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Hydroxyethylstarch revisited for acute brain injury 
treatment
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Abstract  
Infusion of the colloid hydroxyethylstarch has been used for volume substitution to 
maintain hemodynamics and microcirculation after e.g., severe blood loss. In the last 
decade it was revealed that hydroxyethylstarch can aggravate acute kidney injury, 
especially in septic patients. Because of the serious risk for critically ill patients, the 
administration of hydroxyethylstarch was restricted for clinical use. Animal studies and 
recently published in vitro experiments showed that hydroxyethylstarch might exert 
protective effects on the blood-brain barrier. Since the prevention of blood-brain barrier 
disruption was shown to go along with the reduction of brain damage after several kinds 
of insults, we revisit the topic hydroxyethylstarch and discuss a possible niche for the 
application of hydroxyethylstarch in acute brain injury treatment. 
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The Colloid Hydroxyethylstarch for Volume 
Substitution
Since the 1960s, hydroxyethylstarch (HES) has commonly 
been used as a safe artificial colloid for volume substitution 
to restore hypovolemia and microcirculation after e.g., severe 
blood loss. HES is a branched and variegated molecule based 
on glucose, which is modified by hydroxyethylation (mainly) 
at the C2 and C6 carbon atoms in order to prevent rapid 
hydrolysis by available α-amylase in the plasma and enable 
long lasting effects in vivo. HES is a polydisperse solution, and 
the nomenclature of e.g. 130/0.4 HES stands for an average 
mean molecular weight of 130 kDa. 0.4 means that 40% 
of the glucose subunits are modified by hydroxyethylation 
(Jungheinrich and Neff, 2005). Currently, HES 130/0.4 or HES 
130/0.42 with carrier solution either 0.9% sodium chloride 
(NaCl) or a balanced solution are applied in clinical routine. 
Alternatively to colloid solutions such as HES or albumin, 
crystalloid solutions such as saline, Ringer’s solution or 
Sterofundin® ISO could be used for volume substitution.

PubMed and Google Scholar were used as databases using 
topic related key words such as HES, hydroxyethylstarch, 
blood-brain barrier, brain endothelial cells, stroke, brain injury, 
TBI, traumatic brain injury, SAH.

The microvasculature volume expansion by HES, being 
essential for its beneficial effects, was explained by the Starling 
equation that tried to describe the fluid exchange between 

intravascular space and the interstitium with hydraulic 
conductivity of the endothelium, surface area, hydrostatic 
pressure and the osmotic pressure (OP) in the capillary. The 
OP was measurable and built the theoretical construct to 
develop colloid solutions to increase the OP, and therefore 
bind water intravascularly and/ or trace water back from the 
interstitium to the bloodstream to resuscitate hypovolemia. 
This volume expanding effect of HES is well measurable in 
young and healthy patients, however, in the case of critical 
ill patients the starling equation is under discussion. The 
propagandized volume effect of HES (four times higher than 
the effects of crystalloids) seems to be overestimated in 
critically ill patients when advanced hemodynamic monitoring 
is used. A major drawback for the application of HES in the 
clinical routine was the VISEP study (Brunkhorst et al., 2008), 
which reveals a negative effect of HES 200/0.4 on kidney 
function in septic patients. In regard to this, we and others 
figured out in the last ten years, that HES is incorporated 
in the proximal tubules cells of the kidney and can induce 
acute kidney injury (AKI). This effect is not dependent from 
the size of HES nor its origin (corn- or potato-derived HES) 
or its carrier solution, just the total applied amount of HES 
was found to be the key parameter (Bruno et al., 2014). Even 
in healthy animals, we showed that HES alone induced AKI, 
which may not be seen in human, because of the lack of e.g 
nephrobiopsy in routine pathological processes. Nowadays 
and in the last decade, superiority of HES over crystalloids 
was not confirmed, but studies with HES revealed its negative 
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effects like AKI and coagulopathy (Skhirtladze et al., 2014; 
Futier et al., 2020).

Acute Brain Injury and Hydroxyethylstarch
Acute subarachnoid hemorrhage (SAH) exhibits a lethality of 
35% and survivors show only 30% of regain self-dependence. 
In this context, we differentiate between “early brain injury”, 
manifesting during the first 3 days after bleeding, and “delayed 
cerebral ischemia (DCI)”. DCI is a syndrome after SAH, 
caused by cerebral vasospasms and cerebral hypoperfusion. 
Another devastating acute disease in the brain is ischemic 
stroke that remains the second leading cause of death and 
disability worldwide (Vos et al., 2015). Within the ischemic 
cerebrovascular bed, there are two major zones of injury: the 
core ischemic zone and the “ischemic penumbra” (ischemic, 
but still viable cerebral tissue). In the core zone, which is an 
area of severe ischemia, the loss of oxygen and glucose results 
in rapid depletion of energy stores. Severe ischemia can result 
in necrosis of neurons and also of supporting cellular elements 
(glial cells) within the severely ischemic area. Brain cells within 
the penumbra, a rim of mild to moderately ischemic tissue 
lying between tissue that is normally perfused and the area, 
in which infarction is evolving, may remain viable for several 
hours (Thirugnanachandran et al., 2018). That is because the 
penumbral zone is supplied with blood by collateral arteries 
anastomosing with branches of the occluded vascular tree. 
However, even cells in this region will die, if cerebral edema 
occurs and reperfusion is not established during the early 
hours, since the diffusion length for oxygen remains too 
long and collateral circulation is inadequate to maintain 
the permanent neuronal demand for oxygen and glucose 
indefinitely (Heiss, 2012; Wu et al., 2018).

The protection or stabilization of the blood-brain barrier 
(BBB) might play the key role to reduce neuroglial deficiency 
after cerebral ischemia induced by vasospasms after SAH and 
to reduce edema in the penumbra after stroke. To prevent 
DCI, the so called “triple H-therapy” has been established: 
Hypervolemia, hypertension and haemodilution. To establish 
the triple-H goals, HES has been used extensively in these 
patients. Interestingly, critical ill patients with neurological 
disorders show different results in regard to HES induced 
AKI. For example, despite of the enormous amounts of 
administered HES (> 1 L HES/patient per day) to prevent 
cerebral vasospasm in the treatment of SAH, no increased 
incidence of AKI was detected (Kunze et al., 2016; Bercker et 
al., 2018). However, no benefit in the neurological outcome 
of this therapy of SAH patients was detectable (Vergouwen, 
2011). On the contrary, in the SAFE study, the volume 
substitution with another colloid (albumin) in patients with 
traumatic brain injuries resulted in a higher mortality rate 
compared to crystalloids (Myburgh et al., 2007). The use of 
HES for critically ill patient are contradicted or highly restricted 
by different agencies like Federal Drug Agency, the European 
Medicines Agency or Health Canada. 

In this context, finding answers to following questions would 
be essential: (1) How are the pharmacokinetic properties of 
HES within the brain, can HES be uptaken by glial or neuronal 
cells? (2) Is HES capable of protecting the BBB and thus 
reduces the neurological damage during SAH/DCI or stroke? (3) 
Is there a cross-talk between the kidney and the BBB? (4) Is it 
justifiable to apply HES under SAH/DCI or stroke conditions to 
stabilize the microvasculature in the brain, although the risk of 
HES for AKI is known? 

Blood-Brain Barrier Functionality and 
Hydroxyethylstarch
In general, only few data are available about the effects of 
HES on BBB functionality. With regard to the effects of HES on 
the BBB and its permeation into the central nervous system 

(CNS), some reports support the idea that HES does not 
permeate across the BBB, but can stabilize the function of 
the BBB in comparison to detrimental effects of physiological 
0.9% NaCl solution (Gerhartl et al., 2020a). Some animal 
studies showed that BBB leakage by different stimuli such as 
hyperosmolar mannitol treatment, sepsis induction by cecal 
ligation and puncture, temporary middle cerebral artery 
occlusion, severe brain injury or hyperthermia was prevented 
by HES. Additionally, the inhibition of neutrophil migration 
by HES may be an advantage in DCI (Trentini et al., 2019). 
One study using transmission electron microscopy revealed 
with morphometric analysis of HES treated animals after 
severe brain injury that HES accumulated in brain capillary 
endothelial cells–the main sealing component of the BBB–but 
was not uptaken by other cells of the neurovascular unit such 
as pericytes or astrocytes (Somova et al., 2013). This led to the 
hypothesis, that HES does not reach the brain parenchyma. 
In this regard, HES could not be found in brains of healthy 
animals after its injection. Moreover, even in patients with 
defect BBB function after SAH or head trauma, no HES was 
found in the cerebrospinal fluid, supporting the assumption 
that HES cannot enter the brain tissue (Dietrich et al., 2003). 

In order to assess, whether HES can protect the BBB and 
subsequently the CNS in case of acute brain injury, the 
underlying mechanisms need to be better understood. In 
Figure 1, we have illustrated some mechanisms that may be 
related to the restorative effect of HES on the BBB. During 
acute brain injury, brain capillary endothelial cells experience 
an increase in intracellular calcium levels and reactive oxygen 
species (ROS) associated with the activation of kinases such 
as ERK1/2 and signaling pathways that ultimately lead to the 
break-up of tight junctions and increased autophagy (Neuhaus 
et al., 2017; Andjelkovic et al., 2020; Kim et al., 2020; Orellana-
Urzúa et al., 2020). Appropriately, we measured that HES 
can reduce ROS formation in kidney proximal tubules cells 
and thus may have had an influence on autophagy activity 
by reducing ROS levels under the threshold necessary for 
autophagocytotic processes (unpublished data). With regard to 
the calcium level, we found that the plasma calcium level was 
significantly reduced after application of HES during pediatric 
neurosurgery even postoperatively on the intensive care unit 
(retrospective study HES: 16.4 ± 9.2 (SD) mL/KG/BW, not yet 
published). Thus, HES might interact with calcium levels, but 
the detailed mechanisms are still unknown. However, these 
data could be of high relevance, considering that the calcium 
level in plasma and that of the interstitial fluid in the CNS are 
in a dynamic equilibrium, and that one major task of the BBB is 
the maintenance of the homeostasis between blood and brain. 
In this regard, Sharma et al. (2017) reported that the serum 
calcium level correlated positively with neuropsychological and 
cognitive performance suggesting that a plasma calcium level 
modulating effect by HES might also affect neuronal function 
in the CNS (Lam et al., 2016; Sharma et al., 2017). Although 
there are no further mechanistic studies on the effects of HES 
on the BBB directly, experiments about the influence of HES 
on cell-cell junction regulating mediators could be used to 
discuss possibly related underlying mechanisms. For example, 
HES was able to diminish brain edema formation in a rat model 
of severe brain injury (Somova et al., 2013). Moreover, it was 
shown that HES attenuated NO formation in capillaries during 
severe TBI, and inhibited NO production is linked to reduced 
short-term tight junction degradation (Shi et al., 2016; Choi 
et al., 2019). In addition, HES blocked neuroinflammation in 
a rat sepsis model (Feng et al., 2010) which coincided with 
less Evans Blue permeability into the CNS. Since cytokines 
can increase BBB permeability (Harazin et al., 2018) and HES 
decreased proinflammatory cytokine levels, HES might restore 
BBB tightness by mildening the neuroinflammatory process. In 
this regard, HES also reduced intercellular adhesion molecule-1 
expression – an essential surface protein for cell adhesion – 
which could contribute to less immune cell penetration into 
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the CNS. Further proposed mechanistic details are summarized 
in Figure 1. 

In addition to the acute processes during a cerebral ischemic 
insult, the processes following reperfusion must also be 
considered in order to evaluate a therapeutic strategy. Various 
cellular and molecular mechanisms are involved in the 
complex process of reperfusion injury, including e.g., activation 
and modulation of the complement, immune and coagulation 
systems. It is known that all these systems can be influenced 
in different ways by the application of HES. In the last decades 
experimental animal studies revealed that HES can reduce 
reperfusion injury by reduction of leucocytes adherence 
and therefore e.g., reduction of vascular injury (Kaplan et al. 
2000). However, clinical trials were not able to recapitulate 

these beneficial experimental results or revealed even adverse 
neurological outcome (Mast and Marx, 1991). In this context 
it is important to consider the respective HES dosage in the 
interpretation of the outcomes. Generally, it can be postulated 
that high HES concentrations might lead to vascular instability 
in vivo. The indication of the above mentioned clinical 
study for HES application was mainly hemodilution, and to 
investigate whether adjusting this parameter with HES can 
reduce cerebral damage after stroke. It is now well known 
that volume substitution with significant amounts of HES can 
reduce the vascular glycocalyx (Hippensteel et al., 2019; Li et 
al., 2020) and therefore induce vascular instability (Alphonsus 
and Rodseth, 2014). Therefore, it could be postulated that 
the applied HES concentrations were too high in order to be 
successful in stroke therapy. Another endothelium-stabilizing 

A B C

Figure 1 ｜ Summary of proposed mechanistic processes responsible for blood-brain barrier (BBB) breakdown during cerebral ischemia and hypotheses 
about effects of hydroxyethylstarch (HES) in BBB restoration. 
(A) In the healthy BBB brain capillary endothelial cells form the main component of the barrier. Intercellular gaps are sealed by tight junction strands, which 
prevent an unspecific permeation of mainly hydrophilic compounds into the central nervous system (CNS). A huge array of mechanisms control the transcellular 
transport across the BBB and subsequent entry of substances into the CNS. Transporter proteins could be classified in ATP-binding cassette (ABC) transporters 
and solute carrier (SLC) transporters with 48 or almost 400 member proteins, respectively. These transporters regulate the transcellular permeation of 
compounds by preventing (efflux) or enabling their entry (influx). Most prominent efflux transporters are ABCB1 (P-gp, P-gylcoprotein), ABCG2 (BCRP, breast 
cancer resistance protein) and ABCCs (MRPs, multidrug resistance associated proteins), whereas especially nutrient transporters such as SLC2A1 (GLUT-1) or 
SLC7A5 (LAT-1) belong to the best studied influx carriers. Bigger molecules such as peptides, proteins, particles or even cells can use receptor–or adsorption 
mediated transcytosis (RMT, AMT) pathways. Microenvironmental stimuli can strongly regulate the function of brain capillary endothelial cells. These stimuli 
could be molecules secreted, for example, by neighboring cells such as astrocytes (AC) or pericytes (PC) or physical forces such as shear stress induced by blood 
flow. Brain capillary endothelial cells share the same basal lamina (BL) with pericytes, whereas astrocytes are separated by an additional extracellular matrix 
layer and cover the majority of the surface of blood capillaries from the CNS side (Abbott et al., 2006, 2010). Within the neurovascular unit the interaction of 
brain capillary endothelial cells is also proposed with further CNS cells such as microglia (MC), oligodendrocytes (OD) and neurons (N), whereas the interplay 
with cells in blood such as red blood cells (RBC), macrophages (MP), neutrophils (NP) or platelets (P) is recognized as important but understudied. (B) During 
cerebral ischemia it was shown that BBB permeability is increased in several phases based on different mechanisms. It is proposed that BBB disruption is 
causally linked to brain edema formation and development of sequelae after stroke and traumatic brain injury. Therefore, it was hypothesized that the BBB 
could be a promising target for therapeutic strategies against brain injuries (Thal and Neuhaus, 2014). Some of the mechanisms include opening of the tight 
junctions which could be linked to phosphorylation of the myosin-light chains, increase of intracellular calcium (Ca2+)i and formation of reactive oxygen species 
(ROS). But also active transporter systems are regulated leading to an altered transcellular permeability, pericytes can lose their close contacts to brain capillary 
endothelial cells which is proposed to be correlated with an increased transcellular transcytosis rate, and immune cell entry is enabled preferentially at the 
post-capillary venules. Released tissue-type plasminogen activator (t-PA) and subsequently activated matrix metalloproteinases (MMPs) degrade proteins 
including tight junction proteins such as Occludin. Due to the lowered availability of glucose during cerebral ischemia, brain endothelial cells upregulate the 
expression and functionality of glucose transporters such as SLC2A1 (Glut-1) which can also contribute to brain edema formation by the suggested co-transport 
of water molecules (MacAulay and Zeuthen, 2010). Moreover, ion channel functionality is changed disturbing ion and water homeostasis (O’Donnell, 2014). 
Concordantly to these detrimental processes autophagy in brain endothelial cells is increased under ischemic conditions (Kim et al., 2020). (C) In relation to 
these adverse molecular mechanisms at the BBB under ischemic conditions, data of effects of HES (symbolized with pink circles) in different in vitro and in vivo 
models suggest that HES might have the potential to counteract BBB damage. For example, HES can decrease activity of mitochondrial dehydrogenases (mDHs), 
ROS formation and stabilize paracellular permeability (Gerhartl et al., 2020a). Yet unpublished data from our own lab suggested that autophagy or single 
steps of autophagy could be modified by HES. Another important point, which should be investigated in detail in the near future, is the interplay of HES with 
glucose dependent processes. HES is based on modified glucose units, and thus possibly interact with uptake and metabolic pathways of glucose maybe 
competing about the same interaction and binding sites with glucose itself. This might lead to an altered glucose uptake and/or metabolism such as glycolysis 
or subsequent respiratory chain which is also linked to the formation of ROS. Moreover, the interplay of AMP-activated protein kinase (AMPK) as intracellular 
energy sensor within the cell and the mechanistic target of rapamycin (mTOR) could be concerned and presents a link to autophagy. However, the detailed 
mechanisms and interactions have still to be resolved. 

Review
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proposed mechanism mediated by HES could be the inhibition  
of the plasmatic coagulation system (Rasmussen et al., 2016) 
and the coating of platelets (Deusch et al., 2003). By coating 
platelets HES could decrease the attachment of neutrophils 
and monocytes, and therefore attenuate their increased 
production of e.g., superoxide after attachment to platelets, 
which was shown to be more than twice of the amount 
without attachment. This kind of diminution of ROS formation 
might contribute to a stabilized endothelial barrier (Rodrigues 
and Granger, 2015). In summary, it could be speculated that 
all these known adverse side effects of HES may be superior 
in case of TBI or stroke to reduce microembolism, stabilize the 
vascular endothelium and may prevent or reduce damages to 
the BBB and consequently also to neurons or glial cells. 

Possible Cross-Talk between Kidney and the 
Blood-Brain Barrier
When considering the use of HES in acute brain injury, the 
possible cross-talk between kidney and the BBB should be 
included. In the case that HES treatment damages the kidney 
and at the same time rescues the BBB, later detrimental 
sequalae effects that are triggered in the kidney can abolish 
the beneficial effects on the BBB. In this context, it is known 
that patients with chronic kidney disease or AKI show 
frequently neurological disorders, such as cerebrovascular 
disease, cognitive impairment and neuropathy. This indicates 
that there is a substantial cross-talk between the kidney 
and the brain (Lu et al., 2015). For example, patients with 
chronic kidney disease show an increased prevalence of 
microbleeds in the brain compared to age-matched controls. 
The presence of microbleeds elevates the risk of cognitive 
decline and stroke. AKI is characterized by abrupt reduction 
of kidney function, systemic inflammation, oxidative stress 
and dysregulation of sodium, potassium and water channels. 
Systemic factors can affect the endothelial cells of the brain 
and lead to changes in the BBB integrity (Lu et al., 2015). 
Several studies on BBB function in kidney disease have been 
published (O’Kane et al., 2006; Nongnuch et al., 2014). It was 
shown that acute kidney injury leads to inflammation, BBB 
disruption and functional changes in the mouse brain (Liu 
et al., 2008). Another study showed that brains of rats with 
surgical 5/6 nephrectomy (rat model of chronic renal failure) 
as well as rat brain endothelial cells incubated with serum 
from nephrectomised rats showed a significant decrease 
of influx and efflux drug transporters at mRNA and protein 
levels (Naud et al., 2012). Nevertheless, BBB integrity and 
function was not changed due to this chronic renal failure as 
the brain permeability for drugs was unchanged (Naud et al., 
2012). Ischemia/reperfusion injury is a major cause of AKI. 
To gain more insights into the cross-talk between kidney and 
brain, we constructed an in vitro co-culture model based on 
human proximal tubule kidney cells and brain microvascular 
endothelial cells (BMECs). Human kidney cells underwent 
oxygen/glucose deprivation for 4 hours and then were 
cultured along with BMECs. In addition, BMECs were left 
untreated or were treated with kidney injury toxins, indole-3- 
acetic acid and indoxyl sulfate. To validate this in vitro model 
of kidney-brain interaction, we isolated brain microvessels 
from mice subjected to bilateral renal ischemia (30 minutes)/
reperfusion (24 hours) injury and measured the mRNA and 
protein expression as in the in vitro studies described above. 
Both in vitro and in vivo systems showed similar changes in 
the expression of drug transporters, cellular receptors and 
tight junction proteins (unpublished results, Förster, Burek, 
personal communication). 

Administration of Hydroxyethylstarch at Acute 
Brain Injury
In this regard, the question arose for which kind of 

neurological diseases the stabilization of the BBB by HES 
treatment could be most beneficial and practically feasible, 
because especially the controlled delivery of HES to the 
BBB would be a major factor for the success. A lot of 
disease states, that compromise the brain, have a preserved 
vessel architecture and a challenged endothelial layer of 
the capillaries with changes in BBB integrity in common: 
Stroke, traumatic brain injury, ischemia-reperfusion after 
cardiopulmonary resuscitation and severe bleedings, 
neurosurgery, radiotherapy, systemic inflammation, and all 
entities of severe hypoxia. However, the challenge remains, 
to apply HES locally in the vasculature of interest and to 
benefit from the protective qualities on the BBB integrity 
without having to deal with the systemic disadvantages of 
HES in critically ill patients (i.e., kidney injury, coagulopathy 
etc.). In this context, stroke seems to be the ideal model and 
disease state to investigate the effect of HES. Acute ischemic 
stroke is caused by the sudden shut down of the perfusion 
of a confined brain region. Modern therapies aim to apply 
mechanical thrombectomy as soon as possible to re-open the 
vessel of interest and reduce the penumbra area (Sarraij et al., 
2020). With the intervention catheter being in the vasculature 
of interest, it would be easy to apply HES locally in order to 
reduce brain oedema in the penumbra after the elapsed 
ischemia-reperfusion injury and to restore BBB integrity in the 
compromised brain region. 

Conclusion
In summary, the discussed data confirmed that kidney injury 
is a factor influencing BBB functionality which should not 
be neglected when thinking of HES treatments to stabilize 
the BBB. A lot of in vitro (e.g., based on oxygen/glucose 
deprivation) and in vivo (e.g., temporary middle cerebral 
artery occlusion) models are well established, which could 
be used to investigate the effects of HES on BBB integrity in 
stroke (Kleinschnitz et al., 2011; Neuhaus et al., 2017; Gerhartl 
et al., 2020b), before the straightforward translational 
transfer in human treatment will be possible. But despite 
evidence on the adverse effects of HES on the kidney, the 
well-documented contraindications and warnings, and the 
overall recommendation from scientific and regulatory bodies 
that the use of HES should be avoided in the intensive care 
unit or operating room, Gerhartl et al. (2020a) showed so 
far unexpected potential benefits for its use demonstrating 
tightening effects on the BBB in vitro. If confirmed in 
translational approaches, the use of HES to tighten the BBB 
might represent a niche for its use in specific cases, especially 
in diseases where no adverse effects of HES are reported. 
Nevertheless, to date the use for HES in neurological disorders 
should be subjected only to clinical trials. 
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