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Abstract

Insecticide-treated nets (ITNs) are at the forefront of malaria control programs and even though 

the percentage of households in sub-Saharan Africa that owned nets increased from 3% in 2000 to 

53% in 2012, many children continue to die from malaria. The potential impact of ITNs on 

reducing malaria transmission is limited due to inconsistent or improper use, as well as physical 

decay in effectiveness. Most mathematical models for malaria transmission have assumed a fixed 

effectiveness rate for bed-nets, which can overestimate the impact of nets on malaria control. We 

develop a model for malaria spread that captures the decrease in ITN effectiveness due to physical 

and chemical decay, as well as human behavior as a function of time. We perform uncertainty and 

sensitivity analyses to identify and rank parameters that play a critical role in malaria transmission. 

These analyses show that the basic reproduction number R0, and the infectious human population 

are most sensitive to bed-net coverage and the biting rate of mosquitoes. Our results show the 

existence of a backward bifurcation for the case in which ITN efficacy is constant over time, 

which occurs for some range of parameters and is characterized by high malaria mortality in 

humans. This result implies that bringing R0 to less than one is not enough for malaria elimination 

but rather additional efforts will be necessary to control the disease. For the case in which ITN 

efficacy decays over time, we determine coverage levels required to control malaria for different 

ITN efficacies and demonstrate that ITNs with longer useful lifespans perform better in malaria 

control. We conclude that malaria control programs should focus on increasing bed-net coverage, 

which can be achieved by enhancing malaria education and increasing bed-net distribution in 

malaria endemic regions.
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1. Introduction

Malaria is a mosquito-borne disease that currently affects over 100 countries worldwide but 

the highest incidence and mortality rates are reported in sub-Saharan Africa. The World 

Health Organization (WHO) estimates that 660,000–971,000 people die every year from 

malaria and approximately 90% of the deaths occur in children under five years of age 

World Health Organization (WHO) (2012). During the past decade, several interventions 

have been used to reduce malaria transmission. These include insecticide-treated nets 

(ITNs), indoor residual spraying (IRS), intermittent preventive treatment in pregnant women 

and infants, larval control, and other vector control interventions. ITNs are bed-nets treated 

with pyrethroid, an insecticide that kills and repels mosquitoes, and thus provide a barrier 

around people sleeping under them. Since malaria typically affects rural and poor 

populations, ITNs have proven to be one of the most effective interventions in reducing 

morbidity and mortality due to their low cost and ease in implementation (Lengeler and et 

al., 2004). In this paper, ITNs refer to long-lasting insecticidal nets (LLINs) and 

conventional nets. Due to the logistical challenges of using conventional nets, which 

required being impregnated with insecticide every six months, LLINs were introduced. 

LLINs are designed to retain their effectiveness for up to three years even after repeated 

washing (WHO, 2011; Pulkki-Brännström et al., 2012).

Although the percentage of households in sub-Saharan Africa that owned bed-nets increased 

from 3% in 2000 to 53% in 2012 World Health Organization (WHO) (2012), many children 

continue to die from malaria due to inconsistent and improper use; e.g., using bed-nets for 

fishing or drying fish (Minakawa et al., 2008). Even though 53% of households reported 

owning at least one bed-net, less than 35% sub-Saharan Africans sleep under bed-nets 

(World Health Organization (WHO), 2012). Studies have shown that lack of education on 

malaria transmission and control, limited access to ITNs, and the weather (e.g., people tend 

to sleep outside when it is hot) play a role in ITN effectiveness (De La Cruz et al., 2006). 

Additionally, the effectiveness of ITNs wanes due to wear, tear, long exposure to direct 

sunlight, frequent washing, and human behavior (Kayedi et al., 2008; Atieli et al., 2010; 

WHO, 2011). Understanding the impact of these limitations can help us assess the 

effectiveness of ITNs, devise optimal control strategies, and guide public health policy.

Mathematical and computational models for infectious disease transmission have been used 

to understand infectious disease dynamics and the impact of intervention strategies. Several 

studies have assessed the impact of ITNs on malaria control (Killeen et al., 2007; Killeen 

and Smith, 2007; Gu et al., 2009; Govella et al., 2010; Chitnis et al., 2010; Okumu et al., 

2013; Okell et al., 2012; Briët et al., 2012; Agusto et al., 2013; Stevens et al., 2013); 

however, most of these studies have assumed a constant bed-net effectiveness rate for the 

net’s lifespan and do not account for physical deterioration and behavioral factors. Killeen et 

al. (2007) used field-parametrized models to demonstrate that protecting about 35–65% of a 
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population through ITNs can lead to an equitable community-wide protection against 

malaria. Chitnis et al. (2010) used difference equations to assess the impact of ITNs and IRS 

on malaria control; their results showed that ITNs are more effective than IRS. Assuming a 

constant rate for net effectiveness, Okumu et al. (2013) investigated the impact of three 

kinds of LLINs, untreated nets, and indoor residual spraying; they concluded that untreated 

nets provided similar protection as all three LLINs. Also, assuming a constant rate for net 

effectiveness, Okell et al. (2012) used the Lives Saved Tool model, a computer-based 

simulation model, to assess the impact of LLINs among children and household members; 

they showed that net priority should be given to children to reduce mortality from malaria. 

Briët et al. (2012) used the OpenMalaria modeling platform–a stochastic simulation, to 

assess several factors associated with LLIN effectiveness including coverage, net attrition, 

and both physical and chemical decay. They concluded that LLIN attrition rate and the 

insecticide decay rate were important factors for determining malaria transmission. Finally, 

Agusto et al. (2013) used a system of ordinary differential equations and a linearly 

decreasing function of bed-net usage to model the relationship between bed-net coverage 

and malaria transmission; they concluded that bed-net usage has a positive impact in 

reducing malaria transmission. The model in Agusto et al. (2013) omits the fact that ITN 

efficacy declines over time, as well as immune humans and incubating individuals; these 

assumptions weaken the biology and predictive power of the model since these aspects are 

important in designing and implementing interventions.

In the present work, we propose a model that describes malaria transmission dynamics 

between humans and mosquitoes, as well as accounts for ITN usage to reduce infection. The 

model uses a non-linear function to describe the decay of ITN efficacy over time, which is 

consistent with empirical data (Tami et al., 2004). We assume that all bed-nets are 

distributed or replaced at the same time, which is reasonable as an approximation. To the 

best of our knowledge, this is the first mathematical model for malaria transmission, which 

explores the impact of replacing ITNs after their useful life on malaria control. As in Ngwa 

and Shu (2000); Chitnis et al. (2008) and Ngonghala et al. (2014b), we include a class of 

asymptomatic immune humans who can transmit malaria, although to a lesser extent 

compared to infectious humans. Our model allows us to derive analytical results and prove 

the existence of a backward bifurcation when ITN efficacy is constant. Using constant and 

variable ITN efficacies, we estimate threshold values of ITN coverage required to reduce 

malaria transmission. Also, we explore the impact of the length of the useful life of ITNs on 

malaria control. Finally, we perform uncertainty and sensitivity analyses to identify and rank 

parameters that play a critical role in malaria transmission and control.

2. Model derivation

The human population is described by four classes such that at time t ≥0, there are Sh(t) 

susceptible, Eh(t) exposed, Ih(t) infectious, and Rh(t) immune humans. Malaria does not 

confer permanent immunity, thus, immunity in this work refers to partial immunity. Note 

that immunity to malaria is sustained by continuous exposure to infection (Aron, 1983). The 

mosquito population is divided into three classes such that at time t ≥0, there are Sv(t) 

susceptible, Ev(t) exposed and Iv(t) infectious mosquitoes. With these divisions, the total 

human and mosquito populations at time t, are Nh(t) = Sh(t)+Eh(t)+Ih(t)+Rh(t) and Nv(t) = Sv 
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(t)+Ev(t)+Iv(t), respectively. Note that the subscripts h and v refer to humans and 

mosquitoes, respectively. See Table 1 for brief descriptions, baseline values and ranges of 

values of the parameters used in the model and Fig. 1 for schematics of the model.

In our model derivation, it is assumed that malaria cannot be transmitted vertically or 

horizontally. That is, all new human and mosquito births are susceptible and there is no 

direct human-to-human or mosquito-to-mosquito transmission. We assume that the average 

life span of humans in malaria endemic regions is 1/μh; i.e., μh is the natural mortality rate of 

humans. Similarly, the average life span of mosquitoes is 1/μv0; i.e., μv0 is the natural 

mortality rate of mosquitoes. Additionally, mosquitoes die at rate μ̃
v due to the use of ITN’s. 

The size of the susceptible human and mosquito populations increase as a result of 

recruitments that occur at rates Λi for i ∈ {h, v} and decline as a result of infection, with 

forces of infection given by Eq. (2.1), and mortality. Human recruitments consist of new 

births and immigrations. The susceptible human population also increases due to natural 

recovery of infectious humans at rate γ̃
h; i.e., 1/γ̃

h is the average duration of infection. 

Similarly, immune humans move to the susceptible class after they lose their immunity at 

rate ρh; i.e., 1/ρh is the average duration of immunity. The exposed populations grow as a 

result of new human and mosquito infections and decline as a result of mortality and when 

humans and mosquitoes move to the infectious class at a rate νi for i ∈{h, v}, respectively; 

1/νi is the average incubation period. As in Ngwa and Shu (2000); Chitnis et al. (2006) and 

Ngonghala et al. (2014b), we assume that new mosquito infections can also arise as a result 

of contact with immune humans. Although immune humans might not present any clinical 

symptoms of malaria, some of them (mostly adults in hyper-endemic regions) might harbor 

gametocytes within their blood stream, which can be picked-up by mosquitoes during blood 

meals. The infectious classes are populated by individuals moving in from the exposed 

classes and decrease as a result of death. The infectious human population is further reduced 

by disease-related mortality at rate δh, when humans recover at rate γ̃
h, or acquire immunity 

at rate σ̃
h. We assume that a proportion α, where 0≤α≤1 of the infectious humans recover 

from infection without acquiring immunity, while the rest acquires immunity. The immune 

human class grows when humans acquire immunity and decreases when they die naturally 

or lose their immunity.

We follow the approach in Ngwa and Shu (2000) and Agusto et al. (2013) to model the 

forces of infection λh and λv:

(2.1)

where pvh is the probability that a bite from an infectious mosquito will infect a susceptible 

human, phv is the probability that an infectious human will infect a susceptible mosquito, 

θphv, is the probability that an immune human will infect a susceptible mosquito. The 

parameter θ, 0 ≤ θ ≤ 1, captures the fact that the immune humans are less infectious. β is the 

average number of mosquito-bites that a human receives per day, which depends on a 

number of factors including mosquito-based malaria control measures such as bed-net use. 

Finally, bβ is a parameter to capture the implementation and efficacy of personal protection 

through the use of ITNs.
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Bed-nets protect humans from mosquito bites and hence reduce the probability of malaria 

transmission. In addition to protecting humans who sleep under ITNs, they also offer some 

level of community-wide protection against malaria by killing adult mosquitoes, thereby 

reducing the available number of mosquitoes, which can bite humans (Killeen and Smith, 

2007; Maxwell et al., 2002). Generally, the efficacy of LLINs is high when they are 

acquired and after being impregnated with insecticides, but decays over time. However, the 

protection level does not completely diminish since even without insecticide, nets act as 

physical barriers between mosquitoes and humans. Some studies have shown that untreated 

bed-nets offer about half the level of protection offered by ITNs against malaria (Clarke et 

al., 2001; WHO, 2007) and others have shown that they provide similar protection (Okumu 

et al., 2013). We assume that after ITNs have lost their insecticidal properties, they offer 

about half the same level of protection as new ITNs and the same level of protection as 

regular untreated nets. Also, we assume that all bed-nets are distributed and/or replaced at 

the same time. Although this is a simplifying assumption, it is a reasonable approximation 

towards quantifying the impact of replacing ITNs on malaria control. An appropriate 

functional form for the biting or contact rate of mosquitoes β(bβ(t)), must capture these 

important aspects. Thus, we model β(bβ(t)) through the following functional form:

(2.2)

where n>1 is a dimensionless shape constant and T >0 is the useful life or duration of ITN 

efficacy. Observe that T can also represent the replacement or distribution period of ITNs. 

The parameter b0, for 0 ≤ b0 ≤ 1, captures the initial ITN coverage, where b0 = 0 represents 

no coverage and b0 = 1 depicts full coverage. This functional form for β captures the fact 

that regular untreated nets are half as efficient as ITNs; thus, limt→0+ bβ(t) = b0 is the 

proportion of ITN usage in Agusto et al. (2013) and limt→T− bβ(t) = b0/2. See Fig. 2(a) and 

(b) for a graphical illustration of the dynamics of the time-dependent functions bβ and β.

As the efficacy of insecticides on ITNs depletes over time, the ITN-induced mortality rate of 

mosquitoes μ̃
v, also declines. Therefore, we model the mortality rate of mosquitoes μv(bμv 

(t)) with the functional form:

(2.3)

where μv1 is a positive constant and bμv measures the efficacy of ITNs in killing mosquitoes 

that land on them. Observe that limt→0+ bμv (t) = b0 and limt→T− bμv (t) = 0. Thus, the 

functional form for μv captures the fact that the only source of death for mosquitoes, when 

there is no insecticide on bed-nets, is natural mortality. See Fig. 2(c) and (d) for a graphical 

illustration of the functions bμv and μv.

We note here that bβ and bμv can also be modeled through other functional forms. These 

include slightly modified versions of Hill functions of the form b0/(1+(t/T)n), Weibull or 
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general exponential functional forms such as: b0e−(ln 2)(t/T)n, smooth-compact functions of 

the form, b0en −n/(1− (t/T)2), if t <T and 0, otherwise, etc., where b0 represents the initial ITN 

coverage or efficacy before decline in efficacy kicks in and n is a dimensionless shape 

constant. Note that the first two functional forms attain half their initial efficacies when t=T 

and approach zero asymptotically in the long-term limit, while the third functional form 

attains a value of zero at t=T.

From the above description, the model that governs the transmission of the malaria disease 

is

(2.4)

where the respective total human and mosquito populations are governed by the equations

(2.5)

and α is the proportion of infectious humans who recover without acquiring any immunity. 

For notational convenience, we set γh = αγ̃
h and σh = (1−α)σ̃

h.

3. Model analysis and results when bβ = bμv =b0 = b, where b is a constant

When the ITN efficacy rates bβ and bμv are constant and equal, the functional forms of the 

mosquito biting and mortality rates reduce to those in Agusto et al. (2013). This section 

explores the dynamics of system (2.4) for bβ = bμv = b.

3.1. Positivity and boundedness of solutions

All the variables of the malaria model (2.4) are non-negative since they represent different 

human and mosquito disease statuses. It can be shown that for non-negative initial 

conditions, model (2.4) has non-negative solutions. It can also be verified that when bβ = bμv 

= b = constant, the biologically feasible region  defined by

(3.1)

is positively invariant and attracting for system (2.4). That is, solutions that originate from, 

or enter Ω remain trapped in Ω. See, for example, Ngonghala et al. (2012) for details of a 

similar proof. Therefore, the malaria model (2.4) is mathematically well-posed. This basic 

property of the model system is formalized in the following theorem:
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Theorem 3.1—The biologically feasible region  defined by Eq. (3.1) is positively 

invariant and attracting for system (2.4) with prescribed non-negative initial conditions in 

.

3.2. Basic reproduction number and disease-free equilibrium

The disease-free equilibrium of system (2.4) is Edf = (Λh/μh, 0, 0, 0, Λv/μv(bμv), 0, 0) and the 

basic reproduction number R0, of the model computed using the next generation matrix 

approach (Van den Driessche and Watmough, 2002; Ngonghala et al., 2012) is the dominant 

eigenvalue or spectral radius of the next generation matrix  , where

(3.2)

(3.3)

That is,

(3.4)

In order to determine the long-term dynamics of the disease-free equilibrium Edf, we 

compute the following Jacobian matrix of System (2.4) at the disease-free equilibrium Edf:

(3.5)

Let λ be an eigenvalue of J, then since the first column of J has only one non-zero entry, λ = 

−μh is an eigenvalue of J. By a similar argument, we conclude that λ = −μv is also an 

eigenvalue of J. Observe that each of the first and the fifth columns of J contains only one 

entry. By deleting these columns and the corresponding rows, we can reduce the Jacobian 

matrix to a 5 × 5 matrix. The characteristic equation of the reduced 5 × 5 Jacobian matrix is
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(3.6)

where

Since all coefficients of Eq. (3.6) are positive when R0 <1, Descartes rule of signs assures us 

that Eq. (3.6) does not have any positive real solution. It can be verified with the Routh–

Hurwitz conditions that all solutions of Eq. (3.6) are negative or have negative real parts. 

Therefore, Edf is locally and asymptotically stable when R0 <1. On the other hand, when R0 

>1, B0 <0, which indicates that Eq. (3.6) has at least one positive real solution and Edf is 

unstable. This result is summarized in the following theorem:

Theorem 3.2—The disease-free equilibrium Edf, of system (2.4) with β and μv given by 

Eqs. (2.2) and (2.3), where bβ = bμv = b is constant is locally asymptotically stable when R0 

<1 and unstable when R0 >1.

3.3. Endemic equilibria and backward bifurcation

In this section, we explore the possibility of endemic equilibria and a backward bifurcation. 

In simple epidemic models, typically, the bifurcation will be forward or supercritical, which 

means that there are no endemic states when R0 <1. However, the phenomenon of backward 

or subcritical bifurcation occurs when a stable disease-free equilibrium co-exists with two 

endemic equilibria, one of which is stable in a region where the basic reproduction number 

is less than one (Ngonghala et al., 2012; Castillo-Chavez and Song, 2004; Dushoff et al., 

1998). Backward bifurcations have been found in many epidemiological models for certain 

ranges of parameter values and several biological mechanisms (Hadeler and 

VandenDriessche, 1997; Dushoff et al., 1998; Castillo-Chavez and Song, 2004). See Gumel 

(2012) and the references therein for sources of backward bifurcation and some 

epidemiological models that have been shown to exhibit the phenomenon of backward 

bifurcation. From these studies, it appears that the backward bifurcation is connected to 

complex biological and social interactions of the infectious class. This phenomenon has 

important disease-control implications as it asserts that reducing the basic reproduction 

number to less than one is not enough for disease eradication. Furthermore, a backward 

bifurcation implies that additional control measures will be needed to bring an epidemic 

under control; i.e., the basic reproduction number will need to fall below another threshold 

value, .

The endemic equilibria of system (2.4) are given by , where
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with

(3.7)

(3.8)

It can be verified that the common denominator of  and  is positive. That is, 

. 

Substituting the value of  from Eq. (3.8) in Eq. (3.7) and expanding in  yields the 

following polynomial equation:

(3.9)

where

The solution of Eq. (3.9) is given by . By setting the 

discriminant , to zero and solving the resulting equation in R0, we obtain the 

following threshold value of R0:

(3.10)

such that Eq. (3.9) has no real solution when  and two real solutions when 

. This establishes the possibility of a backward bifurcation and therefore proves 

the following theorem:
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Theorem 3.3—The malaria transmission model (2.4) with β(bβ) = βmax −(βmax − βmin)bβ 

and μv(bμv) = μv0 + μv1bμv, where bβ = bμv= b is constant has

a. a single endemic equilibrium solution if any of the following three conditions is 

satisfied:

i. A0 <0 or R0 >1,

ii. A1 <0 and A0 = 0, or

iii. A1 <0 and ,

b. two endemic equilibrium solutions and hence the possibility of a backward 

bifurcation if A0 >0, A1 <0 and ,

c. no endemic equilibrium solution if the conditions in (a) and (b) are not satisfied.

We establish a parameter window within which a backward bifurcation is possible. To this 

effect, it suffices to demonstrate that there is a positive endemic equilibrium when the basic 

reproduction number R0, is unity. Clearly, when R0 = 1, A0 = 0 and A2 >0. Thus, it is enough 

to show that A1 <0. When R0 = 1, A1 can be re-written as

Therefore, A1 <0

This indicates that a backward bifurcation does not occur at R0 = 1, if δh <μh or νh <μh, and 

provides a necessary condition for the existence of a backward bifurcation (stated in 

Theorem 3.4):

Theorem 3.4—The malaria model (2.4) with β and μv given by Eqs. (2.2) and (2.3), where 

bβ = bμv =b = constant exhibits a backward bifurcation if δh >μh(β phvνh(A33 +θσh)+ μv((γh + 

σh + μh + νh) A33 + νhσh)) /μv(νh − μh)A33 and νh >μh.

Although, we have established conditions on the human disease-related mortality rate δh, 

and the rate at which exposed humans become infectious νh, for which our model can 

exhibit a backward bifurcation, other parameters such as the recovery rates γh and σh, can 

also be used for the investigation. See Section 3.4 for a sensitivity analysis of  to the 

individual parameters of system (2.4) and the positive parameter groupings A11, A22, 

A33,and A44.

We now illustrate numerically the existence and stability of endemic equilibria and the 

occurrence of a backward bifurcation for system (2.4). Unless otherwise stated here and in 
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subsequent sections, the parameters used in our simulations are the baseline parameters 

provided in Table 1. Fig. 3 illustrates the dynamics of system (2.4) for γ̃
h = 1/30, ρh = 9 × 

10−3 and within parameter regimes determined by the human disease-induced mortality rate 

δh, where a forward or a backward bifurcation occurs. Apart from the fact that a higher value 

of δh might be required for a backward bifurcation, the same qualitative results are obtained 

with the baseline values of γ̃
h and ρh. Fig. 3(a) shows a forward bifurcation, wherein a stable 

disease-free equilibrium solution exists when R0 <1 and a stable endemic equilibrium 

solution exists when R0 >1. Fig. 3(b) shows a barely noticeable backward bifurcation when 

. Figure 3(c) indicates that for , there is an asymptotically stable 

disease-free equilibrium solution Edf and for , there is a backward bifurcation. 

This result implies that a locally stable disease-free equilibrium solution coexists with a 

locally stable endemic equilibrium and an unstable endemic equilibrium. These results 

confirm Theorems 3.2 and 3.3.

The existence and stability of an endemic equilibrium solution represent the case in which 

malaria persists in a community. Our results show that a backward bifurcation is connected 

to the disease-induced human mortality rate, that is, the backward bifurcation might be 

characterized by severe and deadly malaria strain since it requires a higher number of human 

deaths compared to the forward bifurcation. The critical value , at which the 

backward bifurcation in Fig. 3(c) occurs corresponds to an ITN coverage of about b=0.78. 

Hence, our results indicate that around 78% ITN coverage might be required to control 

malaria effectively when a backward bifurcation occurs and about 74% coverage when there 

is no backward bifurcation. This confirms the fact that more control effort is required in a 

backward bifurcation situation than in a forward bifurcation situation.

Fig. 4 shows the dynamics of system (2.4) for γ̃
h = 1/30, ρh = 9 × 10−3, the other parameters 

in Table 1 and b∈{0.20, 0.70, 0.75}. For b = 0.75, R0 = 0.97<1, and the system approaches 

the disease-free equilibrium solution over time (Fig. 4(a) and (d)). This represents the 

situation in which 75% ITN coverage is successful in containing the malaria disease. For b = 

0.70, R0 = 1.20>1 and the system approaches the endemic equilibrium solution over time 

(Fig. 4(b) and (e)). This depicts the situation in which 70% ITN coverage is unsuccessful in 

containing the malaria disease. For b = 0.2, R0 = 4.83>1 and the system converges to the 

endemic equilibrium solution (Fig. 4(c) and (f)). In this case, the disease persists due to 

inadequate ITN coverage. This numerical solution agrees with the analytical result presented 

in Theorem 3.2.

3.4. The impact of bed-nets and parameters on the basic reproduction number and 
backward bifurcation

We assess the impact of the parameters of the malaria model (2.4) on the basic reproduction 

number R0, and the backward bifurcation threshold parameter , by computing the 

elasticity indices of R0 and  to the model parameters at the parameter values given in 

Table 1. According to the approach in Chitnis et al., 2008; Moore et al., 2012 and 

Ngonghala et al. (2014b), the elasticity index of R0 (respectively, ) to a parameter x, 

where x is any of the parameters in Table 1, is given by  (respectively, 
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). Since these indices quantify the ratio of relative changes on R0 and  in 

response to corresponding changes in the parameters, they can identify critical parameters 

for disease control. This approach states that the basic reproduction number or the backward 

bifurcation threshold is most sensitive to the parameter with the largest elasticity index value 

and least sensitive to the parameter with the smallest elasticity index value. Table 2(a) 

provides the elasticity indices of R0 to the 18 parameters, arranged in order of decreasing 

magnitude and hence decreasing sensitivity. As expected, the basic reproduction number is 

most sensitive to the bed-net coverage parameter b, with an elasticity index of −1.5408. This 

implies that a 1% increase in the proportion of humans who acquire protection through bed-

net use will lead to an approximately 1.54% decrease on the basic reproduction number and 

vice versa. The basic reproduction number is also highly sensitive to the maximum biting 

rate of mosquitoes, βmax, and the natural mosquito mortality rate, μv0. The public health 

implication of these results is that increasing ITN coverage and decreasing the mosquito 

biting rate are important for malaria control. The basic reproduction number is least 

sensitive to the rate at which exposed humans become infectious, νh.

Although the elasticity indices presented in Table 2(a) are computed for the parameter 

values in Table 1, we can also find analytical expressions for the indices. For example, if we 

consider the most sensitive parameter b, then differentiating R0 with respect to b gives 

. Note that dR0/db <0, which implies that an increase 

in the number of people who benefit from bed-net protection, will trigger a decrease in the 

basic reproduction number and vice versa. The closed form analytical expressions of the 

elasticity indices of the seven parameters to which R0 is most sensitive are:

In order to better explore the effects of the parameters of system (2.4) on the (backward 

bifurcation)threshold parameter grouping , we computed the elasticity indices of  to 

both the positive parameter groupings A11, A22, A33 and A44, and the individual model 

parameters. Our indices reveal that  is highly sensitive to A22 with an index of + 1.2020, 

followed by A11 and A44 with the same index (+1.1002) and least sensitive to A33 with an 

index of −0.0872. Since A22 is the sum of the natural and disease-induced mortality rates, 

and the recovery rates from infectiousness, increasing any of these parameters, (e.g., 

increasing recovery from infectiousness by treating more infectious humans) will increase 

A22 and hence . Decreasing any of these parameters will decrease A22 and hence . 

Table 2(b) provides the elasticity indices of  to the individual parameters of the model 

system, (2.4). As was the case with R0, the threshold , is most sensitive to the bed-net 

coverage b, with an elasticity index of about +7.6, indicating that a 1% increase (or 

decrease) in ITN coverage will generate a 7.6% increase (or decrease) in . This, again, 
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highlights the importance of ITNs in the fight against malaria. Additionally,  is highly 

sensitive to the maximum mosquito-biting rate βmax, the natural mosquito mortality rate μv0, 

the human and mosquito birth rates Λh and Λv, respectively, and the transmission probability 

from infectious mosquitoes to susceptible humans. Note that the higher the value of , the 

less the extra effort required to eradicate the disease when R0<1. On the other hand,  is 

least sensitive to ρh, βmin and θ.

4. Model analysis and results for time-dependent bβ and bμv

In this section, we explore the dynamics of the non-autonomous malaria model (2.4), with 

the time-dependent periodic forces of infection, λh and λv, and the mosquito mortality rate, 

μv, defined by Eqs. (2.1)–(2.3). With this modification, the equation describing the total 

mosquito population becomes Ṅv = Λv − (μv0+μ̃
v (t))Nv.

4.1. Positivity and boundedness of solutions

We demonstrate that the biologically feasible region , defined by

where , is a positively invariant and compact attracting set with 

respect to system (2.4).

To this effect, if Nh(0) is the initial condition of the first equation of (2.5), i.e., the equation 

describing the rate of change of the total human population, then the solution of this 

equation is , 

since Ih(t)≥0. Thus, Nh(t)≤Nh(0)e−μ
ht+Λh/μh (1−e−μht)≤ Λh/μh, if Nh(0)≤Λh/μh. Observe that 

Nh(t)→Λh/μh as t→∞. Similarly, if Nv(0) is the initial condition of the equation: 

, which governs the rate of change of the total mosquito 

population, then  and . Thus, Nv(t)

≤Λv/μv, if . Therefore, Ω is positively invariant. Furthermore, if Nh(0)>Λh/μh 

or , then either the solutions enter Ω in finite time, or Nh(t)→Λh/μh as t→∞ 

and  as t→∞.

Next, consider the set , equipped with the 1-norm (L1-norm): ||(Sh, Eh, Ih, Rh, Sv, Ev, 

Iv)||1 = |Sh|+|Eh|+|Ih|+|Rh|+|Sv|+|Ev|+|Iv|. Then the set 

is clearly a closed and bounded subset of . Thus, Ω is a compact subset of .

Hence, Ω is positively invariant, compact and attracting with respect to the model (2.4), i.e., 

all solutions in  eventually enter Ω. This result can be formalized into the following 

theorem:
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Theorem 4.1—Let λh, λv and μv be given by Eqs. (2.1) and (2.3). Then the closed set

where  is positively invariant and attracting with respect to the 

model (2.4).

We now establish the disease-free equilibrium of Eq. (2.4) with time-dependent bβ and bμv. 

Since the only dynamic coupling between the human and mosquito populations in our model 

is through the malaria infection, in the absence of the disease, the full model reduces to a 

decoupled system that is equivalent to Eq. (2.5) with Ih=0. In this case, Sh=Nh and Sv=Nv, 

and the equations reduce to:

(4.1)

The first equation of (4.1) has a unique positive solution Sh(t) = Sh(0)e−μht+(Λh/μh)(1−e−μht). 

Since Sh(t)→Λh/μh as t→∞, the equilibrium solution , of the first equation of 

(4.1) is globally and asymptotically stable. The second equation of (4.1) has a unique T-

periodic positive solution, , Nakata and Kuniya (2010). Let Sv(t) be any other solution 

of the second equation of (4.1) and suppose  for t≥0. Then ẏ(t) = −(μv0 + 

μṽ(t))y(t). The solution, y(t), of this equation satisfies 

, where . This implies that 

. Thus, the unique T-periodic positive solution, , of 

the second equation of (4.1) is globally attractive in ℝ+, indicating that the disease-free 

equilibrium of the full system (2.4) is Edf (t) = (Λh/μh, 0, 0, 0, , 0, 0), and we have the 

following theorem:

Theorem 4.2—The equation describing the susceptible mosquito population, i.e., the 

second equation of (4.1), with bμv given by Eq. (2.3) has a unique T-periodic globally 

attractive positive solution, .

4.2. Basic reproduction number and stability of the disease-free periodic solution

Let  be the ordered Banach space of all T-periodic functions from ℝ to ℝ7, which is 

equipped with maximum norm ||.|| and a positive cone . 

Following the approach in Wang and Zhao (2008), the basic reproduction number is defined 

as the spectral radius of the linear operator L:

where Y(t, s) is a 5×5 matrix solution of the system dY(t, s)/dt= (t)Y(t, s) for any t≥s, Y(s, 

s) = I5, I5 is the 5×5 identity matrix, ϕ(s) denotes the initial distribution of infectious 
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individuals, (s)ϕ(s) represents the rate at which new infections are produced by infectious 

individuals who are introduced into the population at time s and Y(t, s)ϕ(s) denotes the 

distribution of those infected individuals who were newly infected at time s, and who remain 

infected at time t≥s. The matrix (t) is populated by new human and mosquito infections 

and the matrix and (t) is populated by the difference between transition rates that reduce 

the population of the destination compartments and transitions which increase the population 

of the destination compartment. Here, the matrices  and  have the same form as the 

corresponding matrices in (3.2), with β replaced by β(bβ(t)), μv replaced by μv(bμv (t)) and 

Λv/μv replaced by , where  is the susceptible mosquito component of the disease-

free equilibrium solution and β(bβ(t)) and μv(bμv (t)) are given by Eqs. (2.2) and (2.3).

This approach provides the basic reproduction number, as well as proves that the disease-

free equilibrium Edf(t), is locally and asymptotically stable when the basic reproduction 

number is less than unity and unstable when the basic reproduction number is greater than 

unity (Wang and Zhao, 2008). Since our system is so complex that we cannot obtain a 

closed-form expression for the basic reproduction number, we use numerical techniques to 

explore the dynamics of the basic reproduction number. Since system (2.4) satisfies the 

conditions in Wang and Zhao (2008), we follow the following algorithm outlined in the 

paper to compute the basic reproduction number:

Let W(t, λ) for t≥0 be the standard fundamental matrix of

Then by Theorem 2.1 in Wang and Zhao (2008), the basic reproduction number is the 

unique solution of ρ(W(T, λ)) = 1, where ρ is the spectral radius of W(T, λ). The basic 

reproduction number is then computed using the following steps:

Step 1: For a given value of λ, the matrix W(T, λ) is computed numerically using the built-in 

MATLAB ordinary differential equations solver, ode45. Other standard numerical 

integrators such as forward-Euler, Runge–Kutta methods, or linear multistep methods can 

also be used.

Step 2: Then the spectral radius ρ(W(T, λ)) is calculated using the built-in MATLAB 

eigenvalue function, max(abs(eig(W(T, λ)))).

Step 3: Let g(λ) = ρ(W(T, λ))−1. Then a numerical root finding bisection method is used to 

find the zero of g.

4.3. Investigation of threshold ITN coverage required for malaria containment

We investigate the relationship between the basic reproduction number of the periodic 

malaria transmission model (2.4) and the initial ITN coverage b0 for different values of the 

maximum biting rate, βmax and the lifespan of ITNs, T. We consider the dynamics of three 

basic reproduction numbers, R0,  and  corresponding to bβ = bμv = b0, a time-averaged 
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bj, i.e., , and time-dependent periodic bj, respectively, where j∈{β, 

μv}. R0 and  can be computed using the next generation matrix approach, while  can 

be computed using the algorithm outlined in Section 4.2. In order to determine which of 

these thresholds estimates disease transmission risk better, we plot the dynamics of each of 

them as a function of the initial ITN coverage b0 for βmax∈{0.5, 1.0} and n=6, while keeping 

all the other parameters as presented in Table 1. Fig. 5 illustrates the dynamics of the basic 

reproduction number of our model as a function of b0 for the three case-scenarios. Fig. 5(a) 

shows the dynamics of the three basic reproduction numbers for βmax = 0.5. We can infer 

from the figure that R0 and  underestimate the disease transmission risk for 0.24≤b0≤0.6 

and 0.5≤b0≤0.6, respectively. This shows that for bβ = bμv = b0, about 24% ITN coverage 

might be required to contain malaria; for bj = [bj], j∈{β, μv}, about 50% coverage might be 

required to bring malaria under control; while for the time-dependent periodic case, about 

60% ITN cover-age might be required to contain malaria. The first case might be reasonable 

in areas of extremely low malaria prevalence, however, it is probably not applicable in 

malaria endemic regions. The cases for  and  seem to be realistic for malaria endemic 

areas. Based on the conclusions in Killeen et al. (2007), a 60% personal coverage will result 

in an equitable community-wide protection. This result confirms the importance of capturing 

the fact that ITN efficacy declines over time when developing models for malaria 

transmission. Fig. 5(b) shows that about 51% ITN coverage might be required to control 

malaria when βmax = 1. In this case, R0<1 for 0.51≤b0≤1. However,  and  are always 

greater than one, illustrating that in areas of hyper-endemic malaria, where mosquitoes can 

easily bite humans, ITNs alone may not be sufficient to control malaria. In such a situation, 

ITNs must be combined with other malaria control measures to reduce disease spread.

The World Health Organization recommends LLINs as a mosquito control measure against 

malaria because of their 3-year lifespan as opposed to regular nets, which require insecticide 

treatment every 6–12 months (WHO, 2007; Pulkki-Brännström et al., 2012). We consider 

two scenarios that explore different levels of LLIN usage and effectiveness on malaria 

control–the impact of proper use and replacement of LLINs at the end of their lifespan and 

the impact of human behavior leading to reduced LLIN efficacy. Also, we explore the 

impact of introducing ITNs with longer lifespans on malaria control.

The top panels of Fig. 6 show the basic reproduction number  for different ITN lifespans. 

In this case, we assume that the lifespan of the bed-net, T, coincides with the replacement 

period. Fig. 6(a) shows the results when βmax = 0.5, which represents a low mosquito biting 

rate. The solid brown line shows that if nets are replaced every six months, approximately 

45% ITN coverage is required to control malaria. The dash-dotted red line shows that if nets 

are replaced on a yearly basis, about 48% coverage will be required. The dashed dark green 

line shows that if nets are replaced every two years, about 54% coverage will be required. 

The solid blue line shows that if nets are replaced every three years, 58% ITN coverage will 

be required. The dashed light green line shows that if nets are replaced every four years, 

60% ITN protection may be required to control the disease. The biological implication of 

these results is that for areas where malaria prevalence is low (or mosquito-biting rates are 

low), the sooner ITNs are replaced, the lower the coverage that will be required to control 
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malaria. However, there will be a cost associated with the replacement of ITNs. Thus, 

continuous replacement may not be possible in many malaria endemic areas. Fig. 6(b) shows 

the results when βmax = 1.0. The results suggest that in areas where malaria prevalence is 

high (or mosquito-biting rates are high), controlling malaria transmission will require a 

higher ITN coverage. For example, even if ITNs were replaced every six months, more than 

89% coverage will be required to bring malaria under control. In other words, control 

becomes more difficult when the replacement period is longer.

In the bottom panels, it is assumed that the lifespan of ITNs is shorter than or the same as 

the replacement period. Fig. 6(c) (bottom left panel) shows the results when βmax = 0.5, 

which represents a low mosquito biting rate. The dash-dotted red line shows that if the 

useful life of ITNs is one year, about 76% ITN coverage would be required for malaria 

containment, whereas if the lifespan is 3 years, about 58% ITN coverage would be required. 

This suggests that ITNs with a longer lifespan will perform better for malaria control than 

those with shorter lifespans. Fig. 6 (d) shows the results when βmax = 1.0, which represents a 

high mosquito biting rate. This indicates that in areas with high malaria prevalence, ITNs 

alone might not be sufficient to control malaria.

4.4. Dynamics of the full non-autonomous model system

We now illustrate the dynamics of the full non-autonomous model system when R0<1 and 

for two cases in which R0>1. The case in which R0<1 is attained with an initial ITN 

coverage of b0 = 0.6 and a maximum mosquito-biting rate of βmax = 0.5, while the cases for 

which R0>1 are obtained by with the respective bed-net coverage and maximum biting rate 

pairs (b0 = 0.1, βmax = 0.5) and (b0 = 1.0, βmax = 1.0). Figs. 7 and 8 show numerical 

simulations of system (2.4) for the baseline parameters in Table 1, different values of the 

initial ITN coverage b0, and the maximum mosquito-biting rate βmax. The top row of Fig. 7, 

i.e., Fig. 7(a)–(c) show transient dynamics of the human population, while the bottom row of 

Fig. 7, i.e., Fig. 7(d)–(f) show the long-term asymptotic dynamics of the human population. 

Fig. 7(a) and (d) indicate that the disease dies out when b0 = 0.6 and βmax = 0.5, since this 

parameter regime generates a basic reproduction number that is less than one. Fig. 7(b) and 

(e) show that the disease establishes itself in the population for a low initial ITN coverage of 

b0 = 0.1 and βmax = 0.5, since this parameter set gives a basic reproduction number that is 

bigger than one. Fig. 7(c) and (f) depict the dynamics when both b0, and βmax, are high. For 

example, when b0 = 1.0 and βmax = 1.0, the disease persists in the population. That is, in 

areas in which mosquitoes bite humans frequently, the disease persist irrespective of the 

level of ITN coverage. This implies that in highly endemic areas, ITNs might not be enough 

to control malaria transmission. Thus, areas with high malaria prevalence might need other 

interventions such as indoor residual spraying, intermittent preventive treatment, and 

artemisinin-based combination therapies to control the infection. The corresponding long-

term dynamics of the mosquito population are illustrated in Fig. 8. The long-term dynamics 

illustrated in Figs. 7–8 depict bounded periodic oscillations, which are due to the forcing 

introduced by the time-periodic parameters bβ and bμv.

Fig. 9 compares the dynamics of system (2.4) for periodic time-dependent and averaged bβ 

and bμv. Fig. 9(a) shows a rapid decline in infection prevalence due to the high effectiveness 
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of ITNs at the beginning of the policy implementation. However, as the effectiveness of the 

ITNs decreases, damped waves of infection are observed before the system relaxes to the 

disease-free equilibrium. Fig. 9(b) depicts a monotonic decline in disease prevalence. This 

implies that a strategy consisting of low ITN coverage and frequent replacement will not be 

as effective as one that involves high coverage initially and maintaining this level until the 

ITNs lose their effectiveness.

5. Global uncertainty and sensitivity analyses

Parameter estimation constitutes a critical component of epidemic modeling. Inputs vary 

considerably due to, among other factors, errors in parameter estimation and uncertainty in 

parameter values. Hence, it is important to identify parameters that have significant 

influence on the results. This can be achieved through sensitivity and uncertainty 

quantification. The infectious human population, Ih, is subject to malaria-related mortality. 

This population also depends on other malaria-related epidemiological parameters; 

therefore, it is necessary to investigate the impact of uncertainty and variability in these 

parameters to accurately predict malaria transmission and control.

We use the Latin Hyper-cube Sampling (LHS) and Partial Rank Correlation Coefficient 

(PRCC) techniques (Marino et al., 2008) to perform a global uncertainty and sensitivity 

analyses of our non-autonomous model. Specifically, we sample the twenty parameters of 

the non-autonomous model system and measure their statistical influence on Ih. As in Moore 

et al. (2012), we assign the baseline parameters in Table 1 to the mean values of the 

corresponding parameter ranges and set the respective lower and upper bounds of each 

parameter range to 67% and 133% of the baseline (or mean) value. We then assume that 

each parameter follows a uniform distribution and partition each parameter range into 1000 

equiprobable subintervals. This gives a 1000×20 matrix whose rows consist of unique 

collections of parameters randomly drawn from the uniform pdf without replacement and 

each row of the matrix is used to integrate system (2.4). Fig. 10 shows the PRCCs for all the 

parameters of system (2.4). Our analyses indicate that variability or uncertainty in bed-net 

coverage b0, the maximum mosquito biting rate βmax, and the rate at which exposed humans 

become infectious νh, have the most significant impact on the infectious human population 

Ih. The public health interpretation of this result is that reducing contacts between humans 

and mosquitoes is important in controlling the size of the infectious human population. The 

PRCC for b0 is the largest and negative, which indicates that shielding humans from 

mosquito bites, through the use of ITNs, can reduce human infections. The positive and 

large value of βmax indicates that implementing control measures such as ITNs, which 

protect mosquitoes from biting humans, will cause a decrease in malaria prevalence. The 

human recovery rate γ̃
h, the proportion of infectious humans who recover without acquiring 

immunity α, the infectivity of infectious mosquitoes pvh, the natural mosquito mortality rate 

μv 0, and the infectivity of infectious humans phv, also impact Ih significantly.

The PRCCs presented in Fig. 10 correspond to day 365; however, the dynamics of the 

PRCCs may vary over time. Hence, to fully characterize how sensitive the infectious human 

population is to the parameters of system (2.4), we investigate the evolution of the PRCCs 

over time. Fig. 11 shows the dynamics of the PRCCs for 0<t≤3000 days. Observe that only 
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the parameters α, γ̃
h, and νh have significant influence on the infectious class, Ih, initially. 

However, as time progresses, there is a clear demarcation between statistically significant 

PRCCs (shown in Fig. 11) and non-statistically significant PRCCs (not shown in Fig. 11), 

with non-statistically significant PRCCs clustered around the horizontal axis. Note that in 

this study, a PRCC is considered to be statistically significant if the p-value is less than 10−5. 

The dashed-dotted vertical line in Fig. 11 highlights the PRCCs on day 365, which are 

illustrated in Fig. 10.

Finally, we use the LHS/PRCC technique to investigate the effect of uncertainty and 

variability in the input parameters of the corresponding autonomous system obtained by 

setting bβ = bμv = b (where b is a constant), on Ih. Table 3 lists the statistically significant (p-

value <10−5) PRCCs. The results are consistent with those obtained for the non-autonomous 

system, that is, bed-net coverage b0 and the maximum mosquito biting rate βmax are the most 

influential in affecting the magnitude of the infectious human population.

6. Discussion and conclusion

Malaria continues to spread around the world, therefore, understanding the impact of 

mitigation strategies such as ITNs can help us inform public health policy. We developed a 

model that describes malaria dynamics between humans and mosquitoes, and investigated 

the impact of ITNs on malaria infection and control. The function used to model personal 

protection through ITN captures the decrease in effectiveness due to physical decay and 

human behavior, as well as mosquito biting behavior as a function of time.

We computed the basic reproduction number R0, and showed the existence of a backward 

bifurcation when R0<1 and bed-net efficacy is constant over time. We showed that the 

backward bifurcation occurs for the case of severe malaria. The policy implication of the 

backward bifurcation is that reducing R0 to less than one is not enough to eradicate malaria. 

Therefore, a combination of mitigation strategies may be used to control the spread of 

malaria. The numerical simulations for the backward bifurcation show that in order to 

control the epidemic, R0 must be less than 0.84, which corresponds to a bed-net coverage of 

78%. Thus, a 78% coverage will be required to control the epidemic. Based on the algorithm 

presented in Wang and Zhao (2008), we computed numerically the basic reproduction 

number for the case in which ITN efficacy is non-constant.

We calculated and used elasticity indices to determine the local sensitivity of R0 and  to 

the parameters. This analysis indicates that bed-net coverage has the most impact on both 

the reproductive number R0 and the backward bifurcation threshold , followed by the 

biting rate of mosquitoes, and the natural mosquito mortality rate. We infer from the local 

sensitivity analysis that increasing ITN coverage, reducing the maximum biting rate of 

mosquitoes, destroying mosquito breeding grounds near human domiciles, and reducing the 

probability of a mosquito infecting a human or treating more infectious humans will raise 

 towards unity, while driving down R0 at the same time – a favorable step towards 

disease eradication. Global uncertainty and sensitivity analyses to investigate the impact of 

parameter variation on the infectious human class were performed using the LHS and PRCC 

techniques. The analysis reveals that bed-net coverage, the mosquito biting rate, and the rate 

Ngonghala et al. Page 19

J Theor Biol. Author manuscript; available in PMC 2015 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



at which exposed humans become infectious, have the most significant influence on the 

infectious human population. Overall, our uncertainty and sensitivity analysis results show 

that bed-net coverage and mosquito biting rate contribute the most to the severity of malaria 

or are the most important parameters in reducing disease spread, therefore, educational 

programs must emphasize the importance of using bed-nets consistently to reduce malaria 

spread.

Our numerical simulations show that for a low mosquito biting rate, if nets are replaced 

every six, twelve, twenty-four, or thirty-six months, approximately 45%, 48%, 58%, and 

60% coverage will be required to control the disease, respectively. This asserts that 

replacing the nets regularly will require lower coverage levels; however, there will be cost 

associated with the replacement of bed-nets, which may not be possible in many malaria 

endemic regions. However, for high mosquito biting rates, even if nets are replaced or re-

impregnated with insecticides every six months, approximately 89% coverage will be 

needed to bring malaria under control. Additionally, for longer replacement periods, ITNs 

might need to be complemented with other control measures in order to achieve a successful 

control campaign. For the scenario when the ITNs have a shorter lifespan than the 

replacement period, a higher coverage rate will be needed. This suggests that ITNs with a 

longer lifespan will perform better for malaria control than those with a shorter lifespan. 

Although we fixed the shape constant n, to 6 in our analysis, similar qualitative results are 

obtained for values of n that are smaller or bigger than 6. This is obvious from our global 

sensitivity analysis, since n is one of the parameters with the least influence on the infectious 

human population.

We conclude that understanding the time dependent dynamics of epidemiological 

parameters for malaria transmission is crucial for developing realistic estimates of their 

impact and providing decision support. Our model provided a more realistic representation 

of the complex dynamics involving malaria transmission and ITNs dynamics, which can be 

used to develop policies for malaria control. Our analysis also suggests that designing nets 

with a longer useful life will be more effective in the fight against malaria, which aligns well 

with previous studies. This framework can be extended, with slight modifications, to other 

vector-borne diseases and to explore the socio-economic impact of malaria (see Ngonghala 

et al. (2014a) for a sample methodology).
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HIGHLIGHTS

• Insecticide-treated nets (ITNs) with long lifespans perform better in malaria 

control.

• Malaria dynamics is most sensitive to ITN coverage and the biting rate of 

mosquitoes.

• When ITN efficacy is constant, 78% net coverage could result in malaria 

elimination.

• When ITN efficacy decays over time, 45–60% coverage could lead to malaria 

elimination.

• Some parameter regimes result in periodic oscillations implying disease 

persistence.
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Fig. 1. 
Schematics depicting transitions of humans and mosquitoes between different compartments 

(solid lines), transmission of malaria from infectious mosquitoes to susceptible humans 

(dashed line), and transmission of malaria from infectious and immune humans to 

susceptible mosquitoes (dash-dotted lines). Mortalities are denoted by dotted lines. The 

transition and mortality rates are described in Table 1 and the total human and mosquito 

populations are, respectively, Nh = Sh + Eh + Ih + Rh and Nv = Sv + Ev + Iv.
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Fig. 2. 
Graphical illustration of the dynamics of (a) bed-net efficacy, (b) mosquito biting rate, (c) 

bed-net efficacy due to mosquito mortality, and (d) mosquito mortality rate for the 

parameters: βmin = 0.01, βmax = 1.0, b0 = 0.53 (World Health Organization (WHO), 2012), T 

= 3 × 365, n = 6, μv0 = 1/14, and μv1 = 1/14. Figure (a) shows the protective power of ITNs. 

The effectiveness of the ITNs is high initially, but declines with time until the net is replaced 

or retreated. Figure (b) shows how the biting rate of mosquitoes is low soon after adoption 

of an ITN, but as the insecticide diminishes, the biting rate increases. Figures (c) and (d) 

show that as the effectiveness of mosquito nets declines with time, mosquito mortality due 

to ITN use also declines. For each of the figures, it is assumed that the useful life of ITNs is 

3 years (WHO, 2011) and the dynamics are presented for 3650 days or 10 years.
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Fig. 3. 
Bifurcation diagrams for γ̃

h = 1/30, ρh = 9 × 10−3 and different values of the human disease-

induced death rate δh. On the graphs, solid red lines represent stable interior or endemic 

equilibrium solutions Ee, dashed red lines represent unstable endemic equilibrium solutions, 

solid blue lines represent stable disease-free equilibrium solutions Edf, and dashed blue lines 

represent unstable disease-free equilibrium solutions. Graphs (a)–(c) show the infectious 

human population Ih as a function of the basic reproduction number R0. Graph (a) shows a 

forward bifurcation for δh = 9.0 × 10−5, which might represent a mild version of malaria, 

Graph (b) is the bifurcation diagram for the case δh = 1.5 × 10−4, and Graph (c) shows a 

backward bifurcation for δh = 3.4 × 10−4, which might represent a severe version of malaria. 

On the second row, the basic reproduction number R0 is plotted against ITN coverage, b. 

The minimum level of ITN coverage required contain the malaria disease is given by the 

point of intersection of the solid green curve and (i) the dashed green line when there is 

backward bifurcation (Graphs (e) and (f)) and (ii) the solid purple line when there is no 

backward bifurcation (Graph (d)). (For interpretation of the references to color in this figure 

caption, the reader is referred to the web version of this article.)
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Fig. 4. 
Numerical solutions of system (2.4) for b∈{20, 0.70, 0.75} and the other parameters in 

Table 1. The initial conditions used are 

. Graphs (a) and (d) show 

stable disease-free human and mosquito equilibrium solutions. Graphs (b) and (c) show 

stable endemic human equilibrium solutions, while graphs (e) and (f) show stable endemic 

mosquito equilibrium solutions.
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Fig. 5. 
The basic reproduction number of model (2.4) for βmax∈{0.5, 1.0} as a function of ITN 

coverage, b0. Solid blue lines show the basic reproduction number , for time-dependent 

periodic bj, dashed green lines denote the basic reproduction number , for time-averaged 

bj, where j∈{β, μv}, and dash-dotted red lines denote the basic reproduction number R0, for 

bβ = bμv = b0. Figure (a) indicates that ITN alone may be enough to control malaria, while 

figure (b) indicates that ITN alone might not be enough to control malaria, if ITN efficacy 

declines over time. The horizontal line denoted by  represents a basic reproduction 

number of value unity. (For interpretation of the references to color in this figure caption, 

the reader is referred to the web version of this article.)
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Fig. 6. 
Simulation results for three ITN efficacy levels and two mosquito biting rates. The top 

panels show the scenario when the ITNs’ lifespan coincides with the replacement period. 

The bottom panels show the case when the ITNs’ lifespan is shorter than or equal to the 

replacement period. Figures (a) and (b) suggest that in both, moderately and highly endemic 

malaria regions, rapid replacement of ITNs can play an important role in malaria control, 

while graphs (c) and (d) indicate that when the ITNs’ lifespan is shorter than the 

replacement period, it will be harder to control malaria.
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Fig. 7. 
Simulation results showing the dynamics of the non-autonomous model (2.4) for 3 values of 

b0 and βmax and initial conditions 

. Graphs (a) and (d) show a 

scenario where the disease dies out: b0 = 0.6 and βmax = 0.5. Graphs (b) and (e) show a 

scenario where the disease persists: b0 = 0.1 and βmax = 0.5. Graphs (c) and (f) show that 

when the biting rate of mosquitoes is very high, the disease persists even when ITN 

coverage in the community is at its maximum: b0 =1.0 and βmax = 1.0.
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Fig. 8. 
Simulation results showing the long-term dynamics of the mosquito population in the non-

autonomous model (2.4) for different values of b0 and βmax. The initial conditions used are 

. The disease dies out for b0 

= 0.6 and βmax = 0.5 (Graph (a)) and persists when b0 = 0.1 and βmax =0.5 (Graph (b)) and 

when b0 = 1.0 and βmax = 1.0 (Graph (c)).
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Fig. 9. 
Simulation results illustrating the dynamics of the non-autonomous model (2.4) for the 

initial conditions  and the 

parameters in Table 1 with b0 = 0.6 and βmax = 0.5. (a) Dynamics for periodic time-

dependent bβ and bμv showing a fast initial decline and damped secondary waves of 

infection over time. (b) Dynamics of system (2.4) for time-averaged bβ and bμv. The smaller 

plots highlight the decline in the exposed, infectious and immune populations.
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Fig. 10. 
PRCCs depicting how sensitive the infectious human population, Ih is to the parameters of 

system (2.4) on day 365. The larger the magnitude of the PRCC, the more significant the 

parameter is in generating uncertainty or variability in Ih. The sign of the PRCC indicates 

whether an increase in a parameter will lead to more infections (+) or less infections (−). 

Clearly, uncertainty or variability in b, βmax, νh, γ̃
h, α, and pvh influence the magnitude of 

the infectious class, Ih the most.
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Fig. 11. 
Dynamics of statistically significant PRCCs of parameter values of model (2.4) with respect 

to Ih for 3000 days. Although non-statistically significant PRCCs are omitted, they are 

clustered around the horizontal axis within the interval (−0.1, 0.1). The dashed-dotted 

vertical line denotes day 365.
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Table 1

Descriptions, baseline values and ranges of values of parameters for the malaria model (2.4). Human 

recruitments consist of new human births and immigrants. Using estimated birth rates from Central 

Intelligence Agency (CIA) (2014a) for the 10 sub-Saharan African countries that accounted for about 87% of 

residents in hyperendemic or holoendemic malaria regions in 2010 Noor et al. (2014), we obtain a birth rate of 

approximately 38 births per thousand per year. We assume an approximate human immigration rate of 18 

humans per year, which is within the range in Chitnis et al. (2008). Also, we assume that 40% of infectious 

humans recover without acquiring immunity and that the minimum biting rate is 1/102 bites on humans per 

mosquito per day. Assuming a non-zero minimum mosquito-biting rate is reasonable, since, due to inefficient 

usage, decay in ITN-efficacy, possible human activities out of ITNs at night, etc., ITN protection against 

mosquito-bites might not be 100% efficient.

Parameter Description and dimension Baseline value Range Reference

Λh Human recruitment rate (Humans × day−1) 103/(55 × 365) [103/72, 103/35] × 
1/365

Chitnis et al. (2008), Central 
Intelligence Agency (CIA) (2014a)

Λv Mosquito recruitment rate (Mosquitoes × 
day−1)

104/14 [104/21, 104/14] Teboh-Ewungkem (2009)

μh Human natural death rate (Day−1) 1/(55 × 365) [1/72, 1/35] × 
1/365

Central Intelligence Agency (CIA) 
(2014b)

μv0 Mosquito natural death rate (Day−1) 1/14 [1/21, 1/14] Davidson and Draper (1953), Giles and 
Warrel (2002)

μ̃
v ITN-induced mosquito death rate(Day−1) 1/14 [1/21, 5/10] Lines et al. (1987)

δh Human disease-induced death rate (Day−1) 32.9/(365 × 103) [0, 41/105] Chitnis et al. (2008)

νh Rate at which exposed humans become 
infectious (Day−1)

1/14 [67/103, 2/10] Molineaux and Gramiccia (1980), 
Mehlhorn and Armstrong (2001), 
Chitnis et al. (2008)

νv Rate at which exposed mosquitoes become 
infectious (Day−1)

1/10 [29/103, 33/102] Macdonald et al. (1957), Chitnis et al. 
(2008)

σ̃
h

Rate at which infectious humans acquire 
immunity (Day−1)

1/285 [14/104, 17/103] Molineaux and Gramiccia (1980), 
Chitnis et al. (2008)

α Proportion of infectious humans who 
recover without acquiring immunity 
(Dimensionless)

4/10 [0, 1]

γ̃
h

Rate at which infectious humans recover 
without acquiring immunity (Day−1)

1/4 [1/180, 1/4] Filipe et al. (2007)

ρh Rate at which immune humans lose 
immunity (Day−1)

1/(5 × 365) [55/106, 11/103] Chitnis et al. (2008)

βmin Minimum mosquito biting rate (Day−1) 1/102 [0, 1/10]

βmax Maximum mosquito biting rate (Day−1) 5/10, 1 [1/10, 1] Molineaux et al. (1979), Gupta et al. 
(1994), Chitnis et al. (2008)

b0 Initial personal protection or ITN coverage 
(Dimensionless)

53/100 [0, 1] World Health Organization (WHO) 
(2012), Malaria Communities Program 
(2014)

T Useful life of insecticide-treated nets 
(ITNs) (Day)

3 × 365 [180, 3 × 365] WHO (2007), WHO (2011), Pulkki-
Brännström et al. (2012)

pvh Disease transmission probability from 
infectious mosquitoes to susceptible 
humans (Dimensionless)

22/103 [1/102, 27/102] Davidson and Draper (1953), Krafsur 
and Armstrong (1978), Nedelman 
(1985)

phv Disease transmission probability from 
infectious humans to susceptible 
mosquitoes (Dimensionless)

48/102 [72/103, 64/102] Boyd (1949), Smalley and Sinden 
(1977), Nedelman (1984)
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Parameter Description and dimension Baseline value Range Reference

θphv Disease transmission probability from 
immune humans to susceptible mosquitoes 
(Dimensionless)

48/103 [72/104, 64/102] Boyd (1949), Smalley and Sinden 
(1977), Nedelman (1984)
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Table 2

Elasticity indices of (a) the basic reproduction number R0 and (b) the backward bifurcation threshold value 

, computed at the parameter values in Table 1 with γ̃
h = 1/30 and ρh = 9 ×10−3. These indices quantify 

relative changes in R0 and  in response to corresponding changes in the parameters. The magnitude of an 

index provides an indication of how sensitive R0 (respectively, ) is to a parameter, while the sign indicates 

the direction of change; i.e., whether R0 or  increases as the parameter increases (+) or R0 (respectively, 

) decreases as the parameter increases (−). The elasticity indices are presented in order of decreasing 

magnitude.

Parameter Elasticity index Parameter Elasticity index

(a) Elasticity indices of the basic reproduction number R0.

b −1.5408 γ̃
h

−0.4279

βmax +0.9888 α −0.3905

μv0 −0.8242 νv +0.2611

Λh −0.5000 σ̃
h

−0.0562

Λv +0.5000 θ +0.0114

phv +0.5000 ρh −0.0113

pvh +0.5000 βmin +0.0112

μh +0.4980 δh −0.0009

μv1 −0.4368 νh +0.0003

(b) Elasticity indices of the threshold value of the basic reproduction number, .

b +7.6150 phv −0.8608

βmax −1.8939 α +0.8478

μv0 +1.2403 νv −0.6158

Λh +1.1002 σ̃
h

+0.2471

pvh −1.1002 μh −0.1892

Λv −1.1002 νh −0.1025

γ̃
h

+1.0125 ρh −0.0867

μv1 +0.9674 βmin −0.0671

δh −0.8812 θ −0.0196

J Theor Biol. Author manuscript; available in PMC 2015 March 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ngonghala et al. Page 39

T
ab

le
 3

PR
C

C
s 

of
 p

ar
am

et
er

s 
th

at
 a

ff
ec

t I
h 

si
gn

if
ic

an
tly

. T
he

 le
ve

l o
f 

si
gn

if
ic

an
ce

 is
 s

et
 a

t p
-v

al
ue

 <
10

−
5

P
ar

am
et

er
P

R
C

C
P

ar
am

et
er

P
R

C
C

P
ar

am
et

er
P

R
C

C
P

ar
am

et
er

P
R

C
C

b
−

0.
93

08
γ̃ h

−
0.

77
74

μ v
0

−
0.

65
69

μ v
1

−
0.

37
79

β m
ax

+
0.

87
47

α
−

0.
76

50
p h

v
+

0.
60

71
Λ

v
+

0.
32

93

ν h
+

0.
80

31
p v

h
+

0.
71

55
ν v

+
0.

51
50

J Theor Biol. Author manuscript; available in PMC 2015 March 26.


