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Abstract

Dynamic functional connectivity (dFC) has been increasingly used to characterize the

brain transient temporal functional patterns and their alterations in diseased brains.

Meanwhile, naturalistic neuroimaging paradigms have been an emerging approach

for cognitive neuroscience with high ecological validity. However, the test–retest

reliability of dFC in naturalistic paradigm neuroimaging is largely unknown. To

address this issue, we examined the test–retest reliability of dFC in functional mag-

netic resonance imaging (fMRI) under natural viewing condition. The intraclass corre-

lation coefficients (ICC) of four dFC statistics including standard deviation (Std),

coefficient of variation (COV), amplitude of low frequency fluctuation (ALFF), and

excursion (Excursion) were used to measure the test–retest reliability. The test–

retest reliability of dFC in naturalistic viewing condition was then compared with that

under resting state. Our experimental results showed that: (a) Global test–retest reli-

ability of dFC was much lower than that of static functional connectivity (sFC) in both

resting-state and naturalistic viewing conditions; (b) Both global and local (including

visual, limbic and default mode networks) test–retest reliability of dFC could be sig-

nificantly improved in naturalistic viewing condition compared to that in resting state;

(c) There existed strong negative correlation between sFC and dFC, weak negative

correlation between dFC and dFC-ICC (i.e., ICC of dFC), as well as weak positive cor-

relation between dFC-ICC and sFC-ICC (i.e., ICC of sFC). The present study provides

novel evidence for the promotion of naturalistic paradigm fMRI in functional brain

network studies.
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1 | INTRODUCTION

Dynamic functional connectivity (dFC) has become an important tool

to probe the transient functional interactions among brain regions and

their alterations in disordered brains (Allen et al., 2014; Damaraju

et al., 2014; Fiorenzato et al., 2019; Hutchison et al., 2013; Liu

et al., 2017). Compared to static functional connectivity (sFC), it

enriches the content of functional brain networks and provides a

novel way to approach the detailed mechanisms of information

processing in the brain. A number of studies have reported that dFC

can provide valuable information that is inaccessible with sFC about

functional network organizations (Diez-Cirarda et al., 2018; Leonardi &

Van De Ville, 2015; X. Zhang et al., 2013). For example, a series of

representative functional states have been identified based on dFC

and found to be associated with complex brain functions and dysfunc-

tions of neuropsychiatric diseases (Allen et al., 2014; Damaraju

et al., 2014; Espinoza et al., 2019; Li et al., 2014; X. Zhang

et al., 2013).

Test–retest reliability generally measures the test consistency,

that is, the reliability of a test measured over time (J. Wang, Han,

et al., 2017; Zuo & Xing, 2014). The test–retest reliability of func-

tional connectivity (FC) in functional magnetic resonance imaging

(fMRI) is crucial for its applications in clinic and has been widely dis-

cussed in previous studies (Choe et al., 2017; Guo et al., 2012; Noble,

Scheinost, & Constable, 2019; Zuo & Xing, 2014). The majority of

existing FC studies in basic and translational neuroscience focuses on

resting-state fMRI (rs-fMRI) to search for pathophysiological corre-

lates of neurological and psychotic disorders (Tailby, Masterton,

Huang, Jackson, & Abbott, 2015; X. Wang et al., 2019; Wehrle

et al., 2018; X. Zhang et al., 2020). However, the unconstrained rest-

ing state may increase individual variations and make it difficult to

separate signals of interest from unwanted behavioral confounds

(Sonkusare, Breakspear, & Guo, 2019; Tong, Hocke, &

Frederick, 2019). Recently, naturalistic paradigms including dynamic

videos, speech and music designed to study real-life sensory experi-

ence have been proposed and gained increasing interest (Kauttonen,

Hlushchuk, Jaaskelainen, & Tikka, 2018; Kuo et al., 2019; Marshall

et al., 2019; Ren, Lv, Guo, Fang, & Guo, 2017; Sonkusare

et al., 2019). It has been demonstrated that naturalistic stimuli can

achieve improved ecological validity and may be more suitable for

challenging populations such as children or cognitively impaired

patients (Kim, Wang, Wedell, & Shinkareva, 2016; Kuo et al., 2019;

Mandelkow, de Zwart, & Duyn, 2016). To further validate its poten-

tial in functional brain network studies, the elucidation of test–retest

reliability of FC in naturalistic paradigm fMRI (nfMRI) is of crucial

importance.

In previous studies, the test–retest reliability of sFC as well as

the topological properties of functional brain networks in nfMRI

have been investigated (J. Wang, Ren, et al., 2017). Specifically, the

natural movie-viewing paradigm can significantly improve the test–

retest reliability of sFC compared to resting-state. This finding

encouraged the application of naturalistic paradigms in detecting

longitudinal changes of disease progression for neuropsychiatric

brains. However, it is still unknown whether the conclusions are still

applicable for dFC (Preti, Bolton, & Van De Ville, 2017; Viviano, Raz,

Yuan, & Damoiseaux, 2017; C. Zhang, Baum, Adduru, Biswal, &

Michael, 2018).

To address this issue, the test–retest reliability of dFC in nfMRI

was investigated in the present study. A sliding-window scheme was

applied to derive dFC (Li et al., 2014; X. Zhang et al., 2013). Then

intraclass correlation coefficient (ICC) analysis of dFC statistics includ-

ing standard deviation (Std), coefficient of variation (COV), amplitude

of low frequency fluctuation (ALFF), and excursion (Excursion) as rec-

ommended in previous studies was performed to measure the test–

retest reliability of dFC (dFC-ICC) (Choe et al., 2017; Guo et al., 2012;

J. Wang, Han, et al., 2017; J. Wang, Ren, et al., 2017; Zuo &

Xing, 2014). Based on dFC-ICC, the test–retest reliability of dFC was

then evaluated for region of interest (ROI) pairs (ROI-level), sub-

networks (network-level) and the whole brain (global-level). It was

found that nfMRI significantly increased global-level dFC-ICC com-

pared to rs-fMRI. Several sub-networks including visual network, lim-

bic network and default mode network showed significantly higher

intranetwork dFC-ICC in natural viewing condition. In addition, the

global dFC-ICC was lower than sFC-ICC. We further discussed the

relationships among sFC, dFC, sFC-ICC and dFC-ICC. In general, the

present study demonstrated that nfMRI can improve test–retest reli-

ability of dFC compared to rs-fMRI and provides complementary evi-

dence to the potential of nfMRI in exploring functional brain

networks.

2 | MATERIALS AND METHODS

2.1 | Participants and experimental paradigms

Twenty healthy right-handed subjects (9 males, 11 females; age

from 21 to 31 years) were recruited from the University of

Queensland. Written informed consent was obtained for each of

them. The study was approved by the human ethics research com-

mittee of the University of Queensland and conducted according

to National Health and Medical Research Council guidelines. Two

scanning sessions (Session I and Session II) with a time interval of

three months were acquired for each participant. During each ses-

sion, two conditions of fMRI data were acquired, that is, 8-min

resting-state and 20-min natural movie-viewing stimulus. The

resting-state scan was performed prior to the movie stimulus scan.

During the movie-viewing scan, the participant was asked to freely

view a short movie named “The Butterfly Circus” (Nguyen

et al., 2017; J. Wang, Ren, et al., 2017). All participants declared

that they had not previously seen this film and were asked not to

watch it outside the scan sessions before the experiment. Three

subjects were excluded: one with technical problem during data

recording and the other two without the second scan. Then, only

17 subjects (10 females and 7 males) were included in the study.

More details can be found in previous reports (Nguyen

et al., 2017; J. Wang, Ren, et al., 2017).
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2.2 | Image acquisition and preprocessing

Structural and functional MRI images were acquired on a 3T Siemens

Trio MRI scanner using a 12-channel heal coil (Siemens Medical Sys-

tem, Germany). The scanning parameters were as follows: (a) high-

resolution T1-weighted MPRAGE images with echo time

(TE) = 2.89 ms, repetition time (TR) = 4,000 ms, flip angle (FA) = 9�,

filed of view (FOV) = 240 � 256 mm2, and voxel

size = 1 � 1 � 1 mm3; (b) fMRI images using a gradient-echo echo-

planar imaging (GE-EPI) sequence with TE = 30 ms, TR = 2,200 ms,

FA = 79�, FOV = 192 � 192 mm2, matrix = 64 � 64, 44 axial slices,

voxel size = 3 � 3 � 3 mm3. Functional images were preprocessed

using Statistical Parametric Mapping toolbox (SPM12) and the Data

Processing Assistant for Resting-State fMRI software (DPARSF)

implemented in Matlab (Mathworks, USA; Chao-Gan & Yu-

Feng, 2010). The main steps included: removing the first five volumes,

slice timing, motion correction, normalization into the Montreal Neu-

rological Institute (MNI) space, spatial smoothing with a 6-mm full

width half maximum (FWHM) Gaussian kernel, regressing out nui-

sance covariates, band-pass filtering (0.01–0.1 Hz) and detrending.

More details about preprocessing can refer to previous reports

(Nguyen et al., 2017; J. Wang, Ren, et al., 2017).

2.3 | sFC and dFC calculation

The whole brain was parcellated into 200 region of interests (ROIs)

according to the Craddock 200 atlas (Craddock, James, Holtzheimer

3rd, Hu, & Mayberg, 2012). Specially, these 200 ROIs can be grouped

into 8 sub-networks according to Yeo 7 network template (see

Figure S1): visual network (VN), somatomotor network (SMN), dorsal

attention network (DAN), ventral attention network (VAN), limbic net-

work (LN), frontoparietal network (FPN), default mode network

(DMN), and other areas (OA) those are not included in the former net-

works (Yeo et al., 2011). The OA regions mainly cover parts of the cer-

ebellum, brain stem, thalamus, and caudate. For each Craddock ROI,

its network-label was determined by one of the Yeo 7 functional net-

works that the majority of voxels within the ROI falls into. It was

attributed to OA if the majority of the voxels within the ROI falls out

of all the 7 brain networks. In this way, all of the 200 ROIs were

grouped into 8 sub-networks.

2.3.1 | sFC

The fMRI time series of all voxels within each ROI were extracted and

averaged as the time series of the corresponding ROI. Then, the Pear-

son correlation coefficient was calculated between each pair of ROIs

based on their time series and a 200 � 200 whole-brain sFC matrix

was generated. In this experiment, one resting-state sFC matrix and

one natural viewing sFC matrix was separately obtained for each sub-

ject during each session.

2.3.2 | dFC

The sliding-window strategy was adopted to assess the dFC time

series. Briefly, a rectangle time window with an interval of one TR

was applied. Within each sliding window, the Pearson correlation

coefficients between each pair of ROIs were calculated. Let the full

duration of the fMRI time series be T; T = TR � N where N is the total

number of time points. Let the length of the sliding time window is w;

w = TR � n where n is the number of time points in the window.

Then, a three-dimensional 200 � 200 � (N – n + 1) whole-brain FC

matrix sequence, that is, dFC time series, was derived. It should be

mentioned that, as suggested by Leonardi and Van De Ville, before

dFC calculation a high-pass filtering was previously applied to the

fMRI time series that removes frequency component below 1/w, to

avoid spurious fluctuations of FC time series when the window length

was short (Leonardi & Van De Ville, 2015). Besides, with respect to

the key parameter of the window length in dFC calculation, a

sequence of different window sizes ranging from 10 TRs to 100 TRs

in increments of 10 TRs were implemented and compared based on

the dFC-ICC analysis results to determine the optimal window length

for our data.

2.4 | Test–retest reliability metrics

The test–retest reliability of sFC was measured by calculating the ICC

of sFC between two sessions for each pair of ROIs and a 200 � 200

whole-brain sFC-ICC matrix can be obtained. As the test–retest reli-

ability of dFC is difficult to be achieved directly from dFC time series,

a statistic that can quantify the dynamic fluctuation of the time series

will be needed. In this study, four statistics including standard devia-

tion (Std), coefficient of variation (COV), amplitude of low frequency

fluctuation (ALFF), and excursion (Excursion) were used to derive the

dFC-ICC metrics (C. Zhang et al., 2018). Similarly, one corresponding

200 � 200 whole-brain dFC-ICC matrix can be acquired for each

statistic.

Std

For dFC time series, the Std statistic is calculated according to

Equation (1).

dstd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�n

XN�nþ1

t¼1

rt� rð Þ2
vuut ð1Þ

where rt is the Pearson correlation coefficient during the time window

t and r is the average of the Pearson correlation coefficients across all

of the sliding time windows.

COV

The COV statistic measures the percentage of variation around the

arithmetic mean of the FC time series. It is defined as the ratio
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between the standard deviation (Std) and the mean of the Pearson

correlation coefficients (r).

dCOV ¼ dstd
r

ð2Þ

ALFF

The ALFF statistic was originally proposed to measure the slow fluctu-

ations of resting-state brains and found to be effective in seeking the

functional abnormality in disorders (Zang et al., 2007). Specially,

through fast Fourier transform, the rs-fMRI time series can be trans-

formed into temporal frequencies and the amplitudes within the gen-

erally considered low frequency range were averaged to generate the

ALFF metric. Here, as to the dFC time series, the effect of a finite win-

dow size is equivalent to applying a low-pass filter to the FC time

series fluctuations with a cut-off frequency 1/w (Leonardi & Van De

Ville, 2015; C. Zhang et al., 2018). Thus, the frequency components

from 0 to 1/w were summarized to generate the ALFF statistic for

dFC time series, as shown in Equation (3).

dALFF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nf

Xnf
i¼1

αi

vuut ð3Þ

where nf is the number of the frequent components and αi refers to

the amplitude of the i-th frequency component.

Excursion

The excursion statistic was provided by Zalesky et al. in 2014, aiming

to measure the extent of time-varying fluctuations in the time-

resolved dFC (Zalesky, Fornito, Cocchi, Gollo, & Breakspear, 2014).

First, a time point t was defined as a median crossing point if the signs

of rt—median(r) and rt�1—median(r) are different, where rt and rt�1 rep-

resent the Pearson correlation coefficients during the time window

t and t � 1, and median(r) is the median value of the coefficients

across all time windows. All of the median crossing points were col-

lected across time. A pair of consecutive crossing points tk ,tkþ1ð Þ
defines an excursion from the median value. The longer and larger the

excursions are from the median, the greater the evidence of non-

stationary behaviors. Therefore, the final statistic is designed by sum-

mating all excursions as a function of excursion length and height.

dexcursion ¼
XJ

k¼1

lαkh
β
k ð4Þ

where lk ¼ tkþ1� tk is the length of Excursion and hk ¼
max rt�median rð Þ,tk < t< tkþ1f g indicates the height of the k-th Excur-

sion. J is the total number of all median crossing points. The expo-

nents of α and β are used to adjust the relative weighting between the

importance of long versus large excursions; α= .8 and β= .3 were

used in this study and the influence of their settings were discussed in

Section 4.3.

ICC analysis

Here, a one-way random ANOVA model with subject as random

effect was established to calculate the ICC (J. Wang, Han, et al., 2017;

C. Zhang et al., 2018; Zuo & Xing, 2014). Through the ANOVA model,

the between-subject mean square (MSb) and within-subject mean

square (MSw) can be derived. Then, the ICC values can be calculated

as follows:

ICC¼ MSb�MSw
MSbþ d�1ð ÞMSw

ð5Þ

where d is the number of observations per subject (i.e., d = 2 for our

data). Based on sFC and dFC statistics of two scan sessions, the

corresponding sFC-ICC and dFC-ICC (Std/COV/ALFF/Excursion) met-

rics were separately derived for each pair of ROIs (i.e., ROI-level). The

ICCs were further investigated in sub-network level. Within- and

between-network ICCs were calculated by averaging the ROI-level

ICCs of all possible within- and between-network ROI pairs, respec-

tively. The global-level ICC was calculated by averaging all the ROI-

level ICCs.

Generally, once the ICC values are calculated, they can be catego-

rized into some intervals to indicate different reliability performance.

However, Termenon, Jaillard, Delon-Martin, and Achard (2016)

suggested that it is more appropriate to assess the reliability by the

statistical significance. Thus, the F-statistic based on the ANOVA

model was used to assess statistical significance of ICC:

F¼MSb
MSw

ð6Þ

The p-value of the F-statistic was computed using the degrees of

freedom df1 = 16 and df2 = 17 (for one-way ANOVA). In general, the

larger the F value is, the smaller the P-value will be and the higher ICC

(i.e., better reliability) will be achieved.

To assess the statistical differences of ICC between resting-state

and natural viewing conditions, a paired nonparametric permutation

test was conducted under the null hypothesis that the difference of

ICC between two conditions is drawn from a distribution with zero

mean. First, two surrogate conditions were created for Session I by

concatenating random selected samples from resting-state and natural

viewing fMRI data, and the same selection was applied on Session

II. Then, the new ICCs and their differences were computed. This pro-

cess was repeated 5,000 times to generate the null distribution of ICC

differences and the true differences in ICC values were compared

with this null distribution (one-tailed test, p <.025).

3 | RESULTS

After preprocessing, a total of 215 volumes were included in the rs-

fMRI data while the natural viewing fMRI data contained 530 volumes.

To reduce the influence of volume number on test–retest analysis,

the first 215 volumes under natural viewing condition were
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segmented for the FC and ICC analysis. The 200 � 200 sFC and dFC

statistic matrices were separately derived for each subject in each ses-

sion of rs-fMRI and nfMRI data. Based on them, one sFC-ICC matrix

and four dFC-ICC matrices in size of 200 � 200 were obtained for

each condition. After removing duplicates in the symmetric matrix,

19,900 elements covering all the ROI pairs were retained for each

matrix.

3.1 | Determination of the window length in dFC
evaluation

Window length is a crucial parameter in dFC evaluation based on slid-

ing window (Hutchison et al., 2013). A too short or too long window

will result in unreliable dFC results. In this study, the optimal window

length is determined in conjunction with dFC-ICC analysis results. As

mentioned in Section 2.3.2, a set of different window sizes ranging

from 10 TRs to 100 TRs with a step of 10 TRs were applied to assess

dFC time series. The dFC statistics of Std, COV, ALFF, and Excursion

were derived and then the corresponding dFC-ICC values across each

pair of ROIs, that is, ROI-level dFC-ICC, were calculated for rs-fMRI

and nfMRI. Furthermore, the whole-brain average dFC-ICC, that is,

global-level dFC-ICC, based on the four dFC statistics were computed

by averaging the dFC-ICC values of all the 19,900 ROI pairs and visu-

alized in Figure 1.

It can be observed in Figure 1 that the global-level dFC-ICC based

on Std, ALFF and Excursion exhibited similar variations in both condi-

tions as the time window length increased. For resting state, the ICC

was maximized at the 30-TR-length window for Std. As to the ALFF

and Excursion statistics, the second highest dFC-ICC was achieved at

30-TR-length window with a subtle difference from the peak (20-TR-

length window). For natural viewing condition, the peak values of the

ICC curves emerged at window size of 10 TRs and the second highest

dFC-ICC values were achieved at window size of 30 TRs for the three

statistics of Std, ALFF, and Excursion. However, the window length of

10 TRs is not an optimal option for dFC evaluation, as a too short win-

dow may introduce more fake dynamics that are not belong to the

real dFC content and then further influence the accuracy of ICC anal-

ysis (Hutchison et al., 2013; Zalesky & Breakspear, 2015). Moreover,

the peak dFC-ICC value was obtained at window size of 30 TRs for

both conditions in COV statistic. Thus, the length of the window was

set as 30 TRs in further experiments.

3.2 | The dFC statistic results for resting state and
natural viewing

The dFC-ICC matrices and their differences between natural viewing

and resting state using the four dFC statistics were compared, as

shown in Figure S2. Similar spatial patterns of dFC-ICC were observed

in all the four dFC statistics. The Excursion statistic was with the

highest test–retest reliability measure for both resting-state and natu-

ral viewing conditions. This observation is in line with a previous

study, which demonstrates that the Excursion statistic performs bet-

ter in maximizing reliability as well as maintaining individual differ-

ences in resting-state fMRI (C. Zhang et al., 2018). Therefore, the

Excursion statistic was selected as a single metric to derive ICC mea-

sures for the following dFC-ICC analysis.

For each session of rs-fMRI and nfMRI, the dFC time series and

the corresponding dFC Excursion results were calculated using the

30-TR-length sliding window and those of one randomly selected sub-

ject were shown in Figure S3. The group average Excursion matrices

of each session for both conditions were shown in Figure 2a. As men-

tioned in Section 2.3, the 200 Craddock ROIs were grouped into

8 sub-networks, that is, VN (1), SMN (2), DAN (3), VAN (4), LN (5),

FPN (6), DMN (7), and OA (8) (Yeo et al., 2011). It can be seen that

there exists similar excursion pattern in rs-fMRI and nfMRI, that is,

low intranetwork and high internetwork Excursion, indicating less FC

dynamics within each sub-network than between sub-networks. The

distribution of Excursion across all of the ROI pairs for each session of

F IGURE 1 The variations of the global-level dFC-ICC along with different time windows (10 TRs, 20 TRs, 30 TRs, …, 100 TRs) based on the
four dFC statistics of Std, COV, ALFF, and Excursion: (a) Resting state; (b) Natural viewing
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resting state (in cyan) and natural viewing (in magenta) was drawn

in Figure 2c. As to the group difference between resting state and

natural viewing in Figure 2b, paired t-test was performed sepa-

rately for each session (one-tailed test, p <.025). For Session I, the

intranetwork Excursion tend to be higher in natural viewing than

resting state in SMN (p = .023, uncorrected) and significant

decreased excursion between OA and other subnetworks including

VN (p = .012, uncorrected), SMN (p = .016, uncorrected), DAN

(p = .004, uncorrected), LN (p = .013, uncorrected), and DMN

(p = .016, uncorrected); while for Session II, significant higher

Excursion were found within SMN (p = .009, uncorrected) and

DMN (p = .007, uncorrected), and between LN and DMN

(p = .005, uncorrected) for natural viewing. However, after multi-

ple comparison correction across all the sub-network pairs using

false discovery rate (FDR) method, none of the above differences

were statistically significant (corrected p >.025). Furthermore, the

whole-brain average Excursion for each subject was calculated and

also compared between two conditions; no significant differences

were found between them for both sessions (two-tailed t-

test, p = .635).

F IGURE 2 The Excursion of dFC. (a) The group average Excursion matrix of each session for resting state and natural viewing, respectively.
(b) The group average Excursion differences between two conditions: natural viewing (NV) minus resting state (RS). (c) The distribution of
Excursion across all the ROI pairs from each session of resting state (in cyan) and natural viewing (in magenta). Shade signifies standard error of
the mean (SEM) across subjects. For visual clarity, only the SEM of Session I is displayed for each condition
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3.3 | Statistical analysis of dFC-ICC for resting
state and natural viewing

3.3.1 | Statistical results of significant dFC-ICC for
resting state and natural viewing

The ICC results for each pair of ROIs based on the Excursion statistic,

that is, ROI-level dFC-ICC, were calculated for resting-state and nat-

ural viewing conditions respectively (Figure 3a). The average dFC-

ICC results of each sub-network (i.e., intranetwork ICC,

corresponding to the diagonal boxes in the former two matrices)

were also shown in the third column of Figure 3a. The distribution of

dFC-ICC values across all of the ROI pairs for each condition was

provided in Figure S4a. For each pair of ROIs, the F-statistic was

computed during ICC analysis based on one-way ANOVA model. As

shown in Figure 3b, a total of 5,380 out of 19,900 natural viewing

ROI pairs had p-values lower than .05 and 539 remained significant

after multiple comparison correction across all the ROI pairs using

FDR correction method (corrected p <.05). As a contrast, for resting

state, 4,372 out of 19,900 ROI pairs showed significant p-values

(p <.05) and only 264 pairs were retained after FDR correction

(corrected p <.05).

As to the intranetwork ICC, it can be observed from Figure 3b

that the natural viewing condition had more significant ICC in VN, LN,

DMN, and OA (in magenta dashed circle) while resting state exhibited

more significant ICC occupations in SMN and DAN (in navy blue

dashed circle). Their difference was small in VAN and FPN. Besides,

natural viewing showed a relatively balanced percentage of significant

ICC across each sub-network compared with resting state (the third

column of Figure 3b).

F IGURE 3 The dFC-ICC and statistical results. (a) The first and second columns were the Excursion-based dFC-ICC matrices of resting-state

and natural viewing conditions. The last column showed the average dFC-ICC results of 8 sub-networks (i.e., intranetwork ICC) for both
conditions. (b) The statistical results of dFC-ICC based on one-way ANOVA model. The first and second columns showed the ROI pairs with
significant ICC results in red color (p <.05). The last column showed the percentages of significant ICC values in each sub-network for both
conditions. (c) The first column was the dFC-ICC difference matrix, that is, natural viewing (NV) dFC-ICC minus resting state (RS) dFC-ICC. The
second column showed the paired permutation test of the dFC-ICC difference (NV � RS) with gray dashed lines indicating 95% CIs. The last
column showed the p values of each intranetwork average dFC-ICC difference between two conditions after FDR correction across the sub-
networks
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3.3.2 | Statistical comparison of dFC-ICC between
resting state and natural viewing

As shown in Figure 1, the global-level dFC-ICC values of resting state

and natural viewing were .180 and .225, respectively, that is, an incre-

ment of .045 for natural viewing compared with resting state. As for

network-level, the natural viewing condition showed higher intra-

network dFC-ICC values in VN, LN, DMN, and OA, but decreased

dFC-ICC values in SMN and DAN relative to resting state, as visual-

ized in the last column of Figure 3a. The resting-state dFC-ICC dif-

fered sharply among sub-networks, ranging from the highest value of

.200 (SMN) to the lowest value of .058 (OA). By contrast, the natural

viewing condition had a relatively balanced ICC distribution across

each sub-network, varying from the highest value of .189 (FPN) to the

lowest value of .113 (LN). The dFC-ICC values of the other six sub-

networks for natural viewing were all larger than .140. Furthermore,

the dFC-ICC differences of each ROI pair (i.e., ROI-level) between nat-

ural viewing and resting state were also visualized in the first column

of Figure 3c. The distributions of dFC-ICC for each condition and the

dFC-ICC differences between them across all of the ROI pairs were

visualized in Figure S4.

To validate the statistical significance of between-condition dFC-

ICC difference, paired permutation tests were conducted along ROI-

level, network-level and global-level. The global-level dFC-ICC of nat-

ural viewing was significantly larger than resting state (p = .001).

When comparing the intranetwork dFC-ICC differences, natural view-

ing showed significant increased dFC-ICC in VN (p <.001,

uncorrected), LN (p <.001, uncorrected), DMN (p <.001, uncorrected),

and OA (p = .010, uncorrected) and decreased dFC-ICC in SMN

(p = .001, uncorrected) than resting state. After FDR correction, all of

the above differences remained significant (Figure 3c). As to the ROI-

level, a total of 3,104 ROI pairs showed significantly increased dFC-

ICC and 2,042 pairs showed significantly decreased dFC-ICC values

for natural viewing than resting state (paired permutation test,

uncorrected p <.025). After FDR correction, 1,187 pairs out of 3,104

and 641 pairs out of 2,042 remained significant (corrected p <.025,

see Figure S5 for more details).

3.4 | Comparison between sFC-ICC and dFC-ICC
for resting state and natural viewing

A previous study has reported that natural viewing condition

increased the test–retest reliability of topological properties of sFC

compared to resting state (J. Wang, Ren, et al., 2017). In this study,

the difference between sFC and dFC was further investigated. Both

conditions exhibited relatively higher sFC-ICC than dFC-ICC. Spe-

cially, the difference results of sFC-ICC minus dFC-ICC across all the

ROI pairs and sub-network pairs were shown in Figure 4. It can be

seen that for most of ROI pairs, the sFC-ICC exceeded the dFC-ICC in

each condition; their differences were larger for natural viewing, that

is, more red points in the difference matrix. Moreover, for network-

level, all of the sFC-ICC surpassed the dFC-ICC (Figure 4b). The

difference value of sFC-ICC minus dFC-ICC across ROI pairs ranged

from �0.914 to 1.324 for resting state and from �0.770 to 1.339 for

natural viewing. According to the sub-network difference results in

Figure 4b, the intranetwork differences between sFC-ICC and dFC-

ICC were much lower than internetwork differences for both

conditions.

3.5 | Relationships between sFC, dFC, and their
ICCs for resting state and natural viewing

In this part, the relationships between sFC, sFC-ICC, dFC (i.e., dFC

Excursion statistic) and dFC-ICC were explored for both conditions.

First, the sFC and dFC Excursion matrices were averaged along sub-

jects and sessions. Then the Pearson correlation coefficients between

sFC and sFC-ICC, dFC and dFC-ICC, sFC and dFC, sFC-ICC and dFC-

ICC for each condition were computed and summarized in Figure 5.

For both conditions, significant strong negative correlations were

observed between sFC and dFC (resting state: r = �.898, p <.001,

95% CI = [�0.900, �0.895]; natural viewing: r = �.896, p <.001, 95%

CI = [�0.898, �0.893]) while significant weak positive correlations

existed between sFC-ICC and dFC-ICC (resting state: r = .377,

p <.001, 95% CI = [0.365, 0.389]; natural viewing r = .291, p <.001,

95% CI = [0.278, 0.303]). Meanwhile, significant weak negative corre-

lations were found between dFC and dFC-ICC for each condition

(resting state: r = �.281, p <.001, 95% CI = [�0.294, �0.268]; natural

viewing: r = �.320, p <.001, 95% CI = [�0.332, �0.307]). As to the

relationship between sFC and sFC-ICC, the correlation was very low

for resting state (r = .142, p <.001, 95% CI = [0.128, 0.155]) while no

significant correlation was found in natural viewing condition

(r = .006, p = .406).

4 | DISCUSSION

4.1 | DFC-ICC as a function of the number of fMRI
volumes

As mentioned above, the first 215 volumes of nfMRI data were seg-

mented for dFC and dFC-ICC analysis to match with rs-fMRI. When

the whole scan data with 530 volumes was selected for dFC evalua-

tion and ICC analysis, the global-level dFC-ICC values is 0.330 for

30-TR-length time window, larger than the 215 volumes of both con-

ditions. Furthermore, the influence of the involved volumes in dFC-

ICC analysis was investigated based on rs-fMRI and nfMRI, respec-

tively. With an increment of 5 volumes from 100 volumes to 215 vol-

umes for rs-fMRI and to 530 volumes for nfMRI involved in dFC

analysis, the global-level dFC-ICC results were summarized in

Figure 6. With the number of volumes as the independent factor and

dFC-ICC as the dependent factor, a linear regression model was esti-

mated for rs-fMRI (R2 = .985, p <.001) as well as for nfMRI

(R2 = .928, p <.001), suggesting that dFC-ICC was in strong positive

relation with the volume number for both conditions. In other words,
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a longer scan period can achieve relatively better test–retest perfor-

mance for dFC analysis.

4.2 | The impact of window type in dFC evaluation

In the present study, a rectangle time window was applied in sliding

window dFC estimation. However, various types of windows have

been proposed to alleviate the effect of sudden changes associated

with the edges of the rectangle window (Allen et al., 2014; Mokhtari,

Akhlaghi, Simpson, Wu, & Laurienti, 2019). Here, two classical win-

dows, that is, Gaussian window and hamming window, were applied

to derive dFC and dFC-ICC based on the Excursion statistic. The inter-

val of sliding window is 1 TR and the window length was set as 45 TR,

that is, 1.5 times of the length of rectangle window (Mokhtari

et al., 2019). The dFC-ICC matrices and their differences between

two conditions using the three types of windows were shown in

Figure S6. All the three types of windows resulted in similar spatial

patterns of dFC-ICC for both resting state and naturalistic viewing

conditions. Furthermore, natural viewing condition increases both

global and local dFC-ICC compared to resting state no matter what

type of window is applied.

4.3 | The influence of excursion parameters on
dFC-ICC

According to Equation 4, two parameters α and β are involved in dFC

Excursion calculation. In this section, the influence of the two parame-

ter values on dFC-ICC results are summarized in Figure 7. Using dif-

ferent parameter combinations of α in (.1, .2, .3, …, 1) and β in (.1, .2,

.3, …, 1), the corresponding global-level dFC-ICC results were

recorded and visualized in Figure 7a,b. It can be found that the highest

dFC-ICC was achieved using the combination of α = .8 and β = .3 for

both conditions. Thus, this parameter combination was adopted in our

study. Besides, for the majority of parameter combinations, the natu-

ral viewing condition had relatively higher dFC-ICC values than resting

state (Figure 7c).

F IGURE 4 The visualization of sFC-ICC minus dFC-ICC for resting state and natural viewing: (a) across all the ROI pairs; (b) across all the sub-
network pairs
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4.4 | The difference between dFC-ICC and
sFC-ICC

According to Figure 4, most of the ROI pairs showed higher sFC-ICC

than dFC-ICC and the global-level sFC-ICC is much higher than the

global-level dFC-ICC for both resting-state and natural viewing condi-

tions (J. Wang, Ren, et al., 2017). Specially, a total of 2,744 (13.8%)

natural viewing ROI pairs showed high dFC-ICC (larger than .5) and

2,193 (11.0%) for resting state, while the number of high sFC-ICC was

10,353 (52.0%) for natural viewing and 6,522 (32.8%) for resting sate.

F IGURE 6 The dFC-ICC variations along with the involved number of volumes in dFC analysis with an increment of 5 volumes (in blue). A
linear regression model was estimated with dFC-ICC as the dependent factor and the number of volumes as the independent factor (red line) for
resting-state (a) and natural viewing (b) conditions, respectively

F IGURE 5 The associations between sFC, sFC-ICC, dFC (Excursion) and dFC-ICC matrices as heat maps for all ROI pairs with Pearson
correlation coefficients and corresponding p values: (a) Resting state (b) Natural viewing
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These results were consistent with the findings based on high-quality

human connectome project (HCP) data and other brain atlas (C. Zhang

et al., 2018).

The causes of this phenomenon may be various. First, sFC-ICC

was derived directly from sFC matrix while dFC-ICC was derived from

the dFC statistic, which was an indirect evaluation of dFC variations

(C. Zhang et al., 2018). The statistic may not fully represent or

describe the dynamic information included in FC variations. Second,

dFC analysis is more challenged than sFC analysis. The introduction of

temporal dimension largely increased the difficulty and complexity of

dFC analysis. Though sliding window estimation method was com-

monly used, the exploration of accurate dFC evaluation is still ongoing

due to the limitations in current approaches (Hutchison et al., 2013).

From this view, the accuracy of dFC evaluation method may influence

the dFC-ICC result. Third, high sFC-ICC means high overall consis-

tence between two scans, while dFC-ICC focuses on the consistence

of temporal segments during the scan; the latter may be more

dynamic, complex and uncertain due to the dynamic characteristic of

our brain functional activity, no matter at rest or under naturalistic

stimuli. This uncertainty may reduce the test–retest reliability when

considering the temporal consistency of FC segments between two

scans.

4.5 | Associations between sFC, dFC, and
their ICCs

As shown in Figure 5, the associations between sFC, dFC, sFC-ICC,

and dFC-ICC were similar for resting-state and natural viewing condi-

tions (C. Zhang et al., 2018). First, strong negative correlation was

reported between sFC and dFC statistic, in consistent with Zhang

et al.'s finding based on high-quality and large-number resting-state

HCP data. Given that sFC characterizes an overall FC level of the

whole scan, this negative correlation suggests that when the average

FC strength is high, the dFC fluctuation is reduced and vice versa. As

to the other three correlations, the strengths were obviously lower

than Zhang et al.'s results. The negative correlations between dFC and

dFC-ICC suggest that when dFC fluctuates more, the dFC-ICC will be

weakened. Then, for a specific fMRI scan, high temporal FC variations

will lead to a low average sFC and degrade the dFC-ICC performance.

The weak positive correlation between sFC-ICC and dFC-ICC sug-

gests that dFC-ICC is consistent with sFC-ICC to some degree when

evaluating the test–retest performance of fMRI paradigms. With

respect to the relationship between sFC and sFC-ICC, different from

Zhang et al.'s finding, the correlation was much lower for resting state

while no correlation was found for natural viewing paradigm. The

above results may suggest that the imaging quality and number of

samples may influence the ICC evaluation. A larger number of

populations and improved imaging quality may be adopted for further

validation in future.

4.6 | Impact of brain atlas

To further examine the impact of brain atlas on our findings, the Ana-

tomical Automatic Labeling (AAL) atlas was applied to evaluate whole-

brain dFC and dFC-ICC. Using 30-TR-length time window, the global-

level dFC-ICC was .255 for natural viewing and .183 for resting state,

similar to the results of using Craddock atlas. The relationships

between sFC, sFC-ICC, dFC and dFC-ICC were also similar: significant

strong negative correlation between sFC and dFC (resting state:

r = �.897, p <.001, 95% CI = [�0.902, �0.892]; natural viewing:

r = �.894, p <.001, 95% CI = [�0.899, �0.889]), weak negative cor-

relation between dFC and dFC-ICC (resting state: r = �.264, p <.001,

95% CI = [�0.285, �0.242]; natural viewing: r = �.296, p <.001, 95%

CI = [�0.318, �0.274]) as well as positive correlation between sFC-

ICC and dFC-ICC (resting state: r = .336, p <.001, 95% CI = [0.315,

0.357]; natural viewing: r = .311, p <.001, 95% CI = [0.289, 0.333]).

The positive correlation between sFC and sFC-ICC was also very

weak (r = .177, p <.001, 95% CI = [0.154, 0.200]) for resting state

F IGURE 7 The global-level dFC-ICC results using different parameter combinations of α in (.1, .2, .3, …, 1) and β in (.1, .2, .3, …, 1) in Excursion
estimation: (a) Resting state; (b) Natural viewing; (c) Natural viewing (NV) minus resting state (RS)

ZHANG ET AL. 1473



and natural viewing condition (r = .035, p = .004, 95%

CI = [0.011, 0.059]).

4.7 | Effect of scan order

The effect of scan order on test–retest reliability has been discussed

in previous studies. For example, Kristo et al. reported higher test–

retest reliability of task-fMRI compared to resting-state fMRI in motor

network detection. They performed the motor-task before resting-

state scan, but found no scan order effects on the reliability (Kristo

et al., 2014). Yang et al. observed significant higher test–retest reli-

ability of task-based cerebral blood follow (CBF) during psychomotor

vigilance test (PVT) than resting-state CBF in both pre- and post-task

resting-state scans (Yang et al., 2019).

In the current study, the resting-state scan was performed prior

to the natural viewing scan as it has been reported in previous studies

that prior cognitive states may influence resting-state functional con-

nectivities (Cecchetto, Fischmeister, Reichert, Bagga, & Schopf, 2019;

Tambini, Ketz, & Davachi, 2010; Waites, Stanislavsky, Abbott, &

Jackson, 2005). We then further inspected the effect of scan order on

the test–retest reliability of dFC. Specifically, both the resting-state

and natural viewing sessions were divided into two equal and

unoverlapped subsessions (the 1st–108th volumes and 109th–215th

volumes, respectively). Then the excursion-based global-level dFC-

ICC results were compared between subsession-pair using different

parameter combinations of α and β (Figure S7). The second subsession

was with strongly increased dFC-ICC compared to the first subsession

in both resting-state and natural viewing conditions (Figure S7a,b),

indicating that scan order could be a confounding factor in the evalua-

tion of test–retest reliability of dFC. However, the dFC-ICC

increasement in the second subsession was much higher in natural

viewing condition (Figure S7b) compared to that in the resting-state

condition (Figure S7a), suggesting that the viewers' better engage-

ment in the storyline of the movie stimuli may help to improve the

test–retest reliability of dFC. Furthermore, relatively strong

increasement of dFC-ICC was observed in the second subsession of

natural viewing condition compared to that in the resting-state condi-

tion (Figure S7d), though the dFC-ICC difference between the first

subsessions of the two conditions was not significant (Figure S7c).

Taken together, these results suggested that natural viewing condition

improved dFC-ICC compared to resting state though the effect of

scan order may exist.

5 | CONCLUSION

Utilizing two scan sessions of resting-state and natural viewing

fMRI data from the same group of subjects, the test–retest reliabil-

ity of dFC statistics were investigated and compared between the

above two conditions. For both conditions, the global dFC-ICC

was much lower than the sFC-ICC. Specially, significantly elevated

global dFC-ICC and local dFC-ICC in visual, limbic and default

mode networks were found in natural viewing paradigm compared

with resting state. The association between sFC and dFC demon-

strated that the more fluctuations of dFC, the lower sFC will be

achieved; weak positive correlation between dFC-ICC and sFC-

ICC as well as weak negative correlation between dFC and dFC-

ICC were also found. The current study demonstrates that natural-

istic fMRI paradigm can improve the test–retest reliability of dFC,

providing novel evidence for its promotion in functional brain net-

work studies.
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