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Abstract: Potato virus X (PVX) occurs worldwide and causes an important potato disease. Complete
PVX genomes were obtained from 326 new isolates from Peru, which is within the potato crop′s main
domestication center, 10 from historical PVX isolates from the Andes (Bolivia, Peru) or Europe (UK),
and three from Africa (Burundi). Concatenated open reading frames (ORFs) from these genomes
plus 49 published genomic sequences were analyzed. Only 18 of them were recombinants, 17 of them
Peruvian. A phylogeny of the non-recombinant sequences found two major (I, II) and five minor
(I-1, I-2, II-1, II-2, II-3) phylogroups, which included 12 statistically supported clusters. Analysis
of 488 coat protein (CP) gene sequences, including 128 published previously, gave a completely
congruent phylogeny. Among the minor phylogroups, I-2 and II-3 only contained Andean isolates,
I-1 and II-2 were of both Andean and other isolates, but all of the three II-1 isolates were European.
I-1, I-2, II-1 and II-2 all contained biologically typed isolates. Population genetic and dating analyses
indicated that PVX emerged after potato’s domestication 9000 years ago and was transported to
Europe after the 15th century. Major clusters A–D probably resulted from expansions that occurred
soon after the potato late-blight pandemic of the mid-19th century. Genetic comparisons of the
PVX populations of different Peruvian Departments found similarities between those linked by
local transport of seed potato tubers for summer rain-watered highland crops, and those linked to
winter-irrigated crops in nearby coastal Departments. Comparisons also showed that, although the
Andean PVX population was diverse and evolving neutrally, its spread to Europe and then elsewhere
involved population expansion. PVX forms a basal Potexvirus genus lineage but its immediate
progenitor is unknown. Establishing whether PVX′s entirely Andean phylogroups I-2 and II-3 and
its Andean recombinants threaten potato production elsewhere requires future biological studies.

Keywords: potato; virus disease; potato virus X; South America; Andean crop domestication center;
strain groups; high-throughput sequencing; phylogenetics; population genetics; Andean lineages;
dating; interpretation; evolution; prehistory; biosecurity significance

1. Introduction

Potato virus X (PVX, genus Potexvirus, family Alphaflexiviridae) [1,2] was one of the
first potato (Solanum tuberosum) viruses described [3–6]. It is one of over 50 viruses now
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found infecting potato crops around the world and, historically, has been the subject of
much research [7–13]. It is spread by contact between healthy and infected foliage or roots
of potato, tobacco and tomato plants. It also spreads by contact when PVX-contaminated
machinery moves through potato crops and from tuber-to-tuber when potato tubers are cut
with PVX-contaminated knives before planting. No specific PVX vectors have been found
despite a wide range of invertebrate species being tested, and it is not transmitted via true
seeds of infected potato plants. However, non-specific transmission by biting insects has
been reported [13]. Long-distance spread within regions or worldwide depends on the
movement of virus-infected plant materials, usually in the trade of infected seed potato
tubers [7–14]. PVX strains differ in virulence, mostly causing mild leaf mosaic symptoms,
but severe strains cause obvious mosaics [3,6–8,13,15,16]. PVX infection usually depresses
the yield of potato tubers by 5–20%, but up to 40% with severe PVX strains [8–13,17,18].
In potato plants, mixed infections of PVX with potato virus A (PVA) or potato virus Y
(PVY), both potyviruses (family, Potyvirideae), causes the classic severe foliage diseases
‘crinkle’ (PVX + PVA) and ‘rugose mosaic’ (PVX + PVY), and much greater tuber yield
losses [8,13,19,20]. Mixed infection of PVX with potato virus S (PVS; genus, Carlavirus,
family, Betaflexiviridae) also increases the severity of potato foliage symptoms [21].

PVX infects herbaceous dicotyledonous plants, especially those belonging to the
Solanaceae, and has filamentous virions 470–580 nm long, each of which contains a single
positive-sense ssRNA genome (c. 6400 nt) and around 1300 copies of the coat protein (CP)—
8.9 CP units per helix turn [22]. The genome has five open reading frames (ORFs). The
first of these ORFs encodes a complex RNA-dependent RNA polymerase [23], followed
by the three overlapping genes that encode the component proteins of the triple gene
block (TGB1-3) cell-to-cell movement protein, and, at the 3′ end is the gene for the CP.
Cockerham [24] used potato cultivar differentials with two PVX hypersensitivity genes,
Nx and Nb, to classify PVX strains biologically. Strain group 1 (strain group = pathotype)
isolates fail to avoid detection by either of these hypersensitivity genes, so a hypersensitive
resistance (HR) phenotype develops with both of them, strain group 2 overcomes Nx,
but HR occurs with Nb, strain group 3 overcomes Nb, but HR occurs with Nx, and strain
group 4 overcomes both genes, so a susceptible phenotype always develops unless extreme
resistance (ER) gene Rx is also present [25–27]. Before genes Nx and Nb were exploited
in potato breeding programs, and healthy seed potato production schemes became more
sophisticated, strain group 1 was commonly found in mixtures with strain groups 2 or
3 [15,16,24]. In Europe, more recently, strain group 3 isolates became the most abundant,
whereas strain groups 1 and 2 became rare, while strain group 4 isolates are less competitive
and so are rarely found in the field [28,29]. All four PVX strain groups were found infecting
potato crops in the Andean region of South America [30–32]. Neither Nx nor Nb are
temperature-sensitive [33]. PVX strain group 4 isolates that overcome not only Nx and Nb
but also Rx have been reported on two occasions, Bolivian isolate XHB and Argentinian
isolate XMS [31,34]. Jones [35,36] described selection of PVX strain group 4 isolates from
strain groups 2 or 3. PVX′s coat protein (CP) gene elicits an HR phenotype in potato plants
with gene Nx and an ER phenotype with gene Rx [37–39], whereas its movement protein
(MP) does this with gene Nb [40]. A single amino acid (aa) change in the CP or MP gene
was sufficient to change the phenotype from HR to susceptible in potato cultivars with
genes Nx and Nb, respectively. This was also so with the CP of isolate XHB and gene Rx, an
ER phenotype being altered to a susceptible one [37,40,41].

When Cox and Jones [42] compared the CP gene nt sequences of 13 new PVX isolates
from Australia or the UK with those of 72 others from GenBank, phylogenetic analysis
revealed two major phylogroups (I and II) and two minor phylogroups (II-1 and II-2). Most
isolates were in major phylogroup I, and these came from Australasia, Africa, Asia, Europe,
South America (non-Andean) and North America, and they included Argentinian isolate
XMS. Isolates in minor phylogroup II-1 were from Europe, but those in II-2 were from
the Andean region of South America or North America, and these included isolate XHB.
Isolates from strain groups 1, 3 and 4 were in major phylogroup I, whereas isolates in strain
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groups 2 and 4 were present in II-1 and II-2. Therefore, as strain group 4 isolates were in
both major phylogroups, no direct correlation existed between phylogenetic placement
and biological strain groups. When Kutnjak et al. [43] compared the complete genomes
of nine Peruvian PVX isolates with those of 20 complete PVX genomes, phylogenetic
analysis revealed that two were within minor phylogroup II-2 together with previously
reported Andean isolates. However, six others were all in an entirely new Andean minor
phylogroup they called II-3, and one was in major phylogroup I. They found no evidence
of PVX recombination events. Phylogenetic analysis of all available CP sequences placed
two other Andean isolates from Colombia within II-3, suggesting it might be widespread
in the Andean region. Subsequently, phylogenetic analysis using CP sequences of three
further Colombian isolates placed these in major phylogroup I [44,45].

About 9000 years ago, potato was domesticated from its wild potato ancestors in
the Altiplano regions of Peru and Bolivia in the South American Andes mountains [46].
After the 1542 arrival of Europeans to the Americas, potato land races (=native potato
cultivars) were taken to Europe during the Columbian Exchange of animals and plants
between the Americas and Eurasia [47] and introduced from there to other continents [48].
During early studies in which collections of Andean potato land races and wild potato
species were tested for presence of common potato viruses, PVX was often the most
frequently detected [49–54]. Widespread occurrence of PVX was also revealed by studies in
Peru of Andean potato germplasm collections and leaf samples collected from land races
and locally bred modern potato cultivars growing in the field [30,31,55]. This common
occurrence of PVX was accompanied by presence of PVX resistance genes Nx, Nb and Rx
in potato land races and wild potato species [26,27,32,56,57].

Recently, we have reported the properties of genomic sequences of isolates of three
common potato viruses (PVA, PVS and PVY), obtained from potato land races or locally
bred modern potato cultivars growing in the Peruvian Andean potato domestication center,
compared them with isolates from other world regions, and made deductions concerning
their evolution [58–60]. In this paper, we report a similar study of PVX. The results of
these analyses provide new information on the phylogenetics and population genetics of
PVX. They also greatly enhance our understanding of the origins and spread of this virus
by humankind.

2. Materials and Methods
2.1. Virus Isolates

The 11 historical isolates, all but one of which (DX) were sequenced, were collected
between 1940 and 1985 and came from Peru (A, CP, DP, E), Bolivia (HB) and the UK (B, DX,
EX), or were strain group 4 isolates derived from three of them (CP4, DX4, EX4) (Table 1a).
Three Peruvian isolates (A, DP, E) were kept in desiccated leaf tissue over silica gel at 4 ◦C
at the National Agrarian University, La Molina, Lima, Peru, before being sent to the UK for
sequencing in 2018. All other historical isolates were maintained in a collection of historic
freeze-dried virus isolates kept at FERA Science Ltd., York, UK. In earlier studies, all these
isolates had been inoculated to potato cultivar differentials to establish which strain groups
they belonged to [24,28,30,31,35,36].
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Table 1. Origins of potato virus X (PVX) isolates newly sequenced in this study. (a) Historical sequences collected in 1940 to 1983. (b) Summary of Peruvian sequences from samples
collected in 2016–2018.

(a)

Isolate Source Species Cultivar/Breeding
Line Accession Number Where Collected/Obtained Isolation Year Strain Group

(=Pathotype) GenBank Code References

E S. tuberosum subsp. andigena Renacimiento N/A Central- southern highlands- Perú 1973 N/A MT708135 [30]
CP (=C) S. tuberosum subsp. andigena Renacimiento N/A Central- southern highlands-Perú 1973 2 MT708142 [30]

CP4 S. tuberosum subsp. andigena (Renacimiento)** N/A (Central- southern highlands-Perú) (1973) 4 MT708141 [36]

DP (=D) S. goniocalyx Runtush 0CH 02736 Jauja, Junin, Department, Perú 1973 1 and 3
(mixture) MT708143 [30]

A S. tuberosum subsp. andigena Ccompis PI 308884 Wisconsin, USA in tuber from Peru * 1970 1 and
3(mixture) MT708136 [30]

HB S. tuberosum subsp. andigena Suta N/A Puna, Potosi Department, Bolivia 1975 4 MT708134 [31]
B S. tuberosum subsp. tuberosum Duke of York N/A Scotland 1940 2 MT708140 [24,36]

DX S. tuberosum subsp. tuberosum Desiree N/A Cambridgeshire, England 1980 3 No sequence [35]
DX4 S. tuberosum subsp. tuberosum (Desiree) N/A (Cambridgeshire, England) (1980) 4 MT708139 [35]
EX S. tuberosum subsp. tuberosum Epicure N/A Cambridgeshire, England 1983 2 MT708138 [28,36]

EX4 S. tuberosum subsp. tuberosum (Epicure) N/A (Cambridgeshire, England) (1983) 4 MT708137 [36]

(b)

Isolate Prefix Peruvian Department
Collected From Year of Isolation Total Samples Number of Isolates Sequenced

Apu Apurimac 2019 3 3
Cca Cajamarca 2016 60 67
Cus Cusco 2016 10 13
Hua Huancavelica 2016–2018 15 17
Hco Huanuco 2016 37 44
Ica Ica 2017 26 33
Jin Junin 2016 77 93

Lim Lima 2017 29 37
Pun Puno 2018 12 19

TOTAL 269 326

N/A = Not available. * Isolated in 1970 from a sprouted tuber received when CF was in Wisconsin. ** Round brackets surrounding a cultivar name mean that this isolate was derived from the isolate immediately
above it.
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Three hundred and twenty-six new PVX isolates from Peru were obtained from
269 leaf samples derived from 994 individual potato plants collected between 2016 and
2018 in the northern, central and southern Andean highlands of Peru (Figure 1), and some
samples were infected with more than one PVX variant. The potato plants sampled showed
foliage symptoms indicating virus infection. They came from nine Peruvian Departments
(i.e., different administrative regions of Peru) as follows (number of sequences/number of
samples): north: Cajamarca (67/60), center: Huanuco (44/37), Junin (93/77), Huancavelica
(17/15), Lima (37/29), Ica (33/26), and south: Apurimac (3/3), Cusco (13/10), Puno
(19/12). Each sample was placed in a separate labelled paper filter bag, nine of which
were placed together in a zip-lock plastic bag with 100 g of dehydrated silica gel for rapid
desiccation. The silica gel was changed after 24–48 h and the combined samples taken to
the International Potato Center (in Spanish = Centro Internacional de la Papa, CIP) in Lima
for processing. For the 326 new Peruvian isolates, Table 1b and Supplementary Materials
(SM) Table S1 show which Department each came from, the year it was isolated and the
total number of samples and isolates sequenced. A simplified searchable spread-sheet
version (SM File S1) provides more detail of the provenance of each isolate and, where
available, the potato cultivar from which it was isolated, and, for each Peruvian isolate, the
number of the site from which it was collected, as shown in Figure 1. Each isolate name
starts with a three-letter mnemonic of the Department where it was collected.
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Figure 1. Map of sample collection sites in the Andean Highlands showing where potato leaf samples were obtained.
Peru’s Andean highlands are shown as brown, the country′s coastal desert and Amazonian jungle regions as green and
surrounding countries as white. The red dots marked on the main map represent the locations sampled, and the names
marked on it are those of the countries’ regional departments sampled (black lines are departmental boundaries). The red
dots marked on the individual department maps clustered on either side show each collection site, and the numbers indicate
each individual infected sample collected. Individual collection sites are numbered (Supplementary Materials (SM) File S1,
column C). The names of the Departments also provide the first three letters of each isolate name (SM File S1, column F).
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In addition, three new PVX isolates from Burundi, East Africa, were collected from
potato (S. tuberosum subsp. tuberosum) cv. Ndinamagara (=Cruza 148) in 2016 at Kanyunya
(JEO11-14, MT520806), Rwibaga (JEO11-25, MT520804) and Nyamugari (JEO11-30, MT520805),
Bujumbura Rural Province.

The 49 PVX sequences already available in GenBank were downloaded in July 2020.

2.2. High-Throughput Sequencing

In the UK, samples of freeze-dried PVX-infected leaf material containing one each of
11 isolates (A, CP, CP4, DP, E, HB, B, DX, DX4, EX, EX4) were subjected to high-throughput
sequencing (HTS) in 2016–2019 (Table 1a). Total RNA was extracted from each sample
using the Total RNA kit (Qiagen, UK), including the optional DNase treatment. An indexed
sequencing library was produced from the total RNA using a Scriptseq complete plant leaf
kit (Illumina, USA) and sequenced on a MiSeq instrument (Illumina), using a 600 cycle
V3 kit. The methods followed are described in more detail by Fox et al. [61]. Ten isolates
provided a complete PVX ORF. No other virus sequences were associated with these
complete ORFs and no sequence of isolate DX was obtained. The new genomic sequences
with complete ORFs were mostly c. 6435 nts long. Their final sequences were submitted to
GenBank with Accession Codes MT708134-MT708143 (Table 1a and SM File S1).

In Peru, total RNA was extracted from each potato leaf sample (Table 1b) using trizol,
as instructed by the manufacturer. The large RNA fraction was precipitated by adding
an equal volume of 4M LiCl at ~4 ◦C (on ice) overnight, followed by centrifugation. The
remaining small RNA fraction was subsequently precipitated by adding one volume of
isopropanol followed by centrifugation. Small RNAs were separated on 3.5% agarose
gels and bands corresponding to ~20–25 nts excised and purified using quantum prep
freeze and squeeze columns (BioRad). Small RNA libraries were prepared using the
protocol of Chen et al. [62] and sent for sequencing on a HiSeq4000 by a commercial
provider (Fasteris Life Sciences SA, Switzerland). Small RNA sequences were analyzed
using VirusDetect v1.6 [63] to identify all viruses infecting the plants, and samples in which
PVX was detected were selected for further analysis. Using the Geneious R11.1.3 software
package (https://www.geneious.com; accessed on 1 May 2019), the PVX contigs produced
by VirusDetect were extracted for each positive sample and a consensus was generated. The
small RNAs were mapped back to the consensus to confirm the quality of the assemblies
and make any corrections as necessary. Their final sequences are recorded in GenBank and
have Acc Codes MT752611–MT752936 (SM Table S1 and SM File S1). The three Burundi
leaf samples were desiccated in silica gel, similar to the Peruvian samples which were
sent under license to Peru where they were sequenced with the Peruvian samples. Their
final sequences were submitted to GenBank with Accession Codes MT520804–MT520806
(SM File S1). All the new genomic sequences with complete ORFs were c. 6450 nts long.

2.3. Sequence Analysis

Genomic sequences were edited using BioEdit [64] to extract their five gene regions
(replicase, gp2 (25K), gp3 (12K), gp4 (8K) and gp5 (CP)). The sequences of each gene region
were aligned using the encoded aa′s as a guide, by the TranslatorX online server [65]
(http://translatorx.co.uk; accessed on 1 June 2019) with its Multiple Alignment using Fast
Fourier Transform (MAFFT) option [66]. The alignments were appended sequentially to
form an alignment of concatenates with all genes in the same reading frame. A separate CP
alignment was made from the new CP genes after 45 near-duplicate Peruvian sequences
had been removed for computing convenience, and all of the PVX CP genes downloaded
from GenBank.

The concatenated sequences (concats) were tested for the presence of phylogenetic
anomalies using the full suite of options in the Recombinant Detection Program RDP4 [67]
with default parameters [68–77]. Anomalies found by less than five methods and with
greater than 10−5 random probability were ignored. Models for Maximum Likelihood

https://www.geneious.com
http://translatorx.co.uk
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(ML) analysis were compared using MEGA7 [78]. The best-fit models were found to be
GTR + Г4 + I [79] for nucleotide (nt) sequences and LG + Г4 + I [80] for aa sequences.

Phylogenetic trees were calculated using the neighbor joining (NJ) option in ClustalX [81],
and/or in Phylogenetic Maximum Likelihood (PhyML) 3.0 for ML [82]. In PhyML, the
statistical support for their topologies was assessed using the Shimodaira and Hasegawa
(SH) method [83]. Trees were drawn using Figtree Version 1.3 (http://tree.bio.ed.ac.
uk/software/figtree/; accessed on 12 May 2018) and a commercial graphics package.
PATRISTIC [84] was used to check for mutational saturation by comparing the patristic
distances of the nt phylogenies with those of the aa′s they encoded and confirmed by
the method of Xia [85]. The BlastN and BlastP online facilities of GenBank [86] were
used to search for potexvirus sequences with which to compare, and also to root, the
PVX phylogenies.

The program DnaSP v.6.10.01 [87] was used to analyze genetic differences between
selected populations of sequences. We used it to estimate average pairwise nt diversity
(π), number of synonymous sites (SS), number of non-synonymous sites (NS), mean
synonymous substitutions per synonymous site (dS), mean non-synonymous substitutions
per non-synonymous site (dN) and ratio of non-synonymous nt diversity to synonymous
nt diversity (dN/dS). It was concluded that genes were under positive, neutral or negative
selection when their dN/dS ratios were >1, =1 and <1, respectively. Tajima′s D statistical
test was used to identify non-random evolutionary events such as population expansion,
bottlenecks and selection by comparing the estimated number of segregating sites with the
mean pairwise difference among sequences [88]. DnaSP v.6.10.01 was also used to assess
the extent of genetic differentiation of PVX populations, measured as the amount of gene
flow between them. This was done using the coefficient of genetic differentiation FST (=the
inter-populational component of genetic variation or the standardized variance in allele
frequencies across populations) [89] and the gene flow parameter Nm (the product of the
effective population number and rate of migration among populations) [90].

The TempEst program [91] was used to check for the presence of a linear temporal
signal in all the dated sequences, and all those in Cluster B. The ‘Least Squares Dating’ (LSD)
method Version lsd-0.3beta of To et al. [92] was used to estimate the TMRCAs (Time to
the Most Recent Common Ancestor) of Cluster B. The statistical significance of correlation
coefficients was calculated using the Social Science Statistics online site (https://www.
socscistatistics.com/pvalues/pearsondistribution.aspx; accessed on 3 August 2020). Some
alignments were separated into three sub-alignments using NSplitter (https://github.com/
HarryGibbs/NSplitter; accessed on 3 August 2020): one was of all the codon positions
that had only changed synonymously, another was of codons that included at least one
non-synonymous change and the third was of codons that had not changed.

3. Results
3.1. Sequence Alignments

The 388 genomic sequences (339 new and 49 downloaded from GenBank) were edited
and converted as described above to an alignment of concats 6357 nts long. A separate
alignment of 488 CP genes was made from the CP genes of the new sequences after 45 near-
duplicates were removed as described above and 128 CP sequences from GenBank were
added. Three quarters of the CP sequences were 711 nts long, but 119 of the Peruvian
sequences were 720 nts long, and three from the UK (the EX-2, B and EX sequences;
GU384737, GU384738 and X88782) were 744 nts long with all the inserted codons being
situated around 16 codons from their N-termini.

3.2. Recombination Analyses

When the concat sequences were checked for phylogenetic anomalies using Recombi-
nation Detection Program No. 4 (RDP4), 18 of the sequences, 17 of them from Peru, were
found to have recombinant (rec) regions (Table 2). The rec sequence not from Peru was
HQ450387 from the USA. Peruvian rec sequence M31541 had an Argentinian major parent

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
https://www.socscistatistics.com/pvalues/pearsondistribution.aspx
https://www.socscistatistics.com/pvalues/pearsondistribution.aspx
https://github.com/HarryGibbs/NSplitter
https://github.com/HarryGibbs/NSplitter
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(X55802) and an unknown minor parent. The 18 rec sequences were removed from the
alignment used for phylogenetic and population genetic analysis because rec sequences
distort the results of most algorithms used for reconstructing phylogenies. The CP genes
were also checked by RDP4, but no additional rec sequences were found. Thus, a signif-
icantly smaller proportion of the PVX population was recombinant compared with, for
example, the population of PVY, where around 41% of isolates were recombinant [59].

3.3. Phylogroups

A ML phylogeny (Figure 2) was generated from the non-rec concats using PhyML [82].
The topology of the phylogeny was the same as that reported for PVX by Cox and Jones [42]
and Kutnjak et al. [43], who used 85 CP sequences and 29 complete genomes respectively,
and two different methods of tree building: ML and NJ. Their phylogenies had a basal
divergence, which produced two major phylogroups (I and II) that separated into five
minor phylogroups, and, in conformity with the earlier reports, we call these I-1, I-2, II-1,
II-2 and II-3. All phylogroup 1 concat isolates found previously were placed in minor
phylogroup I-1, and I-2 only comprised three newly sequenced historical Peruvian isolates.
We also grouped the distal parts of the phylogeny into 12 statistically supported clusters,
A–L (Figure 2), with 20 singletons. The sequences in each of the clusters are recorded in SM
File S2 with the details of each isolate in SM File S1. The topology of the ML phylogeny of
CP sequences was closely similar to that of the concats (data not shown). However, it had
less well-defined clusters and less statistical support: 19.9% of the nodes of the concat tree
were fully supported (SH = 1.0, [83]), whereas only 0.6% of the CP tree nodes were fully
supported, and similarly, 22.1% and 14.8% respectively, of the other nodes had SH support
values of 0.90–99. Nonetheless, the CP data adds detail to the distribution of Andean and
non-Andean isolates in the PVX phylogeny and shows that whereas only Andean isolates
form phylogroups I-2 (3 sequences) and II-3 (213 sequences), all the other phylogroups
contain both Andean and non-Andean sequences, and, likewise, in phylogroup I-1, cluster
D and the singletons are exclusively Peruvian, whereas clusters A, B and C include both
Andean and non-Andean sequences. This distribution indicates that PVX originated in or
near Peru and spread from there to the remainder of the world.

The cluster B concats were 76, half from Peru, three from Colombia and the remainder
from other continents: one of its two largest subclusters was of 29 concats only from
Peru (SH support 0.85), and the other of 35 isolates (SH support 1.0) included 12 from
Peru together with isolates from Colombia (1) in the Andean region, and China (2), India
(1), Iran (2), Japan (5), Korea (1), Netherlands (1), Russia (1), Switzerland (1), Taiwan (1),
Tunisia (2), UK (3) and USA (2). This cluster was examined in more detail—see ‘dating’
Section 3.6 below.

Among the historical PVX isolates belonging to known biological strain groups, the
phylogenetic placement of the new complete genomic sequences (Table 1a) was as follows:
isolates B (MT708140) from Scotland, and EX (MT708138) and EX4 (MT708137) from
England, which belong to strain groups 2 or 4, were in minor phylogroup II-1, isolates HB
(MT708134) from Bolivia, and both CP (MT708142) and CP4 (MT708141) from Peru, which
belong to strain groups 2 or 4, were in minor phylogroup II-2, isolates A (MT708136), DP
(MT708143) and E (MT708135) from Peru, which belong to strain groups 1 or 3, were in
minor phylogroup I-2, and isolate DX4 (MT708139) from England, which belongs to strain
group 4, was in minor phylogroup I-1.
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Table 2. Potato virus X recombinants and their parents.

Recombinant (Rec) Major Parent Minor Parent Rec. Region RDP4
Programs 1 Method

Accession
(Acc.)
Code

Isolate Collection
Site 2 Acc. Code Cluster Isolate Collection

Site 2 Acc. Code Cluster Isolate Collection
Site 2 start end CRS 3

MT752615 Cca004-2 5 MT752839 B Jin125 229 MT752614 G Cca004-1 4 2602 2812 7 0.739
MT752631 Cca043 21 MT752857 rec Jin163 247 MT752799 K Jin051 189 3530 3664 6 0.672
MT752689 Cus089-2 79 MT752857 rec Jin163 247 MT752757 K Ica016 147 3458 3562 4 0.667
MT752729 Hco027-1 119 MT752785 F Ica099-1 175 MT752872 B Jin174-3 262 5634 6387 7 0.719
MT752730 Hco027-2 120 MT752873 B Jin175 263 MT752785 F Ica099-1 175 5634 6387 7 0.719
MT752758 Ica017-1 148 MT752611 G Apu008 1 MT752791 A Jin035 181 5078 5237 5 0.693
MT752761 Ica027-1 151 MT752790 L Jin032 180 MT752763 rec Ica027-3 153 6117 6210 6 0.742
MT752762 Ica027-2 152 MT752787 A Ica100 177 MT752790 L Jin032 180 2918 3095 5 0.59
MT752763 Ica027-3 153 MT752762 rec Ica027-2 152 MT752761 rec Ica027-1 151 3513 3661 7 0.581
MT752783 Ica098-1 173 MT752792 G Jin041 182 AB196001 B Japan - 1580 1649 5 0.697
MT752857 Jin163 247 MT752846 C Jin170B 236 MT752799 K Jin051 189 6258 6387 6 0.66
MT752869 Jin173 259 MT752824 C Jin109-2 214 MT752825 I Jin110 215 2346 2502 6 0.737
MT752877 Jin178 267 MT752826 S Jin110-B 216 MT752825 I Jin110 215 2346 2601 7 0.738
MT752896 Lim084 286 MT752804 F Jin059 194 MT752829 I Jin113 219 5014 5521 7 0.696
MT752919 Pun001-2 309 MT752921 C Pun002-2 311 MT708136 S Peru -4 5914 6073 6 0.644
MT752933 Pun035-2 323 MT752934 S Pun035-3 324 MT752774 G Ica040A 164 1542 1652 6 0.672
HQ450387 USA - unknown - unknown - M95516 B UK - 1436 3731 6 0.573

M31541 Peru - X55802 F Argentina - unknown - - 5387 5929 4 0.701
1 Number of recombination methods in RDP that recorded that the recombinant region was significantly anomalous statistically. 2 Collection sites numbered in Figure 2. 3 CRS = Consensus Recombinant Score
calculated by RDP4 program. 4 - = unknown.
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Figure 2. A Maximum Likelihood phylogeny of the 370 non-rec potato virus X concats. The phylogroups and minor
phylogroups have Latin-Arabic numbers, and the clusters (SM File S2) have a capital letter, and in brackets next to them, the
number of isolates within each. The Accession Codes of singletons are shown. Singletons or clusters of isolates only from
South America, mostly Peru, are green, whereas singletons from other regions of the world, or clusters containing such
isolates, are in red. All details are given in SM File S1. Red disks mark the nodes with >0.95 SH support. Scale bar: s/s
means substitutions/site. SM File S2 shows the Accession Codes of the isolates in the different clusters shown in this figure.

The PVX sequences were separated into five concat minor phylogroups (Figure 2) and
analyzed using DnaSP 6. The complete concat sequences within each of them were ana-
lyzed, as were their five individual genes (SM Table S2): the I-2 and II-1 minor phylogroups
were of only three sequences each, whereas the I-1, II-2 and II-3 minor phylogroups were
represented by 203, 37 and 123 sequences, respectively. The genetic diversity estimates
(π) confirmed that minor phylogroups I-2 and II-3, which contained only Andean isolates,
are more genetically diverse than the other PVX minor phylogroups, as were most of their
individual genes, except TGB3. The RdRp and the TGB3 genes, the largest (69% of the
concat) and smallest (3.3%) respectively, are the most variable PVX genes. Furthermore, as
for most virus genomes, the dN/dS ratios of the concats and all genes are less than one
(mean 0.081), indicating that they have been under strong purifying (negative) selection.
The smallest dN/dS ratio (mean 0.070) was that of the CP gene, perhaps because of its
many functions: the activation of PVX RNA translation [93], the transport of infection [94]
and viral genome RNA encapsidation [95].

Tajima′s D statistical test [88] distinguishes which gene sequences have been evolving
randomly (‘neutrally’) from those that have been evolving under non-random processes,
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such as selection, demographic expansion or contraction. This test returns a negative
value when there are more polymorphisms in the population than expected under neutral
processes and calculates the probability that the result is significant. We applied this test
to the concat and individual genes of the three best-represented minor phylogroups and
found that the concats and most of the individual gene sequences of I-1 and II-2, but not
II-3, returned significant negative values (SM Table S2). This difference therefore correlates
with the fact that I-1 and II-2, but not II-3, included isolates from outside the Andes,
and indicates that the non-Andean populations of PVX were established by population
expansion of migrants from the Andean population. The Tajima′s D difference between
Andean and non-Andean concats is consistent throughout their length in all genes, as was
confirmed using the sliding window function of DnaSP 6 (Figure 3).
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Figure 3. The mean genetic diversity of the aligned concats from 322 (Peruvian, blue) and 47 (non-
Peruvian, red) potato virus X genomes. Estimates of π (substitution/sites) and of Tajima′s D metric
were made in a window of 100 nts with a step of 25 nts.

The details of the phylogeny of Cluster B (SM Figure S1), however, indicate that the
spread of PVX from its Andean population to other parts of the world was not a simple
single-direction migration and divergence. Several distinct subclusters within Cluster B
include isolates from both the Andes and elsewhere (SM Figure S1; green and red Accession
Codes, respectively). If, for example, one applies cladistic reasoning to sub-cluster B1 of
SM Figure S1, it has a clear Peruvian origin as its basal divergences all involve Peruvian
isolates, whereas, by the same reasoning, sub-cluster B2 clearly originated from outside
the Andes but has recently spread to Peru. Thus, it seems that although PVX has mostly
spread from the Andes to other parts of the world, it may have done so on more than one
occasion, and there has also been some complex ‘repatriations’.

3.4. World Populations of PVX

DnaSP 6 was used to assess the genetic linkage or ‘gene flow’ between PVX popula-
tions from different regions of the world. This was measured using FST and the ‘gene flow
parameter’ (Nm), which indicate maximal linkage when FST is the smallest positive value,
and Nm the largest positive value [96,97]. It can be seen (Table 3a) that the Andean PVX
population (n = 346) is linked most closely with the European population (n = 17) by both
the FST metric (0.073, the smallest), and by the Nm metric (3.19, the largest). Also, although
similar values of the two measures were obtained for the Africa:Asia comparisons, these
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are less reliable as there were only six sequences in the Africa group. The comparisons of
the only three North American concats were omitted as they gave negative metrics.

Table 3. Genetic links (gene flow) between the potato virus X concat populations. (a) Genetic links between the concat
populations of different continents. (b) Genetic links (gene flow) between the coat protein (CP) gene populations of different
continents.

(a)

Continent n FST Nm

Asia Europe
Andean
South

America
Asia Europe

Andean
South

America
Africa 6 0.079 0.201 0.318 2.88 0.99 0.54
Asia 15 0.189 0.308 1.07 0.56

Europe 17 0.073 3.19
Andean South

America 346

(b)

Continent n FST

East Asia West Eurasia Indian
Subcontinent

Andean
Region

East Asia 37 0.041 0.113 0.316
West Eurasia 53 0.069 0.205

Indian
Subcontinent 66 0.320

Andean Region 313

n = number of concats in the population; FST (coefficient of genetic differentiation), and Nm (gene flow parameter), both of which measure
the genetic link between two populations. n = number of CP genes in the population; FST (coefficient of genetic differentiation), which
measures the genetic link between two populations. Populations of seven African CP genes and nine Australian CP genes omitted as these
populations were too small.

FST values were also calculated from the alignment of CP sequences grouped into
‘continent’ populations (SM File S1). The results (Table 3b) show that the PVX populations
of each of the ‘continents’ are primarily linked with that of West Eurasia (Europe plus
Russia and Middle East): the smallest FST for comparisons involving East Asia (China,
Korea and Japan) is West Eurasia (0.041), for one involving the Indian Subcontinent (In-
dia/Pakistan/Bangladesh) is also West Eurasia (0.069), and likewise for the Andean region
(0.205). Thus, a combination of Tajima′s D, FST and Nm analyses of PVX gene populations
indicate that PVX most likely spread first from the Andes to Europe/Russia/Middle East
and from there, separately, to East Asia and the Indian subcontinent.

3.5. PVX Populations of Peru

The populations of PVX isolated from different Departments of Peru (Figure 1) were
compared. The Peruvian population is apparently “well mixed” [98] as there was no
correlation between the phylogenetic clusters and the Peruvian Departments from which
samples were collected. No cluster, however small, had sequences from a single site, the
more sequences in a phylogenetic cluster the greater the number of Departments in which
it was found (Figure 4). The smallest clusters were found in two to four Departments that
were not necessarily adjacent, and the largest cluster of isolates (G) was found in all nine
Departments, and included 14 sequences from Cajamarca in North Peru and four from
Puno in South Peru at the border with Bolivia, where the northern portion of Lake Titicaca
is situated (note: the distance between Cajamarca and Lake Titicaca is more than 1500 km).
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Gene flow between Department populations was assessed using the FST measure [89,97,98].
The six smallest positive FST values of the 36 pairwise comparisons (Table 4) are summa-
rized graphically in Figure 5. They were least for the Junin:Lima (0.009) and Huancavel-
ica:Ica (0.004) comparisons, intermediate for the Lima:Puno (0.012) and Huanuco:Junin
(0.016) comparisons and the Cajamarca:Junin (0.021) and Ica:Junin (0.027) comparisons
gave the largest FST values. All the other 30 comparisons yielded even larger positive or
negative FST values and included all of the comparisons involving the two least sampled
populations: 3 samples from Apurimac, and 12 from Cusco. Thus, the most significant PVX
gene flow (i.e., genetic linkage) was between: (i) the mountain Departments of Cajamarca,
Huanuco, Junin, Huancavelica and Puno, where potatoes are grown under natural rainfall
in summer, and (ii) the coastal Departments of Ica and Lima, where potatoes are grown
under irrigation in winter, and the mountain Departments closest to them (Junin for Lima,
Huancavelica for Ica), which provide the seed potatoes for their crops.

Table 4. Genetic links (gene flow) between the potato virus X concat populations of eight different Peruvian Departments.

Department a n FST

Cca Cus Hco Hua Ica Jin Lim Pun

Apu 3 0.024 −0.224 0.045 −0.237 −0.137 −0.062 −0.109 −0.017

Cca 65 0.191 −0.008 0.183 0.116 0.021 0.075 −0.005

Cus 12 0.198 −0.048 −0.002 0.086 0.032 0.134

Hco 42 0.192 0.108 0.016 0.068 −0.016

Hua 17 0.004 0.086 0.031 0.126

Ica 28 0.027 −0.009 0.049

Jin 90 0.009 −0.009

Lim 36 0.0.12

Pun 17
a Apu: Apurimac, Cca: Cajamarca, Cus: Cusco, Hco: Huanuco, Hua: Huancavelica, Ica: Ica, Jin: Junin, Lim: Lima, Pun: Puno. Negative FST
values are invalid and indicate either inadequate numbers of samples (e.g., Apu) or more variation within than between the populations
being compared.
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Figure 5. Graph of the number of Peruvian Departments in which an isolate of each potato virus X
cluster was found, plotted against the number of isolates in each cluster. Letters A–L stand for the
clusters A–L in Table 2 and Figure 2. As there were no Peruvian isolates within cluster E, it is not
included in this Figure.

Although only 18 rec concats (4.9% of the 388) were found (Table 2), 17 of these were
Peruvian. One of these had a major Argentinian parent. The 16 with entirely Peruvian par-
ents support the conclusions of the FST comparisons of the PVX populations from different
Departments. First, they confirm that the Peruvian PVX population is geographically “well
mixed” as the number of rec sequences found in each Department was broadly related to
the total number of isolates collected from that Department (Figure 6), with the exception
of the Ica population, which had twice as many rec sequences as any other Department yet
was of average size. The distribution of the likely ‘parental’ isolates identified by the RDP4
analysis was not obviously related to their phylogeny or sampling density. Table 2 also
shows that only four of the rec sequences were isolated from the same Department. This is
because both of their ‘parental’ isolates involved just three rec sequences and parents from
Junin and one from Ica, and only two more were from the same Department as the major
‘parent’ (Ica and Puno). In addition, the other nine were isolated from plants collected
from a Department that did not provide either ‘parent’. Most ‘parental’ isolates, both
major and minor, were from Junin (ten and eight, respectively) or from Ica (three and five,
respectively), and only four from other Departments. Thus, the provenance and parentage
of the rec sequences again supports the conclusion that there has been much movement of
PVX between the coastal Departments and the mountain Departments that supply most
of the seed potatoes for their winter-irrigated crops, namely between Lima and Ica, and
between Junin and Huancavelica.
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3.6. Dating

The ‘collection date’ of the 370 non-rec PVX isolates supplying the concats is known
(SM File S1). Therefore, it was possible to test their phylogeny for a linear temporal signal
by the TempEst method—None was found. They gave a ‘x-intercept’ (i.e., TMRCA, Time to
Most Recent Common Ancestor) of 3318.16 CE (Common Era) with a correlation coefficient
of −0.136, which is, of course, nonsense. Therefore, the B cluster was tested separately
by TempEst and LSD as it is of 76 concats with known collection dates, though some of
these are uncertain as only their GenBank submission dates, not their collection dates,
are recorded in GenBank and research papers. For these, we used their submission dates
minus one year. The TempEst and LSD analyses both showed it to have a temporal signal.
The B cluster seems to have evolved coherently in that it has an even distribution of nodes
and branch lengths and includes both Peruvian and non-Peruvian isolates. They gave
an intercept of 1593 CE with a correlation coefficient of 0.178 (p = 0.125). The TMRCA
of the B cluster was also estimated by LSD and found to be 1451 CE (evolutionary rate:
0.68 × 109 CE–1855 CE; 1.1 × 10−4 s/s/year). However, when all non-synonymously
changing codons were removed from the B cluster concats leaving only sequences of
synonymously changing sequences (3822 nts long), they gave a nonsensical TMRCA of
3822 CE in a TempEst analysis.

The mean of the patristic distances connected through the root of the overall PVX ML
phylogeny (Figure 2) is 15.86 times greater than the mean of those connected through the
root of the B cluster (1.510 s/s ± 0.045 and 0.095 s/s ± 0.015, respectively), and this enables
the TMRCA of PVX to be extrapolated from the TMRCA of the B cluster.

3.7. Origin of PVX

We checked whether the geographical origins of PVX might be indicated by its phy-
logenetic relationships with other potexviruses, as comparisons of this sort had shown
that PVA [58], PVY [59] and wild potato mosaic virus [99] had all evolved from lineages
of potyviruses that were originally American. Figure 7 shows a ML phylogeny of 44 po-
texviruses calculated from the concatenated nt sequences of their replicase and CP genes.
It can be seen that PVX forms a basal lineage of the potexviruses on a very long branch.
None of the potexviruses have obvious phylogeographic groupings, except perhaps those
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infecting cacti (CaVX, OpVX, PitVX, SchlVX and ZygVX), which are an iconic South Ameri-
can group of plants, but are collected as a hobby, so their apparent grouping may reflect
recent activity of hobbyists rather than their geographical origin.
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Actinidia virus X (KR872420); AlstVX, Alstroemeria virus X (NC_007408); AltMV, Alternanthera mosaic virus (GQ179647,
LC107515, NC_007731); AlVX, Allium virus X (FJ670570); AspV3, Asparagus virus 3 (AB304848, KJ544560); BabMV, Babaco
mosaic virus (MF978248); BamVX, Bamboo mosaic virus (AB636266, KU936346, KX648527, NC_001642); CasCMV, Cassava
common mosaic virus (MN428639); CasVX, Cassava virus X (KY288487); CaVX, Cactus virus X (AF308158. JF937699); ClYMV,
Clover yellow mosaic virus (D29630); CnVX, Cnidium virus X (LC460456); CyMV, Cymbidium mosaic virus (EF125180);
EYMtaV, Euonymus yellow mottle associated virus (MK572000); EYVV, Euonymus yellow vein virus (NC_035190); FxMV,
Foxtail mosaic virus (AY121833, MF573299, NC_001483); HoVX, Hosta virus X (NC_011544); HRSV, Hydrangea ringspot
virus (NC_006943); LilVX, Lily virus X (NC_007192); LVX, Lettuce virus X (AM745758, NC_010832); MalMV(Chenopodium
mosaic virus), NC_008251); MVX, Mint virus X (NC_006948); NanMV, Nandina mosaic virus (AY800279); NerVX, Nerine
virus X (NC_007679); NMV, Narcissus mosaic virus (KF752593, NC_001441); OpVX, Opuntia virus X (KY348771, NC_006060);
PAMV, Potato aucuba mosaic virus (KY123701, MG356506, NC_003632); PapMV, Papaya mosaic virus (D13957, MN203140,
MN203142); PepMV, Pepino mosaic virus (FJ212288, JN133846, MT018444); PhaVX, Phaius virus X (NC_010295); PitVX,
Pitaya virus X (NC_024458); PlaMV, Plantago asiatica mosaic virus (AB360796, LC155795, LC422371, NC_003849); PVX,
Potato virus X (EU021215, KM659859, MT264741, X55802, MT708134, MT708143, MK116552); SchlVX, Schlumbergera
virus X (NC_011659); SeMV, Senna mosaic virus (NC_030746); StMYEV, Strawberry mild yellow edge virus (AJ577359,
NC_003794); TaRMV, Tamus red mosaic virus (JN389521); TGVX, Turtle grass virus X (MH077559, NC_040644); TuVX, Tulip
virus X (NC_004322); VVX, Vanilla virus X (NC_035205); WCMV, White clover mosaic virus (X06728, X16636, MN814316);
YVX-WX1, Yam virus X (NC_025252); YVX-XZ4, Yam virus X (1) (KJ789134); ZygVX, Zygocactus virus X (NC_006059).

4. Discussion

Our analysis has provided important new information about the influence humans
have inadvertently exerted upon the dispersion, diversity and evolution of PVX both
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within the potatoes’ Andean domestication center and within the rest of the world. This
information was obtained through applying a combination of HTS, recombination, phy-
logenetic, population genetic, dating and other analyses to study for the first time an
extensive virome consisting of PVX isolates from both potato′s domestication center in
the Andean region and the rest of the world. The findings revealed the fingerprints of
humans as a vector driving the global changes in the PVX population. These fingerprints
included the periods both before and after potato, and along with it, PVX was dispersed
far away from its original crop domestication center, resulting in acceleration of these
changes. This improved understanding our findings have provided will benefit researchers
in future similar studies with other economically important viruses dispersed away from
their domestication centers to other parts of the world with their principal crop hosts. It
will also benefit plant breeders, seed producers and marketers alike, in addressing the
threat posed by virus diseases originally emanating from crop domestication centers.

The phylogeny of the large population composed of 370 non-rec sequences both
confirmed earlier phylogenetic analyses of the smaller selection of sequences available
then [42,43,100] and added to it. Both the 370 concat and 488 CP sequences were placed in
two major (I, II) and five minor (I-1, I-2, II-1, II-2, II-3) phylogroups. Of these, I-2 (number
of sequences, n = 3) and II-3 (n = 127) were of Andean isolates only, II-1 (n = 8) was of
European isolates only and I-1 (n = 351) and II-2 (n = 43) were of isolates from both the
Andes and elsewhere. Around half of the I-1 sequences, but only 10% of the II-2 sequences,
were non-Andean. Considering that one of the well-sampled phylogroups, II-3 (n = 127),
was of Andean sequences only, whereas the other well-sampled phylogroups, I-1 (n = 351)
and II-2 (n = 43), were from both the Andes and elsewhere, it is likely that PVX first infected
potatoes in the Andes and was spread from there to other parts of the world. Genetic
diversity estimates (π) revealed that Andean minor phylogroups I-2 and II-3 were the
most genetically diverse, indicating that they are the oldest, and the Tajima’s D static test
returned significant negative values for I-1 and II-2, but not for II-3, indicating that the
first two, but not the third, arose by expansion of migrants from the Andean population.
Furthermore, a combination of Tajima′s D, FST and Nm analyses of PVX gene populations
indicated that PVX most likely spread first from the Andes to Europe and Middle East,
and then independently from there to East Asia and the Indian subcontinent. However,
applying cladistic reasoning to the distribution of Andean and non-Andean PVX isolates in
large sub-clusters B1 and B2 suggested that the migration was complex because, although
PVX mostly spread from the Andes to other parts of the world, it likely did so on several
occasions, and there had also been some more-recent PVX ‘repatriations’ to the Andes.

The dated sequences in the concat alignment yielded no detectable temporal signal
in a TempEst analysis. We therefore studied Cluster B in more detail as it has isolates
from both the Andes and elsewhere and TempEst and LSD analyses showed it to have
a temporal signal. Its dated sequence yielded a TMRCA of c. 1593 CE, although with
statistical support of only p = 0.178. Nonetheless, this is an entirely plausible date for
PVX-infected tubers to have been transported in early shipments of potato tubers from the
Andes to Europe as part of the ‘Columbian Exchange’ of crops between Europe and the
Americas after their discovery by Columbus. This suggests that PVX became established in
Europe well before the potato late-blight (Phytophora infestans) epidemic of the mid-19th
century. The near simultaneous divergences of four large clusters of isolates (A, B, C, D)
in the PVX phylogeny occurred during the same period as the major divergences found
in the phylogenies of PVA, PVS and PVY [58–60]. These divergences all occurred around
the mid-19th century following the famine-causing epidemics of late blight (Phytophthora
infestans) in European potato crops in 1845–1849 [101,102]. The earliest potatoes carried to
Europe lacked genetic diversity so, when the blight epidemic struck, almost all existing
potato cultivars were killed. This greatly stimulated the breeding of new cultivars using
potato germplasm, much of it imported from Chile in South America [48,103]. The surge
in potato breeding and trade would have stimulated virus spread, and produced the
divergences in the PVS, PVY and PVA populations [58,60,93], like that found by us in
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the PVX population. Therefore, there are two possible TMRCAs for Cluster B: either the
poorly supported 1593 CE or the hypothetical 1868 CE. These may be extrapolated using
patristic distances within the ML phylogeny of PVX (Figure 2) to provide two estimates
of PVX TMRCA using the ratio of the mean patristic distance of the branch tips (=leaves)
connected through the midpoint root (1.510± 0.045 substitutions/site) and those connected
through Cluster B′s basal node (0.095 ± 0.015 substitutions/site), a ratio of 15.86. Thus, the
‘poorly supported TMRCA’ of PVX is around 6900 years ago, whereas the ‘hypothetical
TMRCA’ is around 2380 years ago. Both of these are within the period since potato was
first domesticated in the Andean region around 9000 years ago [104–106]. However, both
are clearly earlier than the TMRCAs of PVY and PVA (c. 150 CE), when potato production
increased during the Tiahuanaco (=Tiwanaku) empire, which lasted from 110 to about
1000 CE [46,107,108]. However, TMRCAs merely indicate the coalescence date of the
variants in existing populations, and so may indicate that the smaller potato population of
pre-Tiahuanaco times was able to sustain a more diverse PVX population of PVX than of
either PVY or PVA.

Of the 388 PVX genomes studied, only 4.9% were found to be recombinant, which
is an unexpectedly small percentage as genomes from comparable populations of two
economically important potyviruses, PVY and turnip mosaic virus [59,109], have ten times
as many rec sequences. Also, there was clear evidence that the Peruvian PVX popula-
tion has been geographically well ‘mixed’, presumably by local trade in seed potatoes.
Possibly, cross-protection occurring in mixed infections between PVX strains may limit
recombination. However, the frequent occurrence of isolate mixtures within individual
samples (326 genomic sequences obtained from 269 samples) collected in the field (Table 1b,
Figure 1) suggest that this is unlikely to be important. Nonetheless, it might be useful if
past studies on cross-protection by different strains of PVX [3,110] could be reinterpreted
in the phylogenetic and geographic contexts our analyses have provided. None of PVX′s
CP genes were found to be recombinant.

In our study, biological strain group 2 isolates were in minor phylogroups II-1 and II-2,
strain group 1 and 3 isolates in major phylogroup I and strain group 4 isolates within all
three of these groupings. This fits the pattern found previously by Cox and Jones [42]. What
is new here is that major phylogroup I′s minor phylogroups I-1 and I-2 both contained
isolates previously assigned to strain groups, those in I-2 coming solely from Peru and
in I-1 being non-Andean. Absence of any strain groups in minor phylogroup II-3 reflects
the lack of biological studies with any of the entirely new Peruvian isolates it consists of.
Future research on Andean PVX isolates should include providing more information about
the biological strain groups they belong to, especially those in minor phylogroup II-3.

Comparing historical isolate sequences with recent sequences of the same virus from
the same part of the world can reveal whether regional alterations in virus populations have
occurred with the passage of time [111]. For example, when genome sequences obtained
from PVY isolates first isolated from potato in the period 1938–1984 in Western Europe
were compared with recent ones: (i) none of the former belonged to the PVY rec sequences
that have largely displaced their non-rec parents since their first appearance in the 1980s,
(ii) no other examples of potato isolates belonging to the minor phylogroup PVYC1 found
readily in 1939–1943 appeared subsequently and (iii) minor phylogroup PVYC2 became
rare after the 1980s. Thus, a major population shift away from PVYC1 occurred over the last
80 years and of PVYC2 over the last 30 years [111–114] (note: minor phylogroups PVYC1

and PVYC2 were recently renamed PVYC and PVYO3 respectively, by Fuentes et al. [59]).
The oldest PVX isolate in the phylogeny is B (MT708134) isolated from potato cv. Duke of
York in 1940 [24,115], which fits into minor phylogroup II-1. This was formerly the type
isolate of potato virus B before this virus was considered to be a strain of PVX [116,117].
It belongs to PVX strain group 2 which was widely studied in the early days of Western
European potato virus research [6,24,115], but by the 1980s was difficult to find except in
old potato cultivars such as King Edward and Epicure [28,118]. The PVX isolates in minor
phylogroup II-1 are all old ones from Western Europe. Therefore, there has been a major
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population decline in the occurrence of isolates within this minor phylogroup. This decline
occurred due to the very widespread occurrence of PVX resistance gene Nb in Western
European potato cultivars bred since the 1940s [29,56,115]. Establishing whether a similar
decline in the phylogroup I-2 population has occurred in the Andean region would require
future research on Andean PVX isolates to establish to which biological strain groups
they belong.

Our analyses of local inter-Departmental spread of PVX within Peru reveals that the
most significant PVX gene flow (genetic linkage) was: firstly, between the Andean mountain
Departments of Cajamarca, Huanuco, Junin, Huancavelica and Puno, where potatoes are
grown under summer rainfall, secondly between the coastal sea level Departments of
Ica and Lima, where potatoes are grown under irrigation in winter, and the mountain
Departments closest to them that supply their seed potatoes (Junin for Lima; Huancavelica
for Ica) (Figure 4).

Overall, we find many features of the Andean and world PVX populations are com-
pletely congruent with the hypothesis that humankind has been the principal long-distance
vector of PVX from its origin within the Andean potato population. However, our analyses
of the placement of PVX within the potexviruses give no clues on the origin of PVX, nor of
the populations, hosts or world regions that were involved in its survival indicated by the
very long branch connecting PVX to the base of the potexvirus phylogeny (Figure 7).

Among the common potato viruses, PVX is not one of the most damaging to the potato
crop. Nevertheless, it infects potato worldwide: damaging severe PVX strains sometimes
occur and mild PVX strains cause extremely damaging disease in mixed virus infections
with PVA and PVY [7,8,13,15,16]. Also, PVX infection of potato plants has been reported to
enhance their resistance to potato late-blight disease [119]. Moreover, minor phylogroups
I-2 and II-3 were entirely Andean and, although biological studies have been undertaken
with isolates from I-2 [30,31], none have been done with II-3 isolates. Also, only one of
the 18 rec PVX isolates we found was from outside the Andean region (from the USA).
Therefore, biological studies seem advisable to establish whether PVX rec isolates, and the
non-rec isolates making up minor phylogroups I-2 and II-3, might be a potential cause for
concern for potato-growing countries outside the Andean region. Following the completion
of such studies, the appropriate biosecurity authorities of non-Andean countries would be
in a position to consider whether precautions to prevent their establishment are required.

Existing systems for large-scale routine detection of common potato viruses, such as
PVX, PVS, PVY, PVA and potato leaf roll virus (PLRV; genus Polerovirus, family, Luteoviri-
dae), include using multiplex reverse transcription polymerase chain reaction (RT-PCR)
assays to detect them simultaneously and quantitative real-time RT-PCR to provide greater
sensitivity [120,121]. Our sequencing study involving many PVX isolates from the potato
crop′s Andean potato domestication center, along with our earlier sequencing studies with
PVS, PVY and PVA isolates from this region [58–60], have greatly increased the sequence
diversity now available for each of these four viruses. To ensure greater reliability of future
multiplex RT-PCR detection procedures, we recommend the preparation of new primer
sets able to detect the increased PVX, PVS, PVY and PVA sequence diversity revealed
by our studies. HTS has proven unsuitable for use in large-scale routine virus detection
because of its prohibitive cost and the variable genome structure of RNA viruses, which
constitutes a serious barrier to designing diagnostic markers that detect diverse plant virus
species [122]. Fortunately, targeted genome sequencing (TC-Seq), an amplicon sequencing
strategy involving a multiplex PCR reaction that not only detects diverse virus sequence
targets simultaneously, but also greatly reduces cost and workload, holds considerable
promise for sensitive, large-scale routine plant virus testing in both biosecurity and healthy
stock programs in the future [122].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13040644/s1. Figure S1: The ML phylogeny of the concats of potato virus X Cluster B isolates.
The Accession Codes of Peruvian isolates are in green, those of isolates from non-South American
countries are in red, Table S1: Details of the origins of new potato virus X isolates sequenced from
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Peru in this study, Table S2: Genetic diversity of potato virus X population based on the coding
genome sequence and each gene separately, File S1: Spread sheet version of Table 1 including
additional potato virus X isolate data. Column A, Database record number; B, Accession Code; C,
Peruvian isolate number (see Figure 1); D, Phylogroup (see Figure 2 and SM File S2); E, Cluster
(see Figure 2); F, Isolate name; G, Provenance (country or Peruvian Department from which the
isolate was collected); H, Continent of provenance (grouping used for DNAsp6 analysis); I, rec,
recombinant, n-rec, non-recombinant (cluster not given for rec sequences); J, Collection date, “?”
indicates submission date if collection date unknown; K, Original host of isolate; L, Host cultivar, if
known; M, CP sequences analysed, File S2: The Accession Codes of the potato virus X isolates in the
different clusters shown in Figure 2.
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