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Abstract: Thermochromic smart windows technology can intelligently regulate indoor solar radiation
by changing indoor light transmittance in response to thermal stimulation, thus reducing energy
consumption of the building. In recent years, with the development of new energy-saving materials
and the combination with practical technology, energy-saving smart windows technology has received
more and more attention from scientific research. Based on the summary of thermochromic smart
windows by Yi Long research groups, this review described the applications of thermal responsive
organic materials in smart windows, including poly(N-isopropylacrylamide) (PNIPAm) hydrogels,
hydroxypropyl cellulose (HPC) hydrogels, ionic liquids and liquid crystals. Besides, the mechanism
of various organic materials and the properties of functional materials were also introduced. Finally,
opportunities and challenges relating to thermochromic smart windows and prospects for future
development are discussed.

Keywords: smart windows; thermochromic hydrogels; thermochromic organic materials;
energy-saving

1. Introduction

The energy crisis is a major problem threatening human society. In recent years,
heating, ventilation and refrigeration account for 43% of the global primary energy con-
sumption [1], and the problem of building energy consumption [2] has attracted widespread
attention [3]. In the global total energy consumption, building energy consumption ac-
counts for more than one-third, and nearly half of it is lost by building windows.

At present, to solve the problem of building energy consumption, usually adopt
the method of dynamic adjustment [3], changing building roof and metope adornment
to achieve the goal of energy saving. For example, the use of highly reflective cooling
coatings [4], wet roofing [5] and porous materials [6] not only have certain effects on
maintaining indoor temperature stability but also have non-negligible defects. When the
weather is cold, the coating will not work, and it is difficult to reduce the building heating
energy consumption. The coating is not suitable for year-round use [7]. In addition, the wet
roof is not suitable used in the winter [5]. In the complex natural environment, a system
that can spontaneously respond to temperature changes to meet the needs of practical
applications, in order to better solve the problem of building energy consumption [8].

Compared with the development of an intelligent regulation system on the top of the
wall, window renovation is the most effective and simple way to realize the intelligent
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heat transfer controlling and effectively reducing the total energy consumption of the
buildings [9]. Therefore, it is necessary to improve the glass window [10,11]. Generally
ideal smart windows usually meet the following conditions: (1) In the use of the process
does not increase energy consumption; (2) wide range of regulation and control; (3) strong
self-regulation ability of the system.

To solve the above problems, thermochromic smart windows [12] have been re-
searched. Under heating or cooling conditions, the optical transmittance, reflectivity
and color of thermochromic materials will change significantly. They are the best materials
for making smart windows. Compared with electrochromic smart windows and gas smart
windows [13], thermochromic smart windows have the advantages of no external control
device, no need to consume additional energy and simple structure [14].

Thermochromic material-produced smart windows commonly exhibit an inorganic
phase change material and an organic polymer material. Inorganic phase change material
mainly focuses on vanadium dioxide (VO2), which undergoes a metal–insulator transition
at the critical temperature (Tc) of 68 ◦C, accompanied with huge transmittance contrast in
the IR range and negligible change in the visible range. Vanadium dioxide (VO2) used as
the thermochromic material has attracted more attention in recent years [15]. When the
external temperature (T) is lower than the phase transition temperature (Tc), vanadium
dioxide will undergo a reversible phase transition. VO2 is a monoclinal phase with low
reflectance in the near-infrared band [16]. When the external temperature (T) is greater than
the phase transition temperature (Tc), the phase of VO2 could change from a monocline
state to a rutile state (Figure 1a). In this state, VO2 has a large number of free electrons,
the transmittance of the near-infrared band drops and the reflectivity increases [16]. The
reversible transformation of vanadium dioxide from monoclinic crystal phase to rutile
crystal phase increases its absorbance in the near-infrared spectrum. The optical throughput
curve is shown in Figure 1b.
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Figure 1. (a) Schematic diagram of VO2 thermochromic smart window dimming [17]. (b) Optical
transmittance curves at VO2 in high temperature (90 ◦C) and low temperature (30 ◦C) states [18].

The phase transition temperature can be effectively reduced by doping W6+ Nb5+

Cr3+ plasma or nanostructure VO2 [19]. In addition, the visible light transmittance of VO2
thin films is low (usually between 40~50%), resulting in the solar modulation ability being
unsatisfactory [18].

Due to the above disadvantages of smart windows prepared by inorganic phase
change material VO2 [20], polymer thermochromic smart windows have received exten-
sive attention in recent years [19]. Compared with traditional inorganic thermochromic
materials, organic polymer thermochromic materials possess low preparation costs and
excellent sunlight regulation ability [10]. Moreover, most organic polymer materials are
environmentally friendly and suitable to use in thermochromic smart windows [21].

In this review, hydrogels-based smart windows, including thermochromic ionic liquid
and liquid crystal smart windows, are summarized and discussed (Figure 2). Firstly,
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the categories and strategies for the performance improvement of these three hydrogels-
based smart windows are outlined. Secondly, the integration of the hydrogel with the
multifunction devices was discussed. The last section summarizes the prospects of smart
windows for future development and applications.
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2. Thermochromic Hydrogel Smart Windows

The thermochromic smart windows use the characteristic that the light transmittance
of thermochromic materials changes with temperature to dynamically adjust sunlight
without consuming additional energy [22]. Another advantage of thermochromic smart
windows is that it does not need an additional control system [23]. Thermally responsive
organic materials, such as hydroxypropyl cellulose [24] and polyacrylamide [21], play an
important role in thermochromic smart windows [25].

In addition, thermochromic functions can be combined with other functions, such
as electrothermy-based active control and thermosensitive/electrochromic [26], for better
light modulation and energy utilization.

2.1. PNIPAm-Based Thermochromic Materials Smart Windows
2.1.1. PNIPAm Temperature-Responsive Hydrogel

A novel organic thermochromic material PNIPAm was used to replace the tradi-
tional inorganic phase change material VO2 [27]. With appropriate thickness, PNIPAm
temperature-responsive hydrogel was completely transparent at room temperature, and the
thickness of the thin layer reached 87.9%. Translucent at 40 ◦C [28], the thickness of the thin
layer can reach 59.9%. Compared with the currently reported best VO2 thermochromic film
(∆Tsol(20–90 ◦C)22.3%, Tlum(20 ◦C) 45.6% [13], and Tlum(90 ◦C) 40.0%) [29], they can provide
both high modulation in the visible and infrared range, which lead overall to enhanced
∆Tsol(20–40 ◦C) of 20.4% or 25.5% for ∆Tsol(20–60 ◦C) [30].

According to the above discussion, the application of PNIPAm hydrogel film in smart
windows is mainly related to the thickness of hydrogel [31]. The thickness effect of “thin”
hydrogels with thickness less than 100 µm was further studied. When the thickness
increases from 26 µm to 78 µm and the temperature decreases from 40 ◦C to 20 ◦C [32], the
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water absorption strength at 1930 nm and 1430 nm increases significantly (Figure 3a). It can
be seen from Table 1 that the Tlum(20 ◦C) of the three samples remained unchanged [7], while
the Tlum(40 ◦C) decreased monotonically from 80% (26 µm) to 20% (78 µm) [33]. While the
78 µm thick hydrogel showed impressive ∆Tsol values of nearly 50%, its low Tlum(40 ◦C) of
less than 20% is less satisfactory for an ideal smart window [34]. Tlum at high temperatures
and ∆Tsol are also suitable for hydrogels of 26 µm thickness [31]. At temperatures above
lower critical solution temperature (LCST), extremely low thickness accompanied by almost
constant brightness transmittance and poor solar regulation ability occur [35]. Averaged
Tlum(40 ◦C) decreases with thickness, ∆Tlum, ∆TIR and ∆Tsol increases with the thickness
(Figure 3b) [36].
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(b) The variation trend of ∆Tsol, ∆Tlum, ∆TIR and ∆Tlum at 40 ◦C with different sample
thicknesses [21,36].

Table 1. Thermochromic properties of 52 µm thick PNIPAm hydrogel films [21].

20 ◦C 30 ◦C 35 ◦C 40 ◦C 50 ◦C 60 ◦C

Tlum (%) 87.9 63.3 62.6 59.9 56.5 53.6
TIR (%) 80.0 72.6 72.7 70.5 68.4 66.1
Tsol (%) 83.0 65.5 65.0 62.3 59.8 57.5

This high-performance temperature-responsive hydrogel can facilitate the develop-
ment of thermochromic smart windows based on organic materials [35].

2.1.2. PNIPAm Thermally Responsive Liquid Hydrogel

Conventional smart windows can only adjust solar energy transmission [33]. Re-
searchers extracted the hydrogel-derived liquid in glass [37] and developed the high
thermal energy storage thermoresponsive smart window (HTEST smart windows) [15]. Ex-
cellent thermal response optical properties, coupled with high liquid specific heat capacity,
enable HTEST smart windows to have excellent energy-saving performance. Simulation
results show that, compared with ordinary glass in Singapore [38], the HTEST windows can
reduce the energy consumption of heating, ventilation and air conditioning by 44.6%. In the
outdoor demonstration, HTEST smart windows showed good energy-saving performance
during the summer day [39].

Optical photos of samples of different thicknesses at 20 ◦C and 60 ◦C. The optical
image is consistent with spectrum: at low temperatures, all samples are transparent light
transmittance free from thickness [13]. Moreover, when the temperature is higher than
LCST [36], transmittance of 0.1 mm sample [40] does not change significantly. In contrast,
the 1 mm sample becomes translucent [41], the 1 cm sample becomes opaque, and flowers
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under the 1 cm sample become invisible (Figure 4a) [42]. Therefore, thermal response
optical characteristics of thermoresponsive liquid (TRL) can be adjusted by changing tem-
perature as well as thickness of TRL [43] significant difference in optical transmittance
(Figure 4b). By adjusting the hydrophilic and hydrophobic balance of thermochromic hy-
drogels through copolymerization, the phase transition process can be flattened, while the
transmittance near the phase transition temperature changes slowly with the change of am-
bient temperature (Figure 4c). Transmittance spectra of an ion gel at different temperatures
of 15~60 ◦C. The spectral range of 300~2200 nm is affected, with temperature increase of ion
gel. when the ion gels were heated above LCST, up to 80% luminous modulation (∆Tlum)
was to be achieved by changing the observable color to white (Figure 4d), as reported by
Lee et al.
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Figure 4. (a) Optical photographs of 0.1 mm, 1 mm and 1 cm samples at 20 ◦C and 60 ◦C. (b) Schematic
diagram of thermochromic optical transmittance as a function of temperature. (c) Schematic diagram of
the change of thermochromic light transmittance. The reduced transparency of the ionic liquid above
the LCST is due to light scattering at the interface between the ionic liquid and the polymer chain.
(d) Transmission spectra of the UV-Vis-NIR regions at different temperatures of 15 to 60 ◦C [5,42].

Compared with traditional energy-saving smart windows [44], which require expen-
sive equipment, the thermally responsive liquid structure is easy to manufacture, has good
uniformity and expansibility and has the function of sound insulation, which opens a new
path for energy-saving buildings and greenhouses [45].

2.1.3. PNIPAm/Antimony-Doped Tin Oxide (ATO) Nanocomposite Hydrogel

Photothermal and temperature-sensitive nanocomposite composed of hybrid poly
PNIPAm hydrogel and antimony-doped tin oxide (ATO) were reported by the Li group [44].
In this photothermal system, near-infrared (NIR) absorption of ATO can be used as an
optical switch to induce hydrogel induced by nano heater [46]. This new type of passive
smart windows has excellent near-infrared shielding performance. The photothermal
activation switch mechanism enhances the thermal response speed and solar modulation
capability. [47] ATO doped with 0, 5, 10 and 15 at% Sb separately in PNIPAm was studied, it
was found that PNIPAm/ATO nanocomposites could be photothermal activated [48]. The
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PNIPAm /ATO doped with 10 at% Sb showed the best thermal response speed and solar
modulation ability. Different film thicknesses and ATO content will affect the response rate
and solar modulation ability. By increasing the content of Sb dopant in SnO2 to 10 at%,
the concentration of free electrons increases, leading to the improvement of near-infrared
absorption efficiency. This means ATO can convert absorbed solar radiation into heat, also
known as the photothermal effect. For structural stability, the performance stability of such
a photothermal system [49] can be proved by 15 consecutive periods of irradiation under
solar intensity (Figure 5c).
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Figure 5. Optical sensitive smart windows (a) transparent state and (b) translucent state structure di-
agram. (c) UV-Vis-NIR absorption spectra of 0.025 wt% SnO2 dispersed in perchloroethylene solvents
with Sb doping of 0, 5 and 10 at% [49]. (d) UV-Vis-NIR spectra of nanocomposite hydrogel films with
different filling contents at 25 ◦C. (e) Single-wavelength transmittance rate (T550%) nanocomposite
hydrogel as a function of € time and (f) temperature from solar irradiation at 100 mW cm−2 for
10 min. The figure above shows the optical properties of the 180 nm hydrogel film incorporated with
various content of 10 at% Sb doped ATO. (g) UV-Vis-NIR spectra of PATO Compared with different
levels of PGO at 25 ◦C [50].

When PNIPAm/ATO composite hydrogels (PATO) are exposed to sunlight irradiation
(Figure 5a,b) [17], dimming control can be facilitated and accelerated by plasmonic heating
of ATO under glaring sunlight even if the temperature outdoor is far below the transition
point of PNIPAm hydrogel [45].

As the content of ATO in PATO increases, the absorption of the plasma increases,
resulting in a decrease in transmission in the NIR region (Figure 5d). With the increase of
ATO content, a significant increase in the response rate is observed in addition to the lower
visible light transmittance in the transparent state (Figure 5e). The optical effects of different
ATO concentrations on the PATO are further observed in the transmittance temperature
profile (Figure 5f) [45]. Use ATO as an alternative to graphene oxide (GO), as a nano heater.
Their performance is compared in (Figure 5g). Unlike the PATO showing the NIR shielding
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effect, the PGO shows only a decreased visible transmittance as the GO content increases,
while the spectrum in the NIR region remains the same as the PNIPAm [17].

In the background of the smart windows, NIR absorption is an important feature of
indoor temperature regulation. Thus, not only does it sacrifice the photothermal rate of
visible light, but PGO also fails to achieve significant NIR shielding and insulation. So, in
this respect, PATO will be more capable than PGO. [50].

In addition to the dimmer-controlled transparency modulation, the addition of ATO
also helps in NIR shielding to reduce burden of cooling and air conditioning in tropical
climates [44]. A series of parameters including ATO doping, composite hydrogel thickness
and nanoparticle content were studied and optimized. We feel that the experimental results
of the study will provide further research direction for development of ideal passive smart
glass [51].

We believe that this new generation of autonomous passive smart windows can be
used to adapt to solar modulation.

2.1.4. PNIPAm/VO2 Nanocomposite Hydrogel

Although vanadium dioxide is a hot spot in the areas of color-changed materials [31],
it has low solar energy modulation (∆Tsol) and low luminous transmittance (Tlum) and
high phase change temperature [50].

In another work, the Jin’s team combined VO2 nanoparticles with thermochromic
ionic liquids, which usually increase the absorbance at 650–750 nm when heated, in-
stead of increasing the absorbance over the entire visible light range like hydrogels. The
VO2/IL-Ni-Cl composite has excellent optical regulatory properties (∆Tsol of 26.5%) and
maintains good transparency (Tlum of 50%). More interestingly, these films present signifi-
cant color changes from brown (20 ◦C) to green (80 ◦C), which are considered synergistic of
color variations in pure VO2 and pure IL-Ni-Cl films (Figure 6c). The proposed method
provides an alternative for simultaneously improving the unfavorable brown-yellow color
of VO2 and achieving good solar modulation. Then they were applied to a ligand exchange
thermochromic system based on cobalt (II) and nickel (II) (Co-based ligand exchange ther-
mochromic system and Ni-based ligand exchange thermochromic system) and obtained
similar results [51].

The VO2/hydrogel composite maintains good reversibility during the durability test.
Tlum and ∆Tsol are relatively stable at 80 ◦C, and there is almost no change in 20 cycles of
measurement. This shows that in actual smart window applications, as long as good sealing
is achieved and moisture evaporation is prevented, the performance stability should be
reliable (Figure 6d) [55].

The composite material proposed by the researchers has unprecedented excellent
thermochromic properties, opening a new research direction for the field of thermochromic
smart windows in the future.
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Figure 6. (a) Sunlight regulation mechanism of VO2/ hydrogel composites. (b) UV-Vis spectra of pure
hydrogels, pure VO2 and VO2/ hydrogel complexes [51]. (c) Films Photographs based on the pure
IL-Ni-Cl complex (above row), VO2 nanoparticles (intermediate row) and VO2/IL-Ni-Cl composite
(bottom row) at 20 ◦C (left column) and 80 ◦C (right column), respectively. The IL-Ni-Cl complex and
VO2/IL-Ni-Cl composite have significant temperature-responsive color changes. (d) Durability test of
composite hydrogels with the thickness of 100 µm from 20 ◦C to 80 ◦C. [52].

2.1.5. Graphene Oxide (GO)/PNIPAm Nanocomposite Hydrogel

Regarding the bilayer structure of the hydrogel, mechanical properties of poly
(N,N-dimethylacetamide) PDMAA and PNIPAm are studied respectively. Figure 7a il-
lustrates the composition and polymerization process of a nanocomposite (NC) hydrogel
based on graphene oxide (GO).

The monomers (DMAA and NIPAM), dissolved in GO dispersion separately, cannot
only react with a crosslinking agent to form a covalent bond but also has a noncovalent bond
with the clay due to rich amide groups. Thus, these monomers tend to polymerize next to
the clay plate to form noncovalent bonds, as a result, enhancing the mechanical properties
of the hydrogel [55]. There are active groups on GO sheets such as –COOH and –OH to
easily disperse in water, which facilitates the consistency between polymers and GO sheets
in the hydrogel system. The internal morphology of the individual PDMAA and PNIPAm
hydrogels was shown by SEM (Figure 7b,c) [55]. Both hydrogel networks have a nearly
uniform aperture, while the GO is well dispersed in the hydrogel without any aggregation,
suggesting that the gel isotropic structure has uniform mechanical properties [56].

In 2014 [57], Chou prepared GO/PNIPAm thermochromic material using GO disper-
sion as photothermal conversion material. Subsequent tests showed that at 30 ◦C (<LCST),
PNIPAm with GO dispersion could still undergo a phase transition in a relatively short
period [56]; however, pure PNIPAm hydrogel smart windows could not complete phase
transition (Figure 7d,e). The addition of GO is beneficial to improve the practical application
of PNIPAm hydrogel in the field of smart windows [58].
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Figure 7. (a) Schematic illustration of GO-based NC hydrogel components. (b) SEM image of GO-
based NC PDMAA hydrogel. (c) SEM image of GO-based NC PNIPAm hydrogel. The scale bars are
10 µm. 30 ◦C Changes of light transmittance between PNIPAm/GO composite hydrogel (left) and
PNIPAm hydrogel (right) (d) before thermal radiation; (e) after thermal radiation [59].

Recent strategies of the fabrication of thermochromic hydrogel smart windows, includ-
ing their name, function, thermochromic properties and characteristics are summarized
in Table 2. Noncovalent interactions responding to temperatures, such as precise inter-
molecular hydrogen bonding control between polymer chains and water molecules, could
optimize the performance of hydrogel smart windows. The pure hydrogel smart windows
system is easy to fabricate with excellent solar modulating ability. With the addition of
IR regulating/blocking materials, the solar modulating ability of thermochromic hydro-
gel smart windows was further enhanced. By adding photothermal nanoparticles (ATO,
GO), the response speed of smart windows was further improved. At the same time,
thermochromic host–guest interactions of hybrid hydrogels were fabricated to improve
mechanical stability.

Table 2. Thermochromic performance of various hydrogel smart windows.

Category Materials Tlum (%) ∆Tsol (%) τc (◦C) Characteristic Ref.

Single function
hydrogel PNIPAm 70.7 25. 32 Conventional thermochromic hydrogel

with excellent Tlum, ∆Tsol and suitable τc.
Zhou et al., 2014

[21]

Regular the solar
modulation ability

PNIPAm-VO2
PNIPAm/VO2@

SiO2

62.6 34.7 – By enhancing the IR regulating ability,
the ∆Tsol was increased.

Zhou et al., 2015
[50]

38.4 62.7 40 Wang et al., 2018
[23]

Photo-
thermochromic

ATO/PNIPAm
GO/PNIPAm

62.7 35.7 – High absorbance materials were added
to increase the response speed of

thermochromic hydrogels.

Lee et al., 2017 [54]

– 58.2 – Chou et al., 2017
[57]

“–” means data not available.

2.2. Hydroxypropyl Cellulose (HPC) Based Thermochromic Materials Smart Windows

Thermochromic materials are the most cost-effective smart windows. Compared with
inorganic VO2 materials, organic smart materials have higher solar energy modulation
(∆Tsol) and luminous transmittance (Tlum) [60].

In 1998, Watanabe et al. dispersed hydroxypropyl cellulose in 5% sodium chloride
aqueous solution [59], obtained an intelligent window with the area of 1 m2 and found
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that its cyclic stability and strong optical properties were superior [59]. In 2001, Schneider
and See both blended hydroxypropyl cellulose with hydroxyethyl cellulose and dispersed
it to gum [44,60], which not only inhibited water volatilization but also improved optical
properties [44].

In 2016, Long reported green and new organic thermochromic materials hydrox-
ypropyl cellulose [61]. With addition of sodium chloride (NaCl) from 0.5% (wt.%) to
5% (wt.%), (lower critical solution temperature) LCST decreased from 42 ◦C to 30 ◦C [21].
From morphology changes of LCST and freeze-dried samples, it can be seen that the phase
transformation of hydroxypropyl cellulose hydrogels is caused by the different solubility of
polymers in water [62]. The fine-tuned recipe could afford an outstanding solar modulating
ability (∆Tsol) of 25.7% and a high averaged Tlum of 67.4% with an LCST of 38 ◦C [63].

When temperature is heated from 20 ◦C to 44 ◦C, the visible light transmittance of HPC
decreases significantly, while the change of IR [64] can be ignored (Figure 8a). This reflects
change of solution from transparent at 20 ◦C to translucent at 42 ◦C (Figure 8b). It is worth
noting that the transmissivity decreases around 1430 nm and 1930 nm at both high and
low temperatures, as a result of absorption of water at these two wavelengths [65]. When
temperature rises to 50 ◦C, the visible and infrared transmittance of the solution decreases
significantly, and the opacity of the solution also increases [26]. When temperature rises to
60 ◦C and 70 ◦C, it becomes completely opaque while all transmissions at 250~2500 nm are
blocked. Transparency is restored. within 1 min after the heater is removed.

The difference of the HPC structure at 20 ◦C and 80 ◦C is shown in Figure 8c. At room
temperature, the elongation and homogeneity of polymer particles are stronger. However,
at 80 ◦C, the length of polymer fibers decreases sharply to about 4–5 µm, with a large
shrinkage pore size (Figure 8d).

Thermosensitive microgels were directly synthesized from hydroxypropyl cellulose
(HPC) and acrylic acid (AA) in pure water [66]. The phase transition temperature of the
inorganic/organic hybrid thermochromic material is around 45 ◦C, which is obtained by
dispersing the W-doped VO2 in the HPC microgel. The composite microgel has high trans-
parency at room temperature with a thickness of 25 µm, Tlum = 80% [67]. Compared with
pure VO2 inorganic materials and previously reported thermochromic composites, it has
36% excellent solar light (Tsol) modulation ability, 56% average Tlum and a phase transition
temperature of 50 ◦C, which makes it suitable for intelligent window applications [68].

Optical transmission spectrum of HPC microgel samples with thicknesses of 12.5 µm,
25 µm and 50 µm respectively (Figure 8e). The Tlum of 20 ◦C of the HPC membrane dropped
from 87.5% to 85.1% at 20 ◦C; however, at 60 ◦C, The Tlum of HPC membrane decreased from
49.2% to 22.9%. Increasing from 12.5 µm to 25 µm ∆Tsol, ∆Tlum and ∆TIR increased slightly
and dramatically from 25 µm to 50 µm (Figure 8f). [69] Although the 50 µm thick HPC
microgel has a ∆Tsol value of 44%, its Tlum (60 ◦C) of below 25% is not fit as an ideal smart
window [61]. According to the figure above, the pure HPC microgel of 25 µm thickness
is best suitable for smart windows as compared to 12.5 µm and 50 µm. The transmission
spectra of 25 µm thickness samples of HPC, W-VO2 and W-VO2 HPC composite microgel
(250~2500 nm) samples at 20 ◦C and 60 ◦C (Figure 8g) [68]. Pure HPC films have the highest
solar transmittance at 20 ◦C, with a Tlum value of 87%. The pure HPC microgel ∆Tlum is
43% and the sample becomes opaque when the temperature rises to 60 ◦C. There is still a
large transmission ratio for pure W-VO2 in IR region, TIR is up to 15% compared to a ∆Tsol
of 5%, which is a better smart IR blocker in the HPC microgel. Although the added W-VO2
transmittance decreased at 20 to 60 ◦C, and the HPC film added to W-VO2, ∆TIR increased
twofold from 12–24% compared with that of the pure HPC film (Figure 8h), while ∆Tlum
also rose from 42.6% to 47.5%, resulting in a 25.5% increase in ∆Tsol. Therefore, compared
with pure HPC and W-VO2 films, the new hybrid film has greater modulation capability
in visible and infrared wavelet bands [69]. At the same time, at room temperature, a very
high ∆Tsol can be obtained with a visible light transmittance of only 7.2% [70]. This is the
first device that can effectively block visible and infrared light at the right phase transition
temperature.
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Figure 8. (a) Optical transmission spectrum of 0.35 mm HPC sample at 25–50 ◦C. (b) Pictures of
HPC at different temperatures. SEM images of freeze-dried HPC microgel at (c) 20 ◦C and (d) 80 ◦C,
respectively [68]. (e) Transmission spectra of 12.5, 25 and 50 µm thick HPC microgel samples; (f) The
effect of thickness on the HPC samples ∆Tsol, ∆Tlum, ∆TIR and Tlum (20 and 60 ◦C); (g) Transmission
spectra of 25 µm HPC, W-VO2, W-VO2 and HPC microgel samples [62] (h) ∆Tsol, ∆Tlum, ∆TIR and
Tlum (20 and 60 ◦C) of 25 µm HPC, W-VO2 and W-VO2 with HPC microgel samples [70].

2.3. Brief Conclusion

Mainly introduces the type of thermochromic hydrogel materials, the preparation
method and performance of smart windows. Pure hydrogel smart windows are simple
to make and have good solar modulation ability. With the addition of infrared regulation
materials, the adjustment ability of solar thermal chromic hydrogel smart windows is
further enhanced, with a faster response speed. In addition, the recombination of ther-
mochromic materials and electrochromic materials can better improve the performance
and mechanical stability of the hydrogel. Finally, to commercialize smart windows, the
materials and technology are durable, cheap and easy to handle.

3. Ionic Liquid Smart Windows

Ionic liquids (IL) including polymer ionic liquids (PIL) are a rapidly developed and
extensive field of research due to their unique properties such as nonvolatile [71], high ion
conductivity, electrochemical stability and solvation potential [72,73].
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3.1. Organic and Inorganic Complex Ionic Liquid Smart Windows

The ionic liquid-based composite film, a mixture of transition metal compounds and
ionic liquid, [74–77] has much attention as a promising energy-saving smart windows
candidate due to its ability to regulate solar radiation through absorption. [78–86].

Current research in this field is mainly focused on thermochromic ionic liquids, [87,88]
whose property is based on an octahedral–tetrahedral configuration change of transition
metal complexes assisted by interaction with donor solvent molecules [34,89].

A new thermochromic ionic liquid (nickel-bromide-ionic liquid (or Ni-Br-IL)) com-
bined with VO2 nanoparticles enhances optical performance [71]. This enhanced perfor-
mance will benefit applications based on VO2-based smart windows. The thermochromic
mechanism of the VO2/Ni-Br-IL composite film is shown in Figure 9a and b, showing the
comparison of VO2-based composite films with optimized optical properties reported in
recent years. According to reports, some materials such as TiO2 and SiO2 can be used as
anti-reflection layers to effectively improve the optical properties of VO2-based composite
films.

In Figure 9c, the c-axis oriented growth of the ZnO film on the glass is observed, with
strong diffraction from ZnO 002 and 004. Without bias (0 W), no significant peaks from
VO2 were observed. [90] Figure 9d shows the temperature dependence of transmittance
at a wavelength of 2.5 µm. The researchers recognized a behavior similar to the R-T
characteristic, in which the transition temperature shifts to the lower side as the bias power
increases.

The synthesis of vanadium oxide VO2(M) was investigated using supercritical CO2
(scCO2), imidazolium ionic liquids (ILs) and their biphasic combination (Figure 9e). VTIP
was used as the vanadium precursor while examining [EMIM] ionic liquids based on anions
of [TF2N]/[TFO]/[AcO]/[HSO4]. [91] Using scCO2/HOAC or using only [EMIM][TF2N]
IL resulted in a gelation yield of up to 80%, indicating the role of scCO2 in the gelation
process. It is found that the sol-gel temperature has a greater influence on the gelation yield
than the pressure.

The IG membranes presented in Figure 9f were studied. They contain different cation–
anion compositions, ionic liquid loading and dopants [73]. By loading different amounts
of IL into the P(VDF-co-HFP) polymer matrix and comparing their optical, electrical and
mechanical properties, the influence of the IL content (weight percentage) in IG was
evaluated. The combination of BMIM+ cation and TFSI− anion were used as the model
IL. According to the IL load (Figure 9g), the obtained IG film showed obvious differences,
which was confirmed by spectral analysis [92]. At present, 3-chloro-N-isopropylacetamide
containing thermally responsive poly [VNIm][TFSI] based electroactive substances were
synthesized for use in multi-responsive devices [93]. Ion gel, consisting of MBV [TFSI],
ferrocene and poly [VNIm][TFSI], is used to construct single layer (all-in-one) devices (with
and without water). When the temperature drops below the UCST of poly [VNIm][TFSI],
the intermolecular hydrogen bond and hydrophobic anion (TFSI) produce a heterogeneous
state (opaque), so the device 1 becomes opaque, as shown in Figure 9h [77,92]. This
thermally responsive material is very useful for smart windows under certain conditions,
as shown in Figure 9i [86].
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Figure 9. (a) The thermochromic mechanism of VO2-based thermochromic film. (b) Luminous trans-
mittance (Tlum) and solar regulation efficiency (∆Tsol) of different VO2-based composite films [71].
(c) XRD patterns of VO2/ZnO/glass samples prepared at substrate bias powers of 0 and 30 W,
respectively [90]. (d) The optical transmittance changes of all samples at 2.5 µm. (e) Vanadium oxide
VO2 (M) synthesis was investigated using supercritical CO2 (scCO2), imidazolium ionic liquids (ILs)
and their biphasic combination. (f) IG prepared with different weight ratios of BMIM TFSI shows the
change in transparency after adding BMIM TFSI [93]. (g) Adjust the chemical structure of PDI-MA
and PDI-MA dianion through reversible redox reactions. (h) The image of the ion gel-based device 1
(with water) corresponds to the temperature dependence of the transmittance change from 25 ◦C
to 52 ◦C. (i) The working principle of smart windows is based on ionic gel materials under specific
conditions [86].

3.2. Multi-Functional Organic Ionic Liquid Smart Windows

The design of new materials and new technologies is essential to the development of
smart windows in next-generation energy-efficient buildings [94–97]. It is shown that the
glucose derivative with 1-butyl-3-methylimidazolium chloride can form a self-supporting,
water-soluble, viscous, reusable nanofluid, with self-improved conductivity, thermal de-
generation around 30–40 ◦C and the ability to block ultraviolet rays (Figure 10a) [83].
In the hot summer months of 36 ◦C, sun-actuated thermotropic (TT) devices contain-
ing a 95% nanofluid aqueous solution exhibit a transmittance variation (∆T) of 9% at
550/1000 nm, amplified to 47% through a surface plasmon resonance effect [98]. The
integrated self-healing system is capable of independent sun-actuated thermotropic (TT)
and voltage-actuated electrochromic (EC) operation (Figure 10b) [94].

Then a bistable smart window with mixture of chiral dopants and chiral ionic liquid
(CIL) was developed [83]. The smart windows are driven by dual-frequency modulation
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and are transparent at a high-frequency electric field (4 kHz) and scattered at a low-
frequency electric field (20 Hz) (Figure 10c) [99].

Compared with the PSCT smart windows, the switching between the scattering and
transparent states can be dynamically controlled by dual-frequency modulation, without
the use of high-field H states [80]. During the conversion process, the scattering state was
turned on by a low-frequency electric field (20 Hz, 6 V/µm) and the transparent state was
triggered by a high-frequency electric field (4 kHz, 20 V/µm). The uniformity is quite good
(Figure 10d) [34,88].

The red and black curves represent the transmittance spectra of the P state and FC
state, respectively. The blue curve in the illustration indicates the intensity of reference
light. In both P state and FC state, a transmittance of the infrared [89]. The reference light
of the CIL-doped cholesteric liquid crystal (CILC) smart windows is reduced compared
to the illumination intensity, mainly due to blocking of the liquid crystal (LC) film [98]. A
notable decrease in light transmittance can be observed in the range of 1250∼1350 nm, at P
state, indicating the Bragg reflection band is formed (Figure 10e).

At P state (red curve) and focal conic (FC) state (black curve) plots the temporal
fluctuation in transmittance of the CILC smart windows. It shows a very small fluctuation
of transmittance after the removal of voltage (Figure 10f) [100].

Synthetic route of the polymer gel studied. The polymer gels were synthesized by co-
polymerization of N-isopropyl-acrylamide (NIPAM) and Diallyl-viologen (DAV), with (or
without) an IL monomer, 3-butyl-1-vinyl-imidazolium bromide([BVIm][Br])
(Figure 10g) [81]. The principle and mechanism of thermochromic and electrochromic
devices based on the prepared polymer gel (Figure 10h).
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Figure 10. (a) Schematic representation of the nanofluid synthesis, 1-butyl-3-methylimidazolium
chloride as both reaction medium and anhydrous glucose as starting material and functionalization
molecule [99]. (b) Schematic representation of the operation of a window glass incorporating the sur-
face plasmon resonance effect (SPRE) enhanced thermotropic device (a) the integrated electrochromic
device/thermotropic device system (b) Outside view at 25 ◦C (I), 36 ◦C (II), 50 ◦C (III), 60 ◦C (IV) [89].
(c) The smart window is driven by dual-frequency modulation and is transparent at a high-frequency
electric field (4 kHz) and scattered at a low-frequency electric field (20 Hz). (d) Images of CILC smart
window in transparent P state and scattering FC state [101]. (e) (Inset) Transmittance intensity of
reference light (blue curve), P state (red curve) and FC state (black curve). Wavelength-dependent
transmittance of FC texture (black curve) and P texture (red curve). (f) Transmittance stability of
smart window versus time of which the textures are in FC state (black curve) and P (red curve).
(g) General synthetic routes to P(NIPAM–BVIm–DAV) and P(NIPAM–DAV) IL gels. (h) The princi-
ple and mechanism of thermochromic and electrochromic devices based on the prepared polymer
gel [98,102].

3.3. Brief Conclusion

Table 3 summarizes the latest preparation strategies for ionic liquid smart windows,
including names, functions, thermochromic properties and features. The unique proper-
ties of the ionic liquid and polymer combined with the thermal response can be further
developed. Here, we present the potential applications of customizable ILs/PILs in the
emerging field of solar-light modulation.
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Table 3. Application of thermal response IL/PILs in smart windows and challenges for future
development [99].

Application Representative Thermally
Responsive ILs/PILs Major Challenges Refs. [103–106]

Smart windows polymeric-IL system
(Thermochromic)
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4. Liquid Crystal Smart Windows

Liquid crystal (LCS) represents a new material between traditional liquid and crys-
talline solid that can flow like a liquid or in the form of crystal [103]. Most liquid crystals are
made up of organic compounds. They have the properties of optical, electrical and mechan-
ical anisotropy. These properties are responsive to various stimuli, such as temperature,
electric field, light, which makes LCS valuable in a wide range of applications [104].

4.1. Liquid Crystals Based Flexible Smart Windows

The optical properties of LCS are highly dependent on the orientation of the isotropic
molecule. The thermochromic performance of LCS is achieved by adjusting in response
to temperature stimuli [20,22,53,105–108]. In the smart window of the sandwich structure,
LCS molecules can be adjusted in multiple directions between two glass slides. Three
typical (uniform) directions of the slide [16,35,109].

Figure 11a shows a schematic diagram of the device structure and operation of the Ag
NW-based flexible PLDC windows manufactured by the RTR slot die coating system [110].
The polymer–liquid crystal composite is sandwiched between two RTR slit die-coated Ag
NW electrodes. If the refractive index of the liquid crystal along the alignment direction
matches that of the polymer, the PDLC composite between the Ag NW electrodes allows
light to pass in a transparent “on” state (Figure 11a) [109]. When the external voltage is
removed, the liquid crystal is oriented in a random direction and scattering incident light.
This opaque state is “off”, as shown in Figure 11b. Therefore, high-quality transparent elec-
trodes with low sheet resistance, high light transmittance and good mechanical flexibility
are very important in the operation of flexible PDLC windows [111].

To investigate the stacking sequence effect of the multilayer, PTFE (40 nm)/ITO
(35 nm)/APC (10 nm)/CPI and ITO (35 nm)/APC (10 nm)/bottom PTFE (40 nm)/CPI
samples were prepared, as shown in Figure 11c–e [112]. Considering the large-area smart
windows used in buildings and automobiles, we adopted a mature sputtering method, us-
ing PTFE polymer targets, APC metal targets and ITO ceramic targets at room temperature.
Surface field emission scanning electron microscopy (FESEM) images on the right side of
the figure show the surface morphology of each sputtering layer. The ITO and APC layers
of the DC sputtering all show a typical oxide and metal surface morphology, regardless of
the sputter order [110].

The sputtered PTFE layer also exhibits featureless and smooth surface morphology
similar to typical polymer films. Insets show each sputtering layer [113].

Figure 11f shows a schematic of the design example presenting the “SKL” color logo,
where one of the ITO substrates of each LC unit is patterned as “S”, “K” and “L”. Then the
patterned substrate is then assembled with another non-patterned ITO substrate to form a
complete single-layer liquid crystal unit.

Figure 11g shows the light propagation process in the multilayer LC smart windows.
The incident light emitted by the LED light bar enters the corresponding liquid crystal cell
and propagates in the liquid crystal cell according to the law of total internal reflection.

Figure 11h Among the various materials available for transparent and flexible devices,
MXenes is attracting attention as a new candidate material in this category [114]. Ti3C2Tx
MXene has excellent properties as a 2D material, making it a potential material with many
applications in different fields. Due to its high conductivity, it can be used for transparent
conductive electrodes (TCE).

Azo-conjugated natural product derivatives are shown in Figure 10i. Azo is a well-
known molecule with LC properties. It is a dye with a chromophore (−N=N−). Azobenzene
is a reactive precursor in LC chemistry because the presence of the azo scaffold (−N=N−)
has excellent absorption in the visible light region and has light and thermal stability.
Azobenzene can be synthesized by diazotization of amine or phenol and diazotized amine.
Figure 11j Liquid crystal derivatives of azobenzene [115].
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Figure 11. (a) Transparent and (b) opaque states are caused by applying an external voltage be-
tween the Ag NW electrodes [110]. (c) PTFE/ITO/APC (d) ITO/APC/PTFE hybrid electrode on
CPI substrate at room temperature. (e) Polymer dispersed liquid crystal (PDLC) switchable smart
windows for “opaque/translucent” (OFF) and “transparent” (ON) states [109]. (f) Schematic of a
design example to present (g) multi-layered LC smart windows with the colored logo of “SKL” [111].
(h) Ti3C2Tx MXene has excellent performance as a two-dimensional material [112]. (i)Azo incorpo-
rated natural products for LC derivatives. (j) Azo-benzene liquid crystal derivatives [115].

4.2. Multi-Functional Liquid Crystal Smart Windows

Multi-functional liquid crystal smart windows have been commercialized, and there
are some studies in the literature, such as cholesteric liquid crystal (CLC) units, polymer-
stabilized liquid crystal (PSLC) and polymer dispersed liquid crystal (PDLC) [64,101,116,117].

The cholesteric liquid crystal (CLC) cell has interdigitated electrodes and a common
electrode on each substrate (Figure 12a), thus forming an architecture that can employ
various drive schemes [82]. Two switching modes pulsed vertical-field switching (VFS)
and pulsed in-plane switching (IPS) are used to enable different texture transitions in the
CLC [41]. A perspective view of smart windows and schematic diagram of three stable
state switching modes are shown in Figure 12b [103]. Combining the CLC tri-stable state
and the dicrotic dye, the smart windows can control the optical performances switching
among the transparent (ULH), dark–clear (P, for daylight dimming) and dark scattering
(FC, for privacy protection) [35].
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Figure 12. (a) Schematic depiction of six terminal cells containing dye-doped cholesteric liquid
crystal (CLC) [105]. (b) Drive scheme and photographs of tristable CLC smart windows. (c) PSLC on
PET substrate is off state [99]. (d) PSLC on PET substrate is on the state. (e) Molecular structure of
chemicals used to manufacture a polymer-stabilized liquid crystal (PSLC) [85]. (f) fabrication process
of the oxide/Ag/oxide electrode-based polymer dispersed liquid crystal (PDLC) device. (g) two
optical modulation modes of the oxide/Ag/oxide electrode-based polymer dispersed liquid crystal
(PDLC) devices [41].

Polymer stabilized liquid crystal (PSLC) devices can be used as smart privacy windows
that switch between transparent and opaque states. Image of PSLC on PET substrate is off
state (Figure 12c) [21]. The image of PSLC on PET substrate is on the state (Figure 12d).
The polyimide alignment layer of a PSLC device is usually obtained by the treatment of
polyamide acid (PAA) with temperatures over 200 ◦C. Molecular structure of the chemicals
used for the fabrication of polymer-stabilized liquid crystal (PSLC) (Figure 12e) [84].

As a representative polymer dispersed liquid crystal (PDLC) device, little attention
has been paid to heat management. Herein, a TiO2/Ag (Cu)/TiO2 (TCAT) electrode was
designed and optimized to achieve the tunability of transmission in the visible range and
near-infrared heat shielding simultaneously [105].

The schematic of the fabrication process of the oxide/Ag/oxide electrode-based poly-
mer dispersed liquid crystal (PDLC) device (Figure 12f) [100]. An oxide underlying layer,
an oxide upper layer and an ultrathin Ag (Cu) metal intermediate layer were deposited
sequentially on PET substrate to form a laminated oxide/Ag/oxide electrode structure. The
liquid crystal droplets are then dispersed by ultraviolet curing polymer and sandwiched
between the above symmetric oxide/Ag/oxide electrodes to obtain a polymer dispersed
liquid crystal (PDLC) device [118]. Two modulation modes in TAT electrode-based PDLC
devices are described (Figure 12g). At the OFF state (without applied voltage), the PDLC
device strongly scat visible and NIR light due to the random orientation of liquid crystals in
the polymer. At the ON state (with applied voltage), owing to the liquid crystal alignment,
the visible light is allowed to pass through, while NIR light is partially rejected by TAT
electrodes due to its infrared reflection nature [10].

4.3. Brief Conclusion

We have introduced the new technology of the multifunctional LCD smart window.
Utilizing the different properties of materials, multiple stable and multifunctional liquid
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crystal smart windows can be obtained, and a new type of low-cost, energy-saving smart
windows can be realized.

5. Conclusions

In summary, the rapid development of energy-saving smart windows has attracted
attention to novel thermochromic materials. This paper systematically summarizes the
research progress of smart windows from the perspective of thermochromic with organic
materials. For different organic materials, the types, mechanisms and properties of various
organic materials are summarized, and the multifunctional smart windows derived from
thermochromic technology are discussed. In this section, we will comment on these smart
windows and outline challenges and future developments in this field.

Challenges and opportunities remain in the future development of the smart archi-
tectural window, with the aim of achieving high energy-saving efficiency. Challenges
remain as to how smart windows technology can be fully utilized in buildings in future
development. Although some new smart windows have been commercialized, the lack
of technology and high costs have prevented their widespread adoption. (1) The cost is
too high. Market analysis shows that the additional cost of smart windows comes from
installation, maintenance, repair, etc. However, this new organic material can change the
way windows are installed and maintained, greatly reducing costs. In addition, to improve
the cost performance of the product, the structure and morphology of the material can also
be optimized to make its structure more solid and simple and improve the performance of
the smart window [97]. (2) Durability. Commercial energy-saving smart windows need
high durability to be able to be used for a long time, which has strict requirements for
the durability of materials and equipment. At present, the primary task is to improve
the structure and optical properties of materials. (3) Maximize energy saving. The key to
energy-saving smart windows is to optimize solar modulation. At present, the important
parameter to evaluate the control ability of smart windows is sunlight modulation efficiency
(∆Tsol) [98,102]. At the same time, to avoid the influence of indoor lighting, the smart win-
dow is required to have a higher transmittance in the visible light band (380–780 nm), and
the performance is generally evaluated by a visible light transmittance ratio (Tlum) [119].

In future development, more natural organic polymer materials can be used [61].
In traditional synthetic polymers, the cost is too high to degrade easily [101,116,117]. In
the face of increasing energy demand, the material selection of smart windows in the
future will be more inclined to meet the requirements of the green chemical industry
renewable natural organic polymer materials. This will help make better use of organic and
inorganic composite materials to effectively combine the advantages and disadvantages
between them. Through the synergistic effect, the utilization efficiency of solar energy
is further improved, and the structure and morphology of the material are optimized.
Thermochromic materials with controllable size and morphology were designed and
prepared by optimizing the properties of the materials, and the performance of smart
windows was improved by reasonable matching between different materials.

Finally, energy-efficient smart windows hold much promise for contributing to a
future, eco-friendly world. However, there is still much work to be done to make energy-
efficient smart windows widely available. This summary will attract the interest of more
researchers in this field and accelerate the development of energy-saving smart windows
through the selection of suitable materials and the integration of technologies.
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