2D in the network.

Figure 2. TranscriptionFactors_KidneyComplication network illustrates the interaction of proto-oncogenes with SMAD molecules
and nuclear receptors (A-B). All the nodes and edges are in green and purple color respectively. The key molecules which are significantly
expressed through their interactions with other molecules in the network are highlighted as orange. The hub molecules are also colored as purple. A.
Interaction overview (constructed and analyzed in Cytoscape): a skeletal structure of the main sub-network showing only the significant molecules in
orange, their biological roles and pathological conditions in blue. B. Expanded view of the network imported from Cytoscape: Network explains the
interaction of TGFBRII and SMAD3 being modulated by the increased expression of GCR (and FFA). This interaction in turn induces expression of early
transcription factors which play a role in fibrosis and insulin insensitivity. The main gene hubs are centric to c-FOS and MAPK1 and connected through
SMAD3.
doi:10.1371/journal.pone.0008100.g002
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AKT1 activity has been found to be increased in diabetic kidney

cells exhibiting its characteristic feature of matrix protein

accumulation [71]. High glucose condition is found to induce

the PI3-K/AKT pathway in kidney messengial cells of rodent

models mediating insulin signalling through the phosphorylation

of IRS-1. This subsequently results in over production of collagen I

in these cells. Further, the up-regulation of EGFR has also been

reported as a requirement for AKT activation [72]. An interaction

between EGFR and PTPN1 has been observed in this network.

The occurrence of PTPN1 is reported in T2D [73]. Protein coded

by this gene acts as a key phosphatase for EGFR. The phosphatase

activity of PTPN1 is observed to regulate the recruitment of

different signals to EGFR, which is considered as an important hub

molecule in many signalling pathways [74]. Another significant

interaction that has been observed here is the interaction between

PTPN1 and CAV1. It has been identified as a candidate gene for

T2D [75].

On the basis of these observations supported by the literature,

we have proposed the interactions of PTPN1 with EGFR and with

CAV1 as the new potential interactions in diabetic nephropathy.

Since individually all three molecules are reported to be associated

with T2D, it can be suggested that their interactions also might

play some significant roles in this disease development.

Increased Mitochondrial ROS Production Up-Regulates
VE-Cadherin Mediated by Wnt Signalling Leading to
Vascular Complications

An important signature sub-network noted in three datasets

namely, IR_Hs, DN_Hs and Mexican_Hs, shows interaction of

pathways causing the generation of ROS, Wnt and TGF-beta

pathways. b-catenin has been identified as an important hub

which interacts with significant genes such as GSK-3B, CDH5,

SMAD and TGFBRI. The network, named as Wnt_VascularCom-

Figure 3. GAPDH-EGFR_MicrovascularComplication network shows EGFR induced insulin resistance and impaired GAPDH induced
micro vascular complications (A-B). All the nodes and edges are in green and purple color respectively. The key molecules which are significantly
expressed through their interactions with other molecules in the network are highlighted as orange. The molecules connecting two portions of the sub-
network are colored as grey. The hub molecules are also colored as purple. A. Interaction overview (constructed and analyzed in Cytoscape): a skeletal
structure of the main sub-network showing only the significant molecules in orange, their biological roles and pathological conditions in blue. B.
Expanded view of the network imported from Cytoscape: It shows interaction between stress responsive expression of GAPDH with insulin, SUMO4 and
EGFR. The GAPDH and EGFR hubs are interacting directly and are also connected through Androgen receptor, MAPKKK14 and 14-3-3 protein zeta/delta.
Interaction of GAPDH and EGFR and subsequent interaction with 14-3-3 zeta imply their significance in developing insulin insensitivity.
doi:10.1371/journal.pone.0008100.g003
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plication (Figure 5A) summarizes a network flow of genes involved

in these pathways, which further correlates with the significant

clinical observations in diabetes subjects. It contains 49 nodes and

153 interactions (p value 7.3961027).

It has been observed that DNM1L and FIS1 genes are involved

in the maintenance of mitochondrial morphology [76,77].

Illustratively, the proteins produced by FIS1 and DNM1L are

noted to be over-expressed and Wnt expression is down-regulated

in the networks from expression datasets (Figure 5). DNM1L

interacts with the molecules of Wnt signalling like GSK-3B, thereby

regulating its down-stream signalling [78]. Higher expression of

GSK-3B is thought to cause proteosomal degradation of b-catenin

via the formation of a cytoplasmic multiprotein complex [79,80].

Furthermore, the literature exploration on b-catenin reveals that it

gets down-regulated in diabetes nephropathy [81]. In this network

b-catenin has been observed to be associated with CDH5. It is well

established that T2D is often associated with cardiovascular

complications where endothelial dysfunction acts as a hallmark. It

has been shown that the up-regulation of CDH5 acts as an

indicator of coronary artery disease in patients with diabetes

mellitus [82]. Therefore, it is the first instance, where CDH5 and

Wnt are predicted to interact and subsequently lead to vascular

complications in diabetes (Figure 5B). Another hub in the network,

TGFBR I has been recognized as one of the major contributors to

diabetic nephropathy mediated by the TGFB-signalling pathway

[83]. b-catenin has been found to become associated with TGFB-

signalling via its interaction with Smad molecules [84]. These

interactions have been noted from the datasets of T2D and

diabetic nephropathy as mentioned above. On the basis of these

observations we have proposed that these causal relationships

might play significant roles in developing kidney complications in

diabetes mellitus.

Figure 4. Akt/Pi3k pathway_VascularDysfunction network shows up-regulation of this pathway through increased expression of
EGFR leading to diabetic nephropathy and exhibits two unique interactions of EGFR with PTPN1 and CAV1 (A-B). All the nodes and
edges are colored as green and purple respectively. The key molecules which are significantly expressed through their interactions with other
molecules in the network are highlighted as orange. The hub nodes which have been described here are in purple color. A. Interaction Overview
(constructed and analyzed in Cytoscape): a skeletal structure of the main sub-network showing only the significant molecules in orange and
pathological conditions caused by them in blue. B. Expanded view of the network imported from Cytoscape: Different pathways interaction from
diabetic nephropathy datasets have been shown here. Deregulated inflammatory cytokines, AKT1 and eNOS involved in kidney dysfunction are
shown in this sub-network. Yellow-coloured genes are very significant in this disease pathology.
doi:10.1371/journal.pone.0008100.g004
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Assessment of Sub-Networks with Topological
Parameters

Considering the selection criteria of data sets and to identify the

altered pathways and gene/protein interactions, we paired our

datasets to analyze further. After an exhaustive search of large

integrated networks constructed from the selected data sets we

identified small putative sub networks. Network topology is

thought to render the significance of a node in communicating

with other genes or proteins of interest. Parameters like average

clustering coefficient, topological coefficient, average degree,

power law distribution of degrees and betweenness centrality have

been assessed to capture the topology of the networks. Highly

cohesive networks have been found to be composed of low-degree

nodes (nodes with fewer neighbours) and higher degree nodes are

found to have less connected neighbours. The distribution of

clustering coefficient is an important characteristic of scale-free

networks which decreases as the node degree increases, thereby

following a power law distribution. The clustering coefficient of a

node is always a number between 0 and 1. The average clustering

coefficient characterizes the ‘cliquishness’ of a network. It gives a

measurement of average of clustering coefficients for all the nodes

with at least two neighbours in a network [85]. The value of

average clustering coefficient has been observed to be less in each

of the four sub-networks. Average clustering coefficients along with

average degrees and network densities are shown in Table 2. In

the present analysis the average clustering coefficient and network

density for each sub-network appears to be less as compared to the

average degree (Table 2). The log-log graph of average clustering

coefficient demonstrates that the C(k) decreases as k increases

(Figure 6). Figure 6A demonstrates network TranscriptionFac-

tors_KidneyComplication having the best hierarchical scale free

Figure 5. Wnt_VascularComplication network shows the interaction between mitochondrial fission, ROS, Wnt signaling and VE-
cadherin causing vascular complication (A-B). All the nodes and edges are in green and purple color respectively. The key molecules which are
significantly expressed through their interactions with other molecules in the network are highlighted as orange. The molecules connecting two
portions of the sub-network are colored as grey. The hub molecules are also colored as purple. A. Interaction overview (constructed and analyzed in
Cytoscape): a skeletal view showing only the key interactions where the molecules are shown in orange and the pathological conditions caused by
them are in blue. B. Expanded view of the network imported from Cytoscape: The b-catenin and TGFB centric hubs are connected through 6
molecules i.e., SMAD2 and 4, casein kinases, PIP3K regulatory subunit alpha and TGFBR. DNM1L is connected to the b-catenin hub through GSK-3B.
Interaction of b-catenin with VEGFR2 and subsequent interaction with CDH5 is also illustrated here implying a possible role in kidney complication. It
also displays the interaction between WNK1, SMAD2 and TGFBRII which is observed only in diabetic nephropathy dataset.
doi:10.1371/journal.pone.0008100.g005
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organisation. As the number of interactions increase, the average

clustering coefficients decline continuously, thereby showing that

these data points fit best to the power line curve. The network

GAPDH-EGFR_MicrovascularComplication (Figure 6B) also

shows a decline in average clustering coefficients, however the

decline is not as smooth and gradual as in the first case as some

points show more deviations from the power line. In the

Wnt_VascularComplication pathway (Figure 6D), initially the

average clustering coefficient points are randomly scattered but as

the number of neighbours increase the average clustering

coefficients begin to decrease. However, in case of the pathway

Akt/Pi3k pathway_VascularDysfunction although the average

clustering coefficients decrease, they are much more scattered

than the rest as shown in Figure 6C. Hence the network is not as

scale free as the remaining networks.

R-squared value is a statistical measure of the linearity of the

curve fit and used to quantify the fit to the power line. It shows the

correlation between the given data points and the corresponding

Figure 6. Average clustering coefficient C(k) of all genes with k links follows the scaling law. The average clustering coefficient C(k) is
plotted on y-axis as a function of number of neighbours (k) on x-axis for the four networks. The graph exhibits a decreasing tendency of C(k) as k
increases. The property follows the power law distribution and shows the nature of scale-free network suggesting a hierarchical organization in the
network. (A-D) display the graphical distribution of the four networks namely, (A) TranscriptionFactors_KidneyComplication (R-squared value 0.94). (B)
GAPDH-EGFR_MicrovascularComplication (R-squared value 0.857). (C) Akt/Pi3k pathway_VascularDysfunction (R-squared value 0.637). (D)
Wnt_VascularComplication (R-squared value 0.787).
doi:10.1371/journal.pone.0008100.g006

Table 2. Topological parameters showing the significance of all the four sub-networks.

Four selected sub-networks Average degree Network density Clustering coefficient

TranscriptionFactors_KidneyComplication 4.2 0.07 0.267

GAPDH-EGFR_MicrovascularComplication 5.25 0.11 0.269

Akt/Pi3k pathway_VascularDysfunction 5.7 0.05 0.242

Wnt_VascularComplication 5.0 0.10 0.247

doi:10.1371/journal.pone.0008100.t002
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points on the fitted power line curve. It gives the proportion of

variability in a data set which is explained by a fitted linear model.

When the fit is good, the R-squared value is very close to one. The

R-squared values for the average clustering coefficient is highest

for the network TranscriptionFactors_KidneyComplication (0.94)

confirming the observation of best scale free network, followed by

GAPDH-EGFR_MicrovascularComplication (0.857), Wnt_Vas-

cularComplication pathway (0.787) and Akt/Pi3k pathway_Vas-

cularDysfunction (0.631).

In signalling networks hub nodes are thought to play significant

regulatory roles on their adjacent nodes. In such networks the

degree distribution P (k) and the topological coefficient TC(k) are

expected to be inversely proportional to the number of links. The

similar trend is observed in the four networks (Figure 7 and 8) with

R-squared values of degree distribution ranging between 0.5–0.8

(Table 3). The networks follow the power law distribution with

highest R-squared value of 0.778 for TranscriptionFactors_Kid-

neyComplication exhibiting its strongest distribution. As R-

squared values approach unity, it implies that the regression

approaches a perfect fit. Our results are similar to the general

trend with genetic perturbation networks and other gene co-

expression networks exhibiting scale free topology (with R-squared

values above 0.6–0.7) [86,87]. The decrease in topological

coefficients with the increase in number of neighbours explains

that hubs are rather exclusive with rare common neighbours than

individual proteins with fewer links. Figure 8D displays that the

network Wnt_VascularComplication has one well defined hub.

Figures 8A and 8B show that networks TranscriptionFactors_

KidneyComplication and GAPDH-EGFR_MicrovascularCompli-

cation both have two hubs each, which are connected through few

common neighbours. From Figure 8C we observe that the

network Akt/Pi3k pathway_VascularDysfunction also has impor-

tant hubs but there are greater numbers of common neighbours

interacting between the main hubs and therefore the hubs are not

as distinct as in case of the other networks.

Table 3 shows the value of c, the threshold value of betweenness

centrality and degree of nodes for the different networks. The

value of c lies between 1 and 2, which is a characteristic of

biological networks [88]. The betweenness centrality values are

found to be higher than the average value for the hub nodes. The

threshold value of betweenness centrality lies between 55 and 190

for the identified networks. The threshold value for node degree

for the four networks ranges from 4.85 to 6.57. An over-all scale-

free topology is maintained in the four networks. The pattern of

Figure 7. Power law node-degree distribution for the four signature networks. The node degree (k) is represented on the x-axis and the
number of nodes with a particular k is represented on the y-axis. The graph displays a decreasing trend of degree distribution with increase in
number of links displaying scale free topology. (A-D) display the graphical distribution of the four networks namely, (A) TranscriptionFactors_
KidneyComplication (R-squared value 0.778). (B) GAPDH-EGFR_MicrovascularComplication (R-squared value 0.523). (C) Akt/Pi3k pathway_Vascu-
larDysfunction (R-squared value 0.695). (D) Wnt_VascularComplication (R-squared value 0.554).
doi:10.1371/journal.pone.0008100.g007
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network connectivity in these datasets closely resembles a scale-

free topology. All the information on network topology provides

high confidence to their scale-freeness property supporting the fact

that the underlying model is linear. Therefore, it can be suggested

that the four networks analysed here are sensitive to the

perturbation of more highly connected hubs rather than removal

of less connected nodes. There is a scope to obtain further

improved results since only the positive data points have been

considered for the present analysis.

Gene Ontology (GO) Verification of Sub-Networks
Similarly functioning proteins tend to form clusters of protein-

protein interaction [89]. Sub-networks with overrepresented

functional GO categories have been illustrated in pie diagrams

(Figure S1A-S1D). The size of each section of the pie chart is

basically based on its cluster frequency with statistically significant

p-value that allows better visualization of the functional categories.

We see in the Figure S1, that most of the molecules are involved in

signalling pathways mediated by growth factors, kinases, signal

Table 3. Value of R-square, degree exponent, threshold value of betweenness centrality and node degree of the four networks.

Networks studied R-squared value
Value of degree
exponent (c)

Threshold value of
betweenness centrality

Threshold value
of node degree

Node degree
distribution

Average clustering
coefficient

TranscriptionFactors_KidneyComplication 0.778 0.94 1.296 71.67 4.85

GAPDH-EGFR_MicrovascularComplication 0.523 0.857 1.021 57.25 6.0

Akt/Pi3k pathway_VascularDysfunction 0.695 0.631 1.097 188.51 6.57

Wnt_VascularComplication 0.554 0.787 1.076 68.48 5.62

doi:10.1371/journal.pone.0008100.t003

Figure 8. Topological coefficients analysis indicating modular network organization. The distribution of topological coefficient TC (k) is
plotted on y-axis and the number of neighbours is plotted on x-axis. The graph shows gradual decrease of this distribution. (A-D) display the
graphical distribution of the four networks namely, (A) TranscriptionFactors_KidneyComplication. (B) GAPDH-EGFR_MicrovascularComplication. (C)
Akt/Pi3k pathway_VascularDysfunction. (D) Wnt_VascularComplication.
doi:10.1371/journal.pone.0008100.g008
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transducer and transcription factors, cytokines and nuclear

receptors. Therefore, it can be assumed that the sub-networks

represent the clusters of signalling components, which upon

alteration may cause T2D and its associated complications.

Two Novel Interactions and Their Verification
The two novel interactions put forward here are the interaction

between SUMO4 and GAPDH and the interaction between

GAPDH and EGFR. Analysis of conserved domains for the two

new interactions reveals the following findings. SUMO4 which is a

negative regulator of NF-kB interacts with GAPDH via its ubiquitin

domain. GAPDH is a key enzyme in glycolysis and is found to

regulate insulin and EGFR mediated pathways. Both the

components are found to interact in the network obtained from

Obs_Hs and IR_Hs. The network GAPDH-EGFR_Microvascu-

larComplication was identified on the basis of its significance

score.

SUMO4 shows the presence of ubiquitin domain. Ubiquitination

is an ATP-dependent process which involves the action of three

main enzymes, namely, E1 (ubiquitin activation enzyme), E2

(ubiquitin conjugating enzyme) and E3 (ubiquitin ligase enzyme)

[90,91]. SUMO4 belongs to the SUMO gene family which encodes

small ubiquitin-related modifiers that are attached to proteins and

control the target proteins’ subcellular localization, stability, or

activity.

GAPDH participates in energy yielding processes and is found to

interact with E2 and E3 enzymatic domains. NO-S-nitrosylation-

GAPDH-E3/2 cascade mediates cell death under oxidative stress

conditions and thus represent an important mechanism of

cytotoxicity [92,93,94]. With the help of E3 ligase, ubiquitin is

transferred from E2 enzyme to a lysine residue on a substrate

protein like GAPDH [91].

Ubiquitin-like proteins function as critical regulators of cellular

processes and intracellular stress. The C-terminal glycine residue

of the ubiquitin-related proteins attach to a lysine side chain of the

substrate protein to form an isopeptide linkage [91,95,96]. Thus

we can hypothesize that protein coded by SUMO4 interacts with

the lysine residues in GAPDH and plays a role in regulation of

cellular processes such as transcription, signal transduction, repair,

autophagy and cell cycle control [97].

The interaction between GAPDH and EGFR is predicted using

the application of InterDom [59,60], 3did [61] and ELM [98]. We

predicted the motifs as well as conserved domains in both GAPDH

and EGFR (as shown in Figure S2 and datasets S3 and S4). Motifs

were found out using ELM (Eukaryotic Linear Motif resource).

The interactions between domains were predicted using InterDom

and the interactions between the chosen motifs and domains was

observed using 3did (3D Interacting Domains). The domains and

motifs for SUMO4, GAPDH and EGFR are presented in Datasets

S3 and S4. From InterDom, it has been noted that the protein

tyrosine kinase domain present in EGFR interacts with both C-

terminal and N-terminal domains of GAPDH. This observation

was further validated using 3did, which showed that in the

interaction pattern of GAPDH and EGFR, the protein tyrosine

kinase domain of the latter interacts with GAPDH motifs via SH2/

3_1 domains as illustrated in Figure S2.

Discussion

Network-based analysis provides system level relationship of

molecules across different layers of regulatory controls of biological

functions by integrating functional interactions with co-expression

information. In order to delineate significant observations, the

present study focuses on expression profiles of those interactions/

associations, which existed most consistently in maximum number

of microarray datasets. The analysis and literature on different

biological processes offer an insight into the identification of

several facts associated with T2D. Our approach may serve as

predictive tool for identifying underlying novel pathways and

disease mechanisms in the development of other T2D complica-

tions and may also prove useful in providing insight in etiology and

progression of other diseases.

A distinct scale-freeness property has been noticed in the four

sub-networks as they have decreasing values of coefficients for

some topological parameters like average degree, average

clustering coefficient and topological coefficient. Simultaneously,

betweenness centrality value, another significant topology identi-

fying parameter describes the presence of few important hubs with

other nodes. The Wnt_VascularComplication sub-network shows

the presence of two distinct hubs, while Akt/Pi3k pathway_Vas-

cularDysfunction sub-network displays more hubs with greater

number of common neighbours. Betweenness centrality calculates

the effectiveness of nodes communicating with other nodes in the

sub-network. It is suggested that higher the betweenness value of a

node, the higher its significance because a protein with higher

degree is more likely to be essential since it has more links.

Therefore, threshold betweenness value higher than its average

value suggests the importance of the interacting sub-network

depending on its nodes’ connectivities. All these properties reflect

the hierarchical organization and scale-free nature of these sub-

networks.

The TranscriptionFactors_KidneyComplication sub-sub-net-

work observed from diabetes, obesity and PCOD datasets suggests

a common pathway for causing impaired insulin signalling and

generating vascular complications through the interaction between

pathways mediated by growth related proto-oncogenes and GCR.

The sub-network illustrates that increased FFA linked with GCR

plays a pivotal role in progression of T2D. High amount of FFA

has been reported to be associated with diabetes and its

complications. FFA is elevated in insulin-resistant subjects because

of impaired insulin-dependent down-regulation of lipolysis.

Increased FFAs competitively inhibit oxidation of glucose,

contributing to the development of insulin resistance [63] and

also affect ROS generation thereby acting as source of oxidative

stress [99]. GC may increase circulating FFA by inhibiting

lipoprotein lipase and thereby increase both the uptake and

turnover of fatty acids in adipose tissue. Effect of GC includes

impaired insulin-dependent glucose uptake in the periphery and

enhanced gluconeogenesis in the liver leading to insulin resistance

[63,64]. The TranscriptionFactors_KidneyComplication sub-net-

work reveals up regulation of GCR. Increased GCR sensitivity can

be considered as an indicator of excessive activity of GC which is a

plausible contributor to obesity and insulin resistance. FFA induces

the over-expression of TGFBRII as noted in diabetic kidney disease

[100] and it increases the expressions of proto-oncogenes and

SMAD3 in TGFB signalling process [101]. TGFB induces as well as

gets activated by ROS intermediates [102,65]. ROS stimulates

early growth signals including induction of c-Fos and c-Myc mRNA

expression via TGFB signalling [103]. Growth related proto-

oncogenes exhibit high expression in early phase of glomerular

hypertrophy during hyperglycemia [104,105]. Literature also

reports that systemic short chain fatty acids can up regulate the

expression of early response genes such as c-Myc, c-Fos and c-Jun

[106]. These genes can bind to the (AP)-1 sites of the promoters of

their target genes like fibronectin and result in their differential

transcription [66]. Moreover, the over-expression of TGFBRII

during high glucose concentration leads to an increase in

expression of type 1 collagen and accumulation of extra cellular
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matrix [107]. Excessive collagen and matrix proteins deposition is

characteristic of fibrosis [108,109]. We hypothesize that such an

association involving FFA, TGFB-TGFBRII and proto-oncogenes

could eventually lead to fibrosis of renal cells when glucose

concentration is high. This sub-network shows the existence of

considerable number of genes playing roles in signal transduction,

positive regulation of transcription and regulation of cell cycle

through gene ontology analysis. It also displays the involvement of

genes in molecular functions like protein serine/threonine kinase

activity and TGFBR activity.

Sub-network from obesity and diabetes datasets indicate the

significant roles of SUMO4, GAPDH and EGFR interactions in

insulin signalling diabetes progression. From the information

gathered regarding their individual functions, we propose that

under conditions of stress and obesity, the interactions between

SUMO4 and GAPDH play a role in regulating insulin and EGFR

signalling to increase vascular complications in diabetic subjects.

In diabetes, ubiquitin/proteasome over activity is associated with

enhanced inflammatory activity induced by oxidative stress. In

response to FFA, SUMO4 is capable of inducing the expression of

inflammatory cytokines which target vessels and kidney in

cardiovascular and renal diseases. The variants of SUMO4 have

been reported to be associated with T2D and diabetic

nephropathy via the induction of NF-kB pathway. SUMO4 gene

encodes small ubiquitin like modifier 4, which alters immune

response through IkBa, and regulates NF-kB activation [110,111].

GAPDH over-expression may be attributed to compensate for the

progressive decrease in muscle mitochondrial function due to

FFA induced ROS and contribute to loss of glucose and lipid

homeostasis and eventually obesity and T2D [112,113]. GAPDH

can mediate cell death associated with oxidative stress [92]. Our

sub-network displays SUMO4 and EGFR interacting with

GAPDH. Interaction between GAPDH and SUMO4 suggests that

they may be interacting together through ubiquitination process.

It is inferred from literature that GAPDH (lys) can interact with

ubiquitin ligase enzyme (E3) and form an isopeptide bond with

the C-terminal glycine motifs of SUMO4 [91,93]. In the

interaction pattern of GAPDH and EGFR, the protein tyrosine

kinase domain of the latter has been predicted to interact with

GAPDH. Therefore, it can be envisaged that GAPDH is getting

phosphorylated by EGFR tyrosine kinase. These interactions

were verified using 3did and Interdom (Figure S2 and Datasets

S3 and S4) and suggest a role in the progression of T2D

accompanied with obesity. GAPDH-EGFR_MicrovascularCom-

plication sub-network further displays interaction between EGFR

and 14-3-3 zeta. Up regulation of EGFR has been reported to

cause vascular complications in diabetic rodent models

[114,115]. Proteins belonging to the 14-3-3 family are involved

in metabolism, cell survival and proliferation [116]. Association

of IRS-1 with 14-3-3 protein is reported to play a role in the

regulation of insulin sensitivity by interrupting the interaction

between the insulin receptor and IRS [117]. Thus we deduce that

EGFR can interact with IRS-1 via 14-3-3 zeta and result in

impaired insulin signalling. It has been reported that agents such

as FFAs, cytokines, cellular stress and hyperinsulinemia, induce

insulin resistance, and lead to activation of several serine/

threonine kinases and phosphorylation of IRS-1 as well. These

agents negatively regulate IRS-1 functions by phosphorylation

[118]. Gene ontology analysis of this sub-network establishes its

enrichment with signal transduction, phosphorylation and

signalling pathway mediated by insulin receptor. Molecular

functions like protein kinase and MAPK activities and EGFR

activity have been found to be associated with significant number

of genes from the sub-network.

Sub-network from diabetic nephropathy datasets exhibits

increased expression of AKT1 which gets accumulated in diabetic

kidneys. This gene mediates insulin signalling by inducing PI3-K.

On the other hand, up-regulation of EGFR has been observed to

activate AKT1 [72]. Protein coded by PTPN1, a tyrosine

phosphatase kinase gene is a negative regulator of insulin signalling

and has been reported to be associated with diabetes mellitus

[119,73]. This gene has been identified as a potential drug target

for treating obesity and T2D [120]. PTPN1 has been observed to

interact with EGFR in the present sub-network. Signalling pathway

mediated by EGFR plays central role in regulating numerous other

signalling pathways. The phosphatise activity of PTPN1 has been

shown to regulate many incoming and outgoing signals to EGFR

[74]. Subsequently, the interplay between PTPN1 and CAV1 has

been noted here. Studies show that PTPN1 has a binding site for

CAV1. The association has been found to modulate the activity of

PTPN1 [121]. Up-regulation of CAV1 has been found to

contribute to the development of T2D [75]. Protein coded by

CAV1 is known to be involved in signal transduction and many

cellular processes. It has been observed that the scaffolding domain

of the protein coded by CAV1 binds directly to the insulin receptor

thereby regulating glucose homeostasis [122]. Analysis of gene

ontology exhibits the gene abundance, which play a significant

role in processes such as insulin receptor signalling, cytoskeletal

protein binding. Considerable numbers of genes participate in

molecular functions like protein tyrosine kinase activity and EGFR

activity. From this diabetic nephropathy sub-network module we

have proposed the two putative interactions of PTPN1 with EGFR

and CAV1 which have been highlighted for the first time in

diabetes condition.

A common trend across the sub-network Wnt_VascularCom-

plication describes the significance of oxidative stress modulating

Wnt/b-catenin and CDH5 in diabetes. Oxidative stress produced by

the overproduction of ROS depends on mitochondrial morphol-

ogy and plays a major role in beta-cell dysfunction, insulin

resistance, glucose intolerance and above all, T2D [76,123]. Genes

involved in oxidative stress like FIS1 and DNM1L are shown to

modulate Wnt signalling via GSK-3B. Both DNM1L and FIS1 are

involved in the maintenance of mitochondrial morphology, which

regulates molecules of Wnt signalling pathway like b-catenin and

GSK-3B [124,125]. It exists in two isoforms i.e., alpha (GSK-3A)

and beta (GSK-3B) which are coded by two separate genes.

Elevated level of GSK-3B has been observed to contribute to

diabetes development. Targeting and synthesizing selective

inhibitors of this molecule have been shown to modulate insulin

sensitivity [126].This gene eventually has been reported to interact

with b-catenin [78]. b-catenin serves as a substrate of GSK-3B by

phosphorylation. Over-expression of GSK-3B increases the

phosphorylation of b-catenin resulting in the formation of a

cytoplasmic multi-protein complex. This induces the degradation

of b-catenin in a proteosomal pathway [77,78]. The association

between CDH5 and b-catenin suggests their involvement in the

pathogenesis of T2D. The interactions of b-catenin with CDH5

and TGFBRI have been noted from exclusively diabetes mellitus

dataset and also from diabetic nephropathy dataset. The protein

coded by CDH5 has been specifically found to express in vascular

endothelial cells. b-catenin has been found to interact with CDH5

in cell adhesion. It is strongly suggested that signalling mediated by

b-catenin modulates the organization and function of endothelial

cells. Degradation of this protein might impair the growth of

endothelial cells [127]. Therefore, we propose that the association

of CDH5 with b-catenin might play a significant role in diabetes

mellitus through the impairment of vascular endothelial cell

function. Gene ontology analysis of this sub-network module
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shows majority of genes belonging to the biological processes like

signal transduction, phosphorylation and positive regulation of

transcription. Molecular functions such as signal transducer

activity and protein kinase cascade activity has also been related

with several genes from the sub-network. An intensive biochemical

analysis on these interactions can bring more insight into the

understanding of their causal relationships in T2D. Therefore,

there is a wide scope to analyze further these interactions which

could probably render into the development of new gene/protein

targets eventually leading to the development of therapeutic drugs.

Supporting Information

Figure S1 Over-representation of gene ontology categories from

the four selected sub-networks (A-D): The enrichment of

significant GO terms (biological processes and molecular func-

tions) with the genes present in the networks. Each GO category

has been calculated using the percent frequency of that category

enriched with nodes. (A). Illustrates the GO categories for the

network TranscriptionFactors_KidneyComplication showing the

significance of signal transduction, regulation of cell cycle and

positive regulation of transcription. (B). The network GAPDH-

EGFR_MicrovascularComplication showing greater enrichment

of categories signal transduction and phosphorylation than the

others. (C). Exhibits the major distribution of biological processes

like apoptosis and insulin receptor signalling pathway from the

network Akt/Pi3k pathway_VascularDysfunction. (D). Shows the

distribution of GO categories for the sub-network Wnt_Vascu-

larComplication. The categories of signal transduction, phosphor-

ylation and positive regulation of transcription show maximum

enrichment suggesting that majority of genes participate in

signalling pathways and phosphorylation processes.

Found at: doi:10.1371/journal.pone.0008100.s001 (0.78 MB TIF)

Figure S2 Interaction between EGFR and GAPDH through

Protein Tyrosine Kinase domain of EGFR and motifs of GAPDH:

Protein Tyrosine Kinase domain of EGFR interacts with C-

terminal and N-terminal domains of GAPDH. Information on

motifs for the genes, was got using Eukaryotic Linear Motif resource

(ELM). The interaction between the motifs (LIG_SH2_SRC,

LIG_SH2_STAT5 and LIG_SH3_3) of GAPDH and EGFR can

be visualised using 3did. The interaction with Protein Tyrosine

Kinase domain takes place via SH2/3_1 domains.

Found at: doi:10.1371/journal.pone.0008100.s002 (1.02 MB TIF)

Dataset S1 Details of the datasets on their tissue source, control

sets and diseased sets.

Found at: doi:10.1371/journal.pone.0008100.s003 (0.03 MB

DOC)

Dataset S2 Statistically determined up-regulated and down-

regulated genes from microarray studies.

Found at: doi:10.1371/journal.pone.0008100.s004 (0.03 MB

DOC)

Dataset S3 Interacting domains for SUMO4, GAPDH and

EGFR.

Found at: doi:10.1371/journal.pone.0008100.s005 (0.03 MB

DOC)

Dataset S4 List of interacting motifs for SUMO4, GAPDH and

EGFR.

Found at: doi:10.1371/journal.pone.0008100.s006 (0.07 MB

DOC)
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