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Abstract: 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol
A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater
toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity
remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells
and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed
that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and
induced apoptotic events including increased caspase-3 activity and the expression of active forms of
caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress,
as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment
with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-
induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced
the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of
β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively,
effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors
also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion,
these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent
activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.

Keywords: 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP); β-cells; apoptosis; ER stress; JNK;
AMPKα
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1. Introduction

Diabetes mellitus (DM) is among the most prevalent chronic metabolic diseases,
characterized by abnormally elevated levels of blood glucose and leading to serious injury
to important organs [1]. It was estimated that 463 million people worldwide were living
with diabetes in 2019 (9.3% of the global adult population). Projections indicate that the
number of people with diabetes will increase to approximately 629 million globally by
2045 [2]. Epidemiological studies have reported that either genetic or environmental factors
contribute to the risk of DM development. Particularly, among the environmental factors,
growing evidence suggests that exposure to environmental endocrine-disrupting chemicals
(EDCs) plays an important role in the pathophysiological processes of DM [3].

Bisphenol A (BPA) is a well-known and widely applied chemical that is used in
the production of polycarbonate plastic bottles and food containers, and epoxy resins in
the lining of metal cans [4,5]. The major source of human BPA exposure is the dietary
intake of BPA that leak into foods and beverages. In an epidemiological study, BPA was
detected in over 90% of all analyzed human urine samples, indicating widespread human
exposure to BPA [6]. Moreover, BPA, as one of the EDCs, has been reported to induce
pancreatic β-cell dysfunction and apoptosis, which is associated with the development
of DM [7–9]. More importantly, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an
active metabolite of BPA, might accumulate in mammals upon BPA exposure, ingestion,
and metabolism [6,10,11]. It has been reported that the toxic effects of MBP on medaka
(Oryzias latipes) were estimated to be approximately 250-fold higher than those of BPA [12].
Okuda et al. [13] and Moreman et al. [14] reported that MBP exhibits stronger toxicological
effects than BPA in in vivo experiments in zebrafish (Danio rerio) and ovariectomized (OVX)
rats, in which MBP possessed a potency in estrogenic activity approximately 500–1000-fold
more than BPA.

Recently, MBP exposure has been indicated to disrupt the development of both male
and female reproductive organs in an avian embryo model, including retention of the
Mullerian ducts and feminization of the left testicle in males and a diminished left ovary in
females [15]. Furthermore, studies by Hirao-Suzuki et al. [16] and Liu et al. [17] reported
that MBP exposure could induce pulmonary alveolar epithelial cell apoptosis and stimulate
abnormal growth in breast cancer cells. A few studies have indicated that exposure to
BPA could trigger pancreatic β-cell dysfunction and cytotoxicity, although MBP, an active
metabolite of BPA, has not been investigated [18,19]. The effects of BPA metabolite MBP on
β-cell function and growth still remain to be clarified. Therefore, we aimed to investigate
the cytotoxic effects of MBP on pancreatic β-cell function and growth and their possible
molecular mechanisms.

2. Results

2.1. BPA-Induced Cytotoxicity and Apoptosis in Pancreatic β-Cells

BPA-induced cytotoxic and apoptotic effects in β-cells were observed. As shown in
Figure 1A, the treatment of pancreatic β-cell-derived RIN-m5F cells with BPA (25–300 µM)
for 24 h substantially reduced cell viability, as determined by the MTT assay, in a concentra-
tion-dependent manner, with the effective concentrations ranging from 25 to 300 µM. By
examining cytotoxicity using the LDH (an indicator of cytotoxicity) release assay, it was
confirmed that BPA increased the cytotoxicity in β-cells in a concentration-dependent
fashion (Figure 1B). In addition, BPA significantly induced the elevation of caspase-3
activity (Figure 1C) and increased the levels of cleaved caspase-3 and caspase-7 protein
expression (Figure 1D). These results indicate that BPA can induce cytotoxicity through
apoptosis in β-cells.
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Figure 1. BPA-induced cytotoxicity and apoptosis in RIN-m5F cells. Cells were treated with BPA (0–300 μM) for 24 h. (A) 
Cell viability was detected using the MTT assay. (B) Cytotoxicity was determined using the LDH release assay. (C) 
Caspase-3 activity was determined using the caspase-3 activity fluorometric assay kit. (D) The protein expression of 
cleaved caspase-3 and -7 was examined using Western blot analysis, and the quantification was performed using densito-
metric analysis. Data are presented as the mean ± S.D. of four independent experiments assayed in triplicate. * p < 0.05 
compared to the vehicle control. 

2.2. MBP-Induced Cell Apoptosis in RIN-m5F Cells 
To investigate the potential damage of BPA metabolite MBP in β-cells, we examined 

the cytotoxic and apoptotic effects of MBP in RIN-m5F cells. As shown in Figure 2A, the 
treatment of RIN-m5F cells with MBP for 24 h markedly decreased cell viability in a con-
centration-dependent manner, with the effective concentrations ranging from 3 to 15 μM: 
3 μM, 88.0% ± 8.4% of control; 5 μM, 55.5% ± 9.5% of control; 7 μM, 40.5% ± 4.5% of control; 
10 μM, 23.4% ± 10.6% of control; and 15 μM, 12.7% ± 3.0% of control. Similar to the results 
of the cell viability assay, a concentration-dependent significant increase in LDH release 
was observed after MBP treatment for 24 h (3 μM, 22.5% ± 3.8% of total; 5 μM, 43.8% ± 
5.8% of total; 7 μM, 57.4% ± 5.5% of total; 10 μM, 74.7% ± 6.9% of total; and 15 μM, 87.2% 
± 5.3% of total; Figure 2B). Moreover, the caspase-3 activity dramatically increased after 
treatment of cells with MBP (3–7 μM) for 24 h. On the basis of these findings, the half 
maximal inhibitory concentration (IC50) of MBP in RIN-m5F cells was determined to be 
approximately 5 μM, which was used in subsequent experiments. 

The cleavages of caspase-3, -7, and -9 and PARP proteins have been shown to be in-
volved in chemical-induced cell apoptosis in various cell types. We next tested the effects 

Figure 1. BPA-induced cytotoxicity and apoptosis in RIN-m5F cells. Cells were treated with BPA (0–300 µM) for 24 h. (A) Cell
viability was detected using the MTT assay. (B) Cytotoxicity was determined using the LDH release assay. (C) Caspase-3
activity was determined using the caspase-3 activity fluorometric assay kit. (D) The protein expression of cleaved caspase-3
and -7 was examined using Western blot analysis, and the quantification was performed using densitometric analysis. Data
are presented as the mean ± S.D. of four independent experiments assayed in triplicate. * p < 0.05 compared to the vehicle
control.

2.2. MBP-Induced Cell Apoptosis in RIN-m5F Cells

To investigate the potential damage of BPA metabolite MBP in β-cells, we examined
the cytotoxic and apoptotic effects of MBP in RIN-m5F cells. As shown in Figure 2A,
the treatment of RIN-m5F cells with MBP for 24 h markedly decreased cell viability in
a concentration-dependent manner, with the effective concentrations ranging from 3 to
15 µM: 3 µM, 88.0% ± 8.4% of control; 5 µM, 55.5% ± 9.5% of control; 7 µM, 40.5% ± 4.5%
of control; 10 µM, 23.4% ± 10.6% of control; and 15 µM, 12.7% ± 3.0% of control. Similar
to the results of the cell viability assay, a concentration-dependent significant increase in
LDH release was observed after MBP treatment for 24 h (3 µM, 22.5% ± 3.8% of total; 5 µM,
43.8% ± 5.8% of total; 7 µM, 57.4% ± 5.5% of total; 10 µM, 74.7% ± 6.9% of total; and
15 µM, 87.2% ± 5.3% of total; Figure 2B). Moreover, the caspase-3 activity dramatically
increased after treatment of cells with MBP (3–7 µM) for 24 h. On the basis of these findings,
the half maximal inhibitory concentration (IC50) of MBP in RIN-m5F cells was determined
to be approximately 5 µM, which was used in subsequent experiments.
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The cleavages of caspase-3, -7, and -9 and PARP proteins have been shown to be
involved in chemical-induced cell apoptosis in various cell types. We next tested the effects
of MBP on these apoptosis-related molecules in β-cells. As shown in Figure 2D, Western
blot analysis showed an increase in the expression levels of cleaved forms of caspase-3, -7,
and -9 and PARP proteins after 8 h of treatment of RIN-m5F cells with MBP (5 µM) and
significantly continued to increase over 24 h (in a time-dependent manner). Furthermore,
the exposure of RIN-m5F cells to 5 µM MBP for various time intervals (2–24 h) also resulted
in a significant reduction in the cell viability at 8 h and a gradual dramatic reduction over
24 h (2 h, 101.6% ± 3.2% of control; 4 h, 100.9% ± 3.9% of control; 8 h, 83.6% ± 4.5% of
control; 16 h, 69.6% ± 4.3% of control; and 24 h, 51.6% ± 6.2% of control) (Figure 2E).

The short-term effect of MBP on insulin secretion from β-cells was evaluated. As
shown in Figure 2E, MBP at 3 and 5 µM effectively and significantly inhibited glucose-
stimulated insulin secretion in RIN-m5F cells (1 µM, 98.4% ± 3.1% of control; 3 µM,
77.5% ± 6.0% of control; and 5µM, 61.1% ± 3.9% of control) after 4 h of exposure. These
concentrations of MBP did not reduce the cell viability (99.8% ± 4.4%, 99.7% ± 2.6%, and
99.1% ± 3.5% of control for 1, 3, and 5 µM, respectively) (Figure 2F). These results indicate
that MBP is capable of inducing cytotoxicity, apoptosis, and insulin secretion dysfunction
in pancreatic β-cells and exhibits a greater toxicity than BPA.
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Figure 2. Effects of MBP on cytotoxicity, apoptosis, and insulin secretion in RIN-m5F cells. The cells were treated with 
MBP (0–15 μM) for 24 h; subsequently. (A) Cell viability was detected using the MTT assay. (B) Cytotoxicity was deter-
mined using the LDH release assay. (C) Caspase-3 activity was determined using the caspase-3 activity fluorometric assay 
kit. (D) The protein expression of cleaved caspase-3, -7, and -9 and cleaved PARP proteins was examined using Western 
blot analysis. The quantification was performed using densitometric analysis. (E) In addition, RIN-m5F cells were treated 
with 5 μM MBP for different time intervals (2–24 h). Cell viability was determined using the MTT assay. (F) RIN-m5F cells 
were treated with MBP (1–5 μM) for 4 h. The insulin secretion stimulated by 2.8 mM or 20 mM-glucose was detected using 
an immunoassay kit. Data are presented as the mean ± S.D. of four independent experiments assayed in triplicate. * p < 
0.05 compared to the vehicle control. 

2.3. MBP-Induced ER Stress Response in RIN-m5F Cells 
ER stress has been reported to be involved in chemical-induced apoptosis in mam-

malian cells, including β-cells [20]. Thus, we next examined the effects of MBP on the ex-

Figure 2. Effects of MBP on cytotoxicity, apoptosis, and insulin secretion in RIN-m5F cells. The cells were treated with MBP
(0–15 µM) for 24 h; subsequently. (A) Cell viability was detected using the MTT assay. (B) Cytotoxicity was determined
using the LDH release assay. (C) Caspase-3 activity was determined using the caspase-3 activity fluorometric assay kit.
(D) The protein expression of cleaved caspase-3, -7, and -9 and cleaved PARP proteins was examined using Western blot
analysis. The quantification was performed using densitometric analysis. (E) In addition, RIN-m5F cells were treated with
5 µM MBP for different time intervals (2–24 h). Cell viability was determined using the MTT assay. (F) RIN-m5F cells were
treated with MBP (1–5 µM) for 4 h. The insulin secretion stimulated by 2.8 mM or 20 mM-glucose was detected using an
immunoassay kit. Data are presented as the mean ± S.D. of four independent experiments assayed in triplicate. * p < 0.05
compared to the vehicle control.
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2.3. MBP-Induced ER Stress Response in RIN-m5F Cells

ER stress has been reported to be involved in chemical-induced apoptosis in mam-
malian cells, including β-cells [20]. Thus, we next examined the effects of MBP on the
expression of various ER stress markers in RIN-m5F cells. As shown in Figure 3A, the
exposure of RIN-m5F cells to MBP (5 µM) markedly triggered the protein expression of
ER stress-related molecules, including GRP 78 (but not that of GRP 94) and CHOP, as well
as the degradation of full-length (55 kDa) caspase-12 (a downstream ER stress molecule)
in a time-dependent manner (a statistical increase after 8 h exposure, and an obviously
continued increase up to 24 h), as in the case of apoptosis-related molecules. To further
confirm the relationship between MBP-induced β-cell apoptosis and the activation of
ER stress, RIN-m5F cells were pretreated with a pharmacological inhibitor of ER stress
(4-phenylbutyric acid, 4-PBA; 3 mM) for 1 h prior to MBP exposure and subsequently
exposed to MBP (5 µM) for 24 h. The results showed that MBP-induced activation of
ER stress-related molecules, including the upregulation of GRP 78, CHOP, and cleavage
caspase-3 and 7 protein expression and degradation of pro-caspase-12, was effectively and
significantly prevented by 4-PBA (Figure 3B). Furthermore, MBP-induced elevation of
caspase-3 activity and reduction of cell viability were also significantly attenuated after
pretreatment with 4-PBA (Figure 3C,D). These results imply that MBP can induce ER
stress-regulated apoptosis, leading to β-cell death.
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Figure 3. Involvement of ER stress-regulated signaling pathways in MBP-induced β-cell apoptosis. (A) RIN-m5F cells were
treated with or without MBP (5 µM) for various time intervals (8–24 h). The protein expression of the ER stress-related
proteins GRP 78, GRP 94, CHOP, and caspase-12 was examined using Western blot analysis. Additionally, RIN-m5F cells
were treated with or without MBP (5 µM) for 24 h in the absence or presence of 3 mM 4-phenylbutyric acid (4-PBA; the
pharmacological inhibitor of ER stress, 1 h treatment prior to MBP exposure). (B) The protein expression of GRP 78, CHOP,
pro-caspase-12, and cleaved caspase-3 and -7 was examined using Western blot analysis. The quantification was performed
using densitometric analysis. (C) Caspase-3 activity was determined using the caspase-3 activity fluorometric assay kit. (D)
Cell viability was detected using the MTT assay. Data are presented as the mean ± S.D. of four independent experiments
assayed in triplicate. * p < 0.05 compared to the vehicle control. # p < 0.05 compared to treatment with MBP alone.

2.4. JNK and AMPK Signaling Played Crucial Roles in MBP-Induced β-Cell Apoptosis

JNK and AMPK-mediated signaling pathways play important roles in toxic chemical-
induced apoptosis [20,21]. We next examined whether JNK/AMPK activation was involved
in MBP- induced β-cell apoptosis. As shown in Figure 4, the levels of protein phosphoryla-
tion of JNK and AMPKα were significantly increased after exposure of RIN-m5F cells to
MBP for 0.5–2 h. Pretreatment of cells with JNK inhibitor (SP600125, 10µM) for 1 h prior
to MBP exposure significantly inhibited the levels of protein expression of both phospho-
rylated JNK and phosphorylated AMPKα (Figure 4B,a). Similarly, pretreatment with a
specific AMPK inhibitor (compound C, 10 µM) markedly attenuated the activation of both
AMPKα and JNK following a 2-h treatment with MBP (Figure 4B,b).

Furthermore, the activation levels of caspase-3 and -7, GRP 78, and CHOP protein
induced following 24 h treatment with MBP were effectively reversed by pretreatment
with a specific JNK inhibitor (SP600125, 10 µM) and AMPK inhibitor (compound C, 10 µM)
(Figure 5A), along with the inhibition of cell viability (Figure 5B). These results suggest that
the activation of both JNK and AMPK signaling-regulated apoptosis pathways participates
in MBP-induced pancreatic β-cell death.
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Figure 4. MBP caused the activation of JNK and AMPK signals in β-cells. (A) RIN-m5F cells were treated with or without
MBP (5 µM) for various time intervals (0.5–2 h). (B) RIN-m5F cells were treated with MBP (5 µM) for 2 h in the presence
or absence of the specific inhibitor of JNK1/2 (SP600125—10 µM, (B,a)) and AMPKα (compound C—10 µM, (B,b)). The
protein expression of phosphorylated JNK1/2 and phosphorylated AMPKα was examined using Western blot analysis. The
quantification was performed using densitometric analysis. Data are presented as the mean ± S.D. of four independent
experiments assayed in triplicate. * p < 0.05 compared to vehicle control.
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the mean ± S.D. of four independent experiments assayed in triplicate. * p < 0.05 compared to the vehicle control. # p < 0.05 
compared to treatment with MBP alone. 
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evidence has indicated that environmental pollutants are an important risk factor contrib-
uting to the DM epidemic [24,25]. Cadmium exposure could cause pancreatic β-cell apop-
tosis and death via oxidative stress-mediated JNK activation and Ca2+-triggered 
JNK/CHOP signaling pathways [21,26]. Exposure to low-dose tributyltin induced oxida-
tive stress-triggered JNK-related pancreatic β-cell apoptosis in vitro and reversible hy-

Figure 5. JNK- and AMPKα-mediated signaling pathways played critical roles in MBP-induced apoptosis in β-cells.
RIN-m5F cells were treated with MBP (5 µM) for 2–24 h in the presence or absence of the specific inhibitor of JNK1/2
(SP600125—10 µM; (A,a) and B) and AMPKα (compound C—10 µM; (A,b) and B). (A) The protein expression of cleaved
caspase-3 and -7, cleaved PARP, GRP 78, and CHOP was determined using Western blot analysis. The quantification was
performed using densitometric analysis. (B) The cell viability was detected using the MTT assay. Data are presented as the
mean ± S.D. of four independent experiments assayed in triplicate. * p < 0.05 compared to the vehicle control. # p < 0.05
compared to treatment with MBP alone.

3. Discussion

Pancreatic β-cell insufficiency and apoptosis are the causes of DM [22,23]. Growing
evidence has indicated that environmental pollutants are an important risk factor con-
tributing to the DM epidemic [24,25]. Cadmium exposure could cause pancreatic β-cell
apoptosis and death via oxidative stress-mediated JNK activation and Ca2+-triggered
JNK/CHOP signaling pathways [21,26]. Exposure to low-dose tributyltin induced ox-
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idative stress-triggered JNK-related pancreatic β-cell apoptosis in vitro and reversible
hypoinsulinemic hyperglycemia in vivo, dysregulating β-cell function even under noncy-
totoxic doses [27,28]. BPA is one of the highest-production-volume chemicals in the world
and is an environmental risk factor for the development of DM; humans are continually
exposed to it via contaminated environments, plastic, and other products [29,30]. BPA
has been detected at the concentrations of 21–17,200 µg/L (approximately 0.1–75.3 µM) in
polluted aquatic environments such as river water and landfill leachate [31]. In resin-based
composites and sealants in dentistry, BPA levels were reported to range from 0.5 to 84.4 µg
per 100 mg of commercial product, and the saliva samples obtained after treatment using
these products contained 3.3 to 30.0 µg/mL (approximately 14.5 to 131.4 µM) [32]. In some
animal studies, long-term exposure to 0.1–10 mg/kg/day BPA decreased plasma insulin
levels and increased the number of active caspase-3- positive cells in the pancreatic islets
(approximately 0.44–43.8 µM/day), which accelerated DM development [33,34]. More
importantly, MBP, as an active metabolite of BPA, is formed upon coincubation of BPA
and liver microsomal and cytosolic fractions (S9 fraction from mammalian liver samples,
including human samples) [11]. Consequently, it has been considered that BPA released
into the aquatic environment, which gains access to the body through various routes,
could be converted to MBP in the mammalian liver, triggering a considerably stronger
toxicological effect than its parent compound BPA [6,35,36]. It has been shown through
luciferase reporter assays in vitro that MBP is a more potent binder of the estrogen re-
ceptor than BPA [11,13]. Hirao-Suzuki and colleagues have also reported that repeated
exposure to MBP, but not to BPA, aggressively stimulated abnormal proliferation in breast
cancer cells through the activation of estrogen receptor β-dependent signaling [16]. More
importantly, Ishibashi et al. [12] have shown that the 96-h median lethal concentrations
of MBP and BPA in medaka (Oryzias latipes) were estimated to be 1640 and 13,900 µg/L
(approximately 6.1 and 60.9 µM), respectively. A study by Okuda et al. [13] in an ovariec-
tomized (OVX) female rat model indicated that MBP (1000 µg/kg/day (approximately
3.7 µM/day)) completely reversed the changes caused by OVX, as equivalent to the activity
of 17β-estradiol 0.5 µg/kg/day, suggesting that MBP exhibited at least 500-fold higher
estrogenic activity than BPA. Furthermore, exposure to MBP at 25 µg/L (approximately
0.1 µM) has been found to impair cardiovascular function and induce the development of
vascular-cardiovascular disease states in zebrafish [36]. Huang et al. [37] and Liu et al. [17]
have also demonstrated that MBP exposure (5–15 µM) induced dysfunction and apoptosis
in pulmonary alveolar epithelial cells and neuronal cells. However, the cytotoxic effect
and mechanism of action of MBP on β-cells remain unclear, especially with respect to its
possible exposure concentration in mammalians. This study demonstrated for the first
time that the treatment of RIN-m5F cells with MBP significantly induced cytotoxicity in
a concentration-dependent manner (ranging from 3 to 15 µM; IC50 was approximately
5 µM), which was accompanied with insulin secretion dysfunction and apoptotic events.
Moreover, the signaling mechanisms of both JNK and AMPK activation, which contribute
to triggering ER stress-mediated apoptosis, were involved in MBP-induced β-cell death.

The ER is an important and essential cell organelle required for cell survival [38]. ER
is also the major site for the synthesis, correct folding, and post-translational maturation of
almost all membrane proteins [39]. The accumulation of unfolded, misfolded, or aggregated
proteins in the ER lumen, called ER stress, activates the unfolded protein response (UPR)
to resolve the protein-folding defect [40,41]. However, during excessive and long-term
upregulation of UPR or severe ER stress, the protective mechanisms activated by UPR are
insufficient to restore normal ER function/homeostasis, leading to cell damage and death
by apoptosis [42,43]. ER stress induces the expression of GRP 78 and GRP 94, the major
ER-localized chaperones and the most abundant glycoproteins in the ER, and the activation
of GRPs regulates toxic insult-induced cell apoptosis [44,45]. Moreover, the activation of
CHOP (also known as GADD153) plays an important role in ER stress-induced mammalian
cell apoptosis [46,47]. CHOP belongs to the CCAAT/enhancer-binding protein (C/EBP)
family of transfection factors, which has been implicated in the regulation of processes
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associated with cellular proliferation, differentiation, and energy metabolism [48]. ER stress
is associated with numerous pathophysiological conditions in various human diseases,
including DM [49,50]. Growing evidence has shown that toxic chemical-induced ER
stress is involved in the process of apoptosis in β-cells, skeletal muscle-derived myoblasts,
and pulmonary alveolar epithelial cells [17,20,21,51–53]. Recently, Liu et al. [17] and
Huang et al. [37] indicated that MBP exposure significantly induced the AMPK/ERK/Akt
signal-regulated ER stress-triggered apoptotic pathway, resulting in type 2 pulmonary
alveolar epithelial cell and neuronal cell death; however, this effect has not been evaluated
in β-cells. The results of this study revealed that the treatment of RIN-m5F cells with
MBP markedly increased the activation of ER stress-related molecules, including GRP 78,
CHOP, and caspase-12. Pretreatment of β-cells with an ER stress inhibitor 4-PBA effectively
prevented the MBP-induced protein expression of GRP 78, CHOP, and caspase-12, as
well as apoptotic events (including the expression of the cleaved forms of caspase-3 and
caspase-7 and the increase in caspase-3 activity). These results indicate that downstream
ER stress activation-regulated apoptosis plays a crucial role in MBP-induced β-cell death.

JNKs belong to the superfamily of MAP kinases, which have been shown to play a cru-
cial role in the regulation of cell proliferation, differentiation, and apoptosis [54]. Activation
of the JNK pathway induced by diverse stimuli (such as cytokines, Aβ peptides, oxidative
stress, or toxic chemicals) has been identified as a critical factor in pathological cell death,
associated with the development of many diseases, including DM [55,56]. Accumulating
evidence suggests that a marked activation of the JNK signal in pancreatic β-cells exposed
to toxic insults subsequently leads to β-cell dysfunction and apoptotic cell death [20,21,28],
implying that JNK plays an important role in β-cell damage. Furthermore, AMPK is a
multimeric serine/threonine protein kinase, composed of α- (catalytic), β- (scaffold), and
γ- (regulatory) subunits [57]. It has been confirmed that AMPK, a master energy sensor
and a coordinator of cell growth/proliferation, is also a key regulator of cell apoptosis
under pathological conditions [58,59]. Increasing evidence demonstrates the pivotal role of
AMPK in enhancing pancreatic β-cell death and apoptosis via the regulation of various
signaling molecules, including JNK, which is induced by toxic chemicals or the pathophys-
iological processes of DM [20,60,61]. For example, it has been shown that stimulation of
AMPK activation by the adenosine analogue AICA-riboside (AICAR) or metformin could
induce the apoptosis of insulin-producing β-cells, which involved JNK signaling [62,63].
Yang et al. [20] reported that molybdenum exposure could cause pancreatic β-cell dys-
function and death via JNK and AMPK activation-interdependent downstream-regulated
apoptosis pathways. Lin et al. [19] have suggested that BPA-triggered β-cell apoptosis
may be mediated via the mitochondrial pathway. However, to our knowledge, no study
has elucidated the role of JNK and AMPK activation in MBP-induced β-cell apoptosis. In
our study, we found that treatment of RIN-m5F cells with MBP significantly induced the
phosphorylation of both JNK1/2 and AMPKα proteins. Pretreatment of β-cells with JNK
inhibitor (SP600125) effectively prevented MBP-induced apoptotic- and ER stress-related
responses (including the suppression of caspase-3, caspase-7, GRP 78, and CHOP activa-
tion), and the phosphorylation of the JNK and AMPKα proteins. Similarly, pretreatment of
β-cells with an AMPK inhibitor (compound C) significantly abrogated MBP-induced β-cell
apoptosis and ER stress responses, concomitant with the marked inhibition of AMPKα

and JNK activation. These results indicate that both JNK- and AMPK-mediated signals are
interdependent and play critical roles in the downstream regulation of ER stress, triggering
an apoptosis pathway implicated in MBP-treated pancreatic β-cell death.

4. Materials and Methods

4.1. Materials

Unless otherwise specified, all chemicals (including MBP) and laboratory plastic wares
were purchased from Sigma-Aldrich (St. Louis, MO, USA) and Falcon Labware (Becton,
Dickinson and Company, Franklin Lakes, NJ, USA), respectively. RPMI 1640 medium,
fetal bovine serum (FBS), and antibiotics were purchased from Gibco/Invitrogen (Thermo
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Fisher Scientific Inc., Waltham, MA, USA). Mouse- or rabbit- monoclonal antibodies specific
for caspase-3, caspase-7, caspase-9, PARP, phosphorylated (p)-AMPKα, GRP 78, GRP
94, AMPKα, CHOP, and β-actin, and secondary antibodies (anti-mouse or anti-rabbit
IgG-conjugated to horseradish peroxidase (HRP)) were purchased from Cell Signaling
Technology (Cell Signaling Technology, Danvers, Waltham, MA, USA); caspase-12 was
purchased from Santa Cruz Biotechnology (Santa Cruz Biotechnology, Santa Cruz, CA,
USA); and antibodies specific for p-JNK and JNK-1 were purchased from Abclonal (Woburn,
MA, USA).

4.2. Pancreatic β-Cell-Derived RIN-m5F Cell Culture

RIN-m5F cells, a rat pancreatic islet β-cell line, were capable of producing and secret-
ing insulin. RIN-m5F cells were purchased from the American Type Culture Collection
(ATCC, CRL-11605) and cultured in a humidified chamber with a 5% CO2–95% air mixture
at 37 ◦C and maintained in RPMI 1640 medium supplemented with 10% fetal bovine serum
(FBS) and antibiotics (100 U/mL of penicillin and 100 µg/mL of streptomycin).

4.3. Cell Viability and Cytotoxicity Assay

The cells were washed with fresh medium and cultured in 96-well plates
(2 × 104 cells/well) and then stimulated with BPA (25–300 µM) or MBP (1–15 µM) for
24 h. After incubation, the medium was aspirated and the cells were incubated with fresh
medium containing 0.2 mg/mL 3-(4,5-dimethyl thiazol-2-yl-)-2,5-diphenyl tetrazolium
bromide (MTT). After 4 h, the medium was removed and the blue formazan crystals were
dissolved in 100 µL of dimethyl sulfoxide (DMSO). Absorbance at 570 nm was measured
using a Bio-Tek uQuant Microplate Reader (MTX Lab Systems, Winooski, VT, USA).

Cytotoxicity was determined on the basis of the amount of lactate dehydrogenase
(LDH) that leaked out of the cytosol of damaged cells into the medium after BPA or MBP
exposure for 24 h. The cells were seeded as described for the MTT assay. After 24 h of
treatment, 40 µL of the supernatant was added to a new 96-well plate to determine the LDH
release, and a cell lysis buffer was also added to the positive control group to determine the
total LDH. The amount of LDH from the cells was quantified using the LDH Cytotoxicity
Assay Kit (BioVision, Inc., Milpitas, CA, USA) according to the manufacturer’s instructions.
Absorbance at 450 nm was measured using a Bio-Tek uQuant Microplate Reader (MTX Lab
Systems, Winooski, VT, USA).

4.4. Determination of Insulin Secretion

To measure the amount of insulin secretion in RIN-m5F cells after exposure to MBP, the
cells were incubated in Krebs–Ringer buffer (KRB) with 2.8 or 20 mM glucose to stimulate
insulin secretion, and the supernatant of the media was immediately collected and stored at
−20 ◦C. To measure the amount of insulin secretion, aliquots of the samples were assayed
using an insulin antiserum immunoassay kit (Mercodia, Uppsala, Sweden) according to
the manufacturer’s instructions.

4.5. Measurement of Caspase-3 Activity

RIN-m5F cells were seeded and cultured at 37 ◦C, and then treated with BPA or
MBP for 24 h. At the end of the treatment (24 h), the cell lysates were incubated at
37 ◦C with 10 µM Ac-DEVD-AMC, a caspase-3/CPP32 substrate (Promega Corporation,
Madison, WI, USA), for 1 h. The fluorescence of the cleaved substrate was measured using
a spectrofluorometer (Gemini XPS Microplate Reader, Molecular Devices, San Jose, CA,
USA) at an excitation wavelength of 380 nm and an emission wavelength of 460 nm.

4.6. Western Blot Analysis

RIN-m5F cells were seeded at 1 × 106 cells/well in a 6-well culture plate and treated
with BPA or MBP. At the end of various treatment durations, the levels of protein expression
were analyzed by means of Western blot analysis, as previously described [20,21]. In brief,
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equal amounts of proteins (50 µg per lane) were subjected to electrophoresis on 10%
(w/v) SDS-polyacrylamide gels and transferred onto polyvinylidene difluoride (PVDF)
membranes. The membranes were blocked for 1 h in PBST (PBS with 0.05% Tween-20)
containing 5% nonfat dry milk. After blocking, the membranes were incubated with the
specific antibodies against caspase-3, caspase-7, caspase-9, PARP, p-JNK, p-AMPKα, JNK,
AMPKα, GPR 78, GRP 94, CHOP, caspase-12, and β-actin in 0.1% PBST (1:1000) for 1 h.
After three additional washes in 0.1% PBST (15 min each), the respective HRP-conjugated
secondary antibodies were applied (in 0.1% PBST (1:2500)) for 1 h. The antibody-reactive
bands were detected using enhanced chemiluminescence reagents (Pierce™, Thermo Fisher
Scientific Inc., Waltham, MA, USA) and analyzed using a luminescent image analyzer
(ImageQuant™ LAS-4000; GE Healthcare Bio-Sciences, Uppsala, Sweden). The bands were
analyzed via densitometric analysis using ImageJ software and signals normalized to that
of the housekeeping control.

4.7. Statistical Analysis

Data are presented as the mean ± standard deviation (S.D.) of at least four independent
experiments. All data analyses were performed using SPSS software version 12.0 (SPSS, Inc.,
Chicago, IL, USA). For each experimental condition, the significant difference compared
to that of the respective controls was assessed by means of one-way analysis of variance
(ANOVA), and Tukey’s post hoc test was performed to identify group differences. A
p-value of less than 0.05 was considered a significant difference.

5. Conclusions

Collectively, our findings demonstrate for the first time that MBP is capable of inducing
β-cell cytotoxicity and death via the interaction between JNK and AMPK signals, which
regulate ER stress-triggered apoptosis. These observations also provide beneficial evidence
suggesting that MBP may be a risk factor for the development of DM.
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