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Abstract: Coronavirus disease 2019 (COVID-19) is a highly heterogeneous disease regarding sever-
ity, vulnerability to infection due to comorbidities, and treatment approaches. The hypothalamic–
pituitary–adrenal (HPA) axis has been identified as one of the most critical endocrine targets of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that might significantly impact
outcomes after infection. Herein we review the rationale for glucocorticoid use in the setting of
COVID-19 and emphasize the need to have a low index of suspicion for glucocorticoid-induced
adrenal insufficiency, adjusting for the glucocorticoid formulation used, dose, treatment duration,
and underlying health problems. We also address several additional mechanisms that may cause HPA
axis dysfunction, including critical illness-related corticosteroid insufficiency, the direct cytopathic
impacts of SARS-CoV-2 infection on the adrenals, pituitary, and hypothalamus, immune-mediated
inflammations, small vessel vasculitis, microthrombotic events, the resistance of cortisol receptors,
and impaired post-receptor signaling, as well as the dissociation of ACTH and cortisol regulation.
We also discuss the increased risk of infection and more severe illness in COVID-19 patients with
pre-existing disorders of the HPA axis, from insufficiency to excess. These insights into the complex
regulation of the HPA axis reveal how well the body performs in its adaptive survival mechanism
during a severe infection, such as SARS-CoV-2, and how many parameters might disbalance the
outcomes of this adaptation.

Keywords: SARS-CoV-2; glucocorticoids; hypothalamic–pituitary–adrenal axis; hypercortisolism;
adrenal insufficiency

1. Introduction

COVID-19 is a highly heterogeneous disease regarding disease severity, vulnerability
to infection due to underlying comorbidities, and administered medications. It has been
demonstrated to be a systemic disease with effects extending beyond the respiratory system
and often presents with protracted clinical manifestations lasting beyond the initial infection
period [1,2]. The ubiquitous expression of angiotensin-converting enzyme 2 (ACE2), the
primary receptor responsible for the entry of SARS-CoV-2 at the cellular level, combined
with widespread endothelial damage and altered immune response, partially explain the
multisystemic presentation of COVID-19 [1]. The involvement of the endocrine system in
COVID-19 is so relevant that an “endocrine phenotype” of COVID-19 has progressively
acquired clinical relevance [1]. However, while the contribution of endocrine dysfunction to
the severity and outcomes of COVID-19 remains to be fully elucidated, the impact of SARS-
CoV-2 on the endocrine system may be severely underreported due to the lack of awareness
of the public and clinicians [2,3]. In particular, adrenal glands, with a crucial role in
priming the immune system, might be a vulnerable and vital target during COVID-19, with
direct and indirect effects on the overall outcomes. Furthermore, systemic corticosteroids
remain the leading treatment choice in moderate and severe COVID-19 cases with acute
and persistent effects on the hypothalamic–pituitary–adrenal (HPA) axis. In addition,
pre-existing adrenal disorders may impact the susceptibility and severity of COVID-19, and
special care is needed in the management of these patients during the current pandemic.
Finally, with the long-term impact of COVID-19 presenting an increasing challenge for
health care systems worldwide, the extent of the HPA axis’s contribution to this problem as
a likely endocrine culprit remains a topic for future research.

This article will comprehensively review the relationship between SARS-CoV-2 in-
fection and the HPA axis. We will cover topics from the rationale for glucocorticoid use
in COVID-19 patients, and potential direct and indirect mechanisms that might cause the
dysfunction of the HPA axis during SARS-CoV-2 infection to whether patients infected
with COVID-19 are in higher-risk categories for developing more severe illness modalities
due to endogenous- or exogenous-induced hypo or hypercortisolism.
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2. Glucocorticoids in the Management of COVID-19 Patients

Due to the rapid onset of the current pandemic, frontline clinicians were required
to undertake treatment decisions despite vast gaps in the knowledge about the novel
coronavirus, its clinical course, and only weak evidence from the first reports regarding the
efficacy of initially proposed agents [4]. The lack of effective antiviral agents quickly shifted
the focus towards the more known complications associated with COVID-19, such as acute
respiratory distress syndrome (ARDS) and cytokine storm syndrome. Clear evidence that
the cytokine deregulation and excessive inflammatory response might be more detrimental
than uncontrolled viral replication in critical COVID-19 cases raised the possibility of using
antiinflammatory agents in an effort to control and resolve the illness [5].

Glucocorticoids have been widely used in the previous severe acute respiratory syn-
drome (SARS) and the Middle East respiratory syndrome (MERS) epidemics and ARDS
in general; however, the data regarding their efficacy were contradictory and generally of
low quality [6]. They exert potent antiinflammatory effects across both innate and adaptive
immune systems through the DNA-dependent regulation of antiinflammatory proteins,
non-genomic modulation of inflammation, and direct protein interference of transcrip-
tion factors such as nuclear factor kappa B [7–9]. In early 2020, a retrospective study of
201 patients admitted with confirmed COVID-19 pneumonia in Wuhan, China, provided
the first evidence supporting their usage by demonstrating that treatment with methyl-
prednisolone was associated with a reduced risk of death among patients with ARDS [10].
However, in the early stages of the pandemic, medical professionals were apprehensive
about the use of immunosuppressants in the treatment of infectious disease, and previous
evidence of the possibility of prolonged viral shedding and bacterial superinfection with
their usage added to the concern [7]. In addition, due to the ubiquitous glucocorticoid
receptor (GR) expression and large-scale GR-mediated effects, there are well-documented
and numerous off-target effects related to glucocorticoid treatment, mainly dependent on
its dose and duration [7]. The spectrum of abnormalities can range from initial symptoms
of hypercortisolism in patients with individual hypersensitivity to prolonged HPA axis
suppression after drug withdrawal [6]. Therefore, in January 2020, the World Health Orga-
nization (WHO) issued provisional guidelines against the routine use of glucocorticoids in
the management of patients with COVID-19 [11]. Many subsequent guidelines from other
groups also stated that glucocorticoids were either contraindicated or not recommended.

Multiple large-scale randomized control trials (RCTs) began assessing glucocorticoid
efficiency, most notably the RECOVERY trial in the United Kingdom. Only about 100 days
after the study protocol was drafted, on June 16, 2020, the study showed that dexametha-
sone is effective in reducing 28-day mortality among patients who were receiving either
invasive mechanical ventilation (26.2% vs. 29.3%) or oxygen alone (23.3% vs. 26.2%), but
not among those receiving no respiratory support (17.8% vs. 14.0%) [12]. The results
immediately changed the hospital management guidelines across the globe, and most
other trials suspended enrolment. In September 2020, the WHO provided a strong rec-
ommendation for systemic corticosteroids in patients with severe and critical COVID-19
and a weak or conditional recommendation against systemic corticosteroids in patients
with non-severe disease [13]. Those guidelines were further supported by a high level of
evidence for glucocorticoid effectiveness in hospitalized patients who need respiratory sup-
port in a prospective meta-analysis of seven RCTs by the WHO Rapid Evidence Appraisal
for COVID-19 Therapies Working Group, which concluded that the initiation of systemic
glucocorticoid was associated with lower 28-day all-cause mortality in critically ill patients
with COVID-19. Included trials evaluated daily glucocorticoid equivalent doses ranging
from 6 mg to 29 mg of dexamethasone; however, the analysis was not powered to assess
the optimal agent, dose, or treatment duration [14].

Systemic glucocorticoids continue to be recommended for moderately or severely ill
patients in both the WHO guidance for the clinical management of COVID-19 and the
National Institutes of Health (NIH) COVID-19 guidelines [13,15]. Although the WHO
guidance does not recommend a particular glucocorticoid dose, it recommends regimens



Int. J. Mol. Sci. 2022, 23, 7326 4 of 15

lasting 7–10 days [13]. The NIH guidelines recommend 6 mg of dexamethasone once
daily for ten days or until hospital discharge [15]. Many potential beneficial effects of
glucocorticoids in the treatment of COVID-19 have been proposed. However, whether
they are successful due to the general supportive benefits of glucocorticoids in critically ill
patients, mitigation of the cytokine release syndrome and ARDS [12,16], the treatment of
undiagnosed adrenal insufficiency (AI) [17,18], or the suppression of endogenous cortisol
secretion with reduced effects on mineralocorticoid receptors [19] has yet to be clarified [20].

Despite considerable efforts, it is challenging to derive definitive conclusions on an
optimal glucocorticoid agent, or its timing, dose, and duration from the current litera-
ture [8]. Mechanistically methylprednisolone achieves higher lung-to-plasma ratios in
animal models than dexamethasone, and smaller trials have demonstrated its superi-
ority to dexamethasone; however, the therapeutic dosing was not equivalent between
groups [21,22]. Regarding the best possible initiation time for the treatment, the current
evidence suggests their usage in the second week of infection, when inflammatory instead
of infectious mechanisms predominate [8,23,24]. In trials so far, different dosage regimes
have been reported in patients with severe COVID-19, from consistent doses throughout
the treatment course, to the administration of a tapering dose, or the administration of
pulse doses for a short period [8].

The amount and duration of glucocorticoid administration also need to be carefully
adjusted because a series of side effects may occur after long-term or high-dose use [25].
In a recent meta-analysis, glucocorticoid treatment was significantly associated with an
increased risk of viral clearance delay in COVID-19 patients receiving high or medium doses
compared to those taking low doses [26]. Lastly, the ability of synthetic glucocorticoids to
induce a persistent inhibition of the HPA axis, even after a short period of treatment, is not
clearly predictable because the inter-individual pharmacokinetic differences, sensitivity
variations in GRs, pathophysiological changes in cortisol dynamics in acute illness, and the
specific guidelines regarding dose tapering are lacking [27].

3. Glucocorticoid-Induced Adrenal Insufficiency in COVID-19 Patients

Systemic glucocorticoids exert negative feedback on corticotrophin-releasing hormone
(CRH) producing neurons and pituitary corticotroph cells. This leads to reduced adrenal
cortisol production and, after prolonged exposure, adrenal cortical hypoplasia and atro-
phy [28]. After the effect of glucocorticoid therapy on the HPA axis has worn off, the
production of adrenocorticotropic hormone (ACTH) and CRH typically recover first, fol-
lowed by that of cortisol, which can remain suppressed in the long term if adrenal atrophy
has ensued [28].

The risk of developing glucocorticoid-induced adrenal insufficiency (GI-AI) is chal-
lenging to predict on an individual basis. The glucocorticoid formulation, dose, treatment
duration, and underlying health problems can affect this risk, but a great degree of overlap
exists [28,29]. In the general population, only 2% of patients reported symptoms consistent
with GI-AI, yet several cases of adrenal crisis and hospital admission for GI-AI have been
described, including a few deaths [28].

Currently, the monitoring of GI-AI in COVID-19 patients is unsystematic, sporadic, and
reliant on individual clinicians’ knowledge and awareness. Patients with recently resolved
COVID-19 and untreated GI-AI might present with nonspecific signs and symptoms such
as chronic fatigue, difficulty thinking or concentrating, musculoskeletal pain, insomnia,
mood changes, and low blood pressure that can be attributed to other causes, including
long COVID symptoms. The actual risk of GI-AI in post-COVID-19 patients has not been
assessed in a larger cohort.

Many endocrinologists have helped develop national and local recommendations from
a patient safety and cost-effectiveness perspective, including evidence-based guidelines
for testing, treating, and monitoring for GI-AI in the general population. We now need
to provide effective, uniform, and economical monitoring by analyzing these different
regional and national protocols. Meanwhile, as recommended for glucocorticoid users in



Int. J. Mol. Sci. 2022, 23, 7326 5 of 15

the general population [29,30], we need a low threshold to replace and test for GI-AI after
glucocorticoid withdrawal while we wait for more evidence in COVID-19 patients. This is
particularly important for patients with nonspecific symptoms after cessation, including
those with symptoms attributed to long COVID.

4. The Impact of COVID-19 Infection on Hypothalamic–Pituitary–Adrenal Axis

Beyond GI-AI, several additional mechanisms can cause the observed impact of SARS-
CoV-2 infection on the HPA axis. The various potential mechanisms by which SARS-CoV-2
can impair the HPA axis are presented in Figure 1.
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4.1. Critical Illness-Related Corticosteroid Insufficiency

Firstly, deregulation of the HPA axis may be encountered as part of the development
of functional AI, as has been described in critical illness from 2000 onwards based on
the initial work by Annane et al. in septic shock [31], later named critical illness-related
corticosteroid insufficiency (CIRCI) [32]. This functional AI is hypothesized to be mainly
due to inadequate cortisol secretion for the modulation of inflammatory responses in
critically ill patients. Multiple mechanisms, including (i) reduced albumin or cortisol-
binding globulins (CBGs), (ii) decreased affinity, (iii) reduced number of adrenal gland
cortisol receptors, (iv) or increased activity of 11-β hydroxysteroid dehydrogenase type
2 resulting in cortisol inactivation, have been proposed in this regard [33]. In addition,
higher levels of cytokines observed in patients with CIRCI could directly suppress ACTH
release during critical illness because the pituitary gland is not protected by the blood–
brain barrier [6]. New research performed over the last 10 years has led to the insight that
the term CIRCI should be explicitly used for a condition that may develop in prolonged
critically ill patients that are at risk of acquiring central adrenal insufficiency. In that setting,
the adrenal cortex, depleted from ACTH-mediated trophic signaling for a prolonged
period, may become structurally and functionally impaired, resulting in insufficient cortisol
production [34]. Regardless of the potential mechanisms, severe COVID-19 cases are at
potential risk of developing CIRCI. A small study reported CIRCI diagnosis in six out of
nine critically ill patients with COVID-19 [17].

4.2. Adrenal Gland

The expression of two crucial viral receptors through which SARS-CoV-2 enters host
cells, ACE2 and transmembrane protease serine 2 (TMPRSS2), have been documented in
the adrenal zona fasciculata and reticularis of the adrenal gland [17,35]. Autopsy studies
showed adrenal histomorphologic alterations that could be assigned to the SARS-CoV-2
infection, implying a direct cytopathic effect [36,37]. The adrenals showed mainly acute
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fibrinoid necrosis of small vessels, primarily affecting arterioles in the adrenal parenchyma,
capsule, and periadrenal adipose tissue [38]. Additional findings included subendothelial
vacuolization and apoptotic debris without significant signs of inflammation, parenchy-
mal infarctions, or thrombosis. In another autoptic study of fatal COVID-19 cases, the
authors identified SARS-CoV-2 and its replication in the adrenal glands, which co-localized
with ACE2 and TMPRSS2, mainly in epithelial but also in mesenchymal and endothelial
cells [35,39,40]. Some reports specifically observed chronic inflammation with perivascular
distribution and vasculitis of the small vessels. The autopsy studies have involved a very
limited number of patients so far and only included those more severely affected by multi-
organ failure. Whether the histomorphologic alterations led to altered cortisol dynamics or
induced insufficiency is questionable.

Furthermore, AI in COVID-19 patients may be due to thrombotic events [41]. Inciden-
tal adrenal computed tomography findings compatible with adrenal infarction have been
reported in 23% of patients with severe COVID-19 [42], the vast majority with bilateral
involvement. However, the clinically relevant cases are less frequently reported [43]. Of
note, two out of nine clinically relevant cases had positive antiphospholipid antibodies
prior to COVID-19 diagnosis, suggesting a previously described link between the antiphos-
pholipid syndrome and the risk of bilateral adrenal infarction in non-COVID-19 patients as
a potential mechanism [43–46].

The adrenal gland’s venous drainage might be another culprit [47]. The high stress
from SARS-CoV-2 infection might be a limiting factor for a solitary suprarenal vein due
to ACTH-induced arteriolar dilation, leading to vascular stasis and subsequent adrenal
damage [48]. Moreover, decreased cholesterol, in the main form of high-density lipoprotein
(HDL), as one of the main substrates for cortisol synthesis, might lead to hypocortisolism
in severe COVID-19 infection [49].

4.3. Pituitary Gland and Hypothalamus

AI may also occur due to central dysfunction. An impaired adrenocortical response
was reported in 28 patients with COVID-19 with plasma cortisol and ACTH concentrations
indicating central hypocortisolism [18]. Several potential mechanisms have been hypothe-
sized regarding the etiology of COVID-19-related central hypocortisolism. The expression
of two receptors through which SARS-CoV-2 enters host cells, ACE2 and TMPRSS2, have
also been documented in the hypothalamus and pituitary [50], making them possible direct
cytopathic targets of SARS-CoV-2. In a postmortem study of COVID-19 patients, areas of
necrosis/infarction were seen in one out of the nineteen pituitaries [51]. Genome sequences
of SARS-CoV-2 have also been detected in the pituitary and hypothalamus postmortem
studies, implying a direct hypothalamic injury induced by the virus [52,53]. Some authors
also suggested a reversible immune-mediated hypophysitis [54].

A recent study in male mice established that the S1 subunit of the spike protein of
SARS-CoV-2 crosses the blood–brain barrier and is taken up by brain regions that include
the cortex, hypothalamus, and hippocampus, areas of particular importance for HPA axis
control [55]. In small autoptic studies in patients infected with severe acute respiratory
syndrome coronavirus 1 (SARS-CoV-1), the somatotroph, thyrotroph, and corticotroph
pituitary cells’ number, as well as the respective hormone immunoreactivity, were reduced.
However, the opposite was observed for mammotroph and gonadotroph pituitary cells [56].
Whether there are similar alterations with SARS-CoV-2 infection remains unknown.

Furthermore, it has been hypothesized that SARS-CoV-1 inhibits the adrenal stress
responses causing a relative adrenocortical insufficiency via molecular mimicry of specific
sequences of SARS-CoV-1 with ACTH and the immune response that cross-reacts with
ACTH [52,57]. However, currently, there is no evidence to support this intriguing hypoth-
esis. Another possibility might be related to cytokines, as in CIRCI. Extensive cytokine
production (interleukin (IL)-1, IL-6, TNF-α, monocyte chemoattractant protein 1 (MCP1),
and granulocyte-colony stimulating factor (G-CSF)) during COVID-19 infection reduces
ACTH release and decreases its effect on adrenal tissue [58–61].
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4.4. Resistance to Cortisol Action at the Level of Glucocorticoid Receptor
and Postreceptor Signaling

The immunological, metabolic, and hemodynamic actions of glucocorticoids are medi-
ated by a ubiquitous intracellular receptor, the GR [62]. The GR–cortisol complex translo-
cates from the cytosol to the nucleus, where it exerts transcriptional activity, resulting in
the inhibition of the inflammatory response. Preclinical septic models have reported gluco-
corticoid resistance in critical illness [62]. Glucocorticoid resistance may be a consequence
of decreased GR mRNA and protein expression, reduced GR affinity for the ligand and
nuclear translocation, and/or impaired DNA binding.

In patients with COVID-19, there is no evidence of resistance to cortisol action since
the strong activation of an endogenous cortisol response to SARS-CoV-2 has been detected.
It is, however, possible that the strong response is still insufficient to achieve maximum
immunosuppression, providing grounds for corticotherapy in patients with COVID-19. In
a recent study of single-cell RNA sequencing data, functionally active GR subunit mRNA
expression from the bronchoalveolar lavage fluid was decreased in severe COVID-19
patients compared to mildly affected patients. The authors suggested that this might
reflect a pathologic down-regulation of this endogenous immunomodulatory mechanism
in patients with severe COVID-19 infection, which could be restored pharmacologically
with corticosteroid therapy [63].

4.5. Dissociation between Cortisol and ACTH Regulation

Another phenomenon should be considered when interpreting the potential HPA
axis deregulation in COVID-19 patients. ACTH and cortisol dissociation, attributed to the
dependence of cortisol secretion from factors other than ACTH, has been described in severe
illness. Cytokines, which are expected to be higher in the more severe illness, can stimulate
cortisol secretion independently from ACTH. Reduced peripheral cortisol metabolism,
resulting in increased systemic half-life, represents an additional ACTH-independent
mechanism of increased cortisol levels with a consequent feedback reduction of ACTH [64].
In one study, ACTH levels tended to also be lower in those with moderate to severe
COVID-19 with simultaneously increased cortisol levels, consistent with the published
evidence of a dissociation between cortisol and ACTH levels in severe illness [65].

4.6. Clinical Data during Acute COVID-19 Infection

Beyond the above hypotheses, there are limited clinical data on HPA axis deregulation
in COVID-19 patients during an acute infection. One limitation is the difficulty of perform-
ing a complete and exact evaluation of the HPA axis in patients with COVID-19 who are
glucocorticoid dependent [66]. AI is a disease that is probably unrecognized in clinical
settings during COVID-19. A systemic review of 10 studies that reported AI occurrence
in patients who suffered from COVID-19 revealed the AI prevalence ranged from 3.1% to
as high as 64.3%, indicating a high prevalence of AI in the COVID-19 pandemic without
the clarification of the extent and type of AI [47]. Furthermore, some research groups
evaluated the association of cortisol levels with the severity of COVID-19 disease, with
conflicting outcomes.

In 403 non-critically ill COVID-19 patients, within 48 h of hospital admission, cortisol
levels were significantly higher (619 (456–833) nmol/L) than in patients admitted to the
hospital for other reasons (519 (378–684) nmol/L), indicating a marked and appropriate
acute cortisol stress response (p < 0.0001) [67]. In a study of 144 COVID-19 critically
ill patients, a multivariate logistic regression analysis demonstrated that mortality was
associated with higher cortisol levels (odds ratio: 1.2; 95% confidence interval: 1.08–1.35;
p = 0.001) and the cortisol cutoff point was 855 nmol/L for predicting mortality among
COVID-19 patients [68]. A positive association with disease severity was also confirmed in
a study that reported higher cortisol levels in COVID-19 patients with moderate to severe
disease (433 (353–571) nmol/L) compared to those with mild disease (370 (279–454) nmol/L)
(p = 0.053) [69]. A small study reported cortisol levels below 300 nmol/L (10 µg/dL) in
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a significant number of asymptomatic/mild cases, a finding that was not observed in
repeated testing after a few days in most patients [18]. The researchers reported that
doubling cortisol levels increased mortality by 42% [67].

By contrast, the most recent findings revealed that individuals with SARS-CoV-2
who had lower cortisol levels had a greater fatality rate [66]. A total of 154 hospitalized
patients with COVID-19 were studied in a prospective cohort study. ACTH and cortisol
levels in the blood were measured on the first or second day of hospitalization. Cortisol
levels were substantially lower in those who died (311.7 (273.1–394.5) nmol/L) than in
patients who were discharged (460.7 (344.8–598.6) nmol/L) (p = 0.003), while ACTH levels
were unaffected. According to the logistic model, cortisol levels that rose by one unit
correlated with a 26% lower mortality risk [66]. Overall, the existing evidence does not
consistently support an association of severe COVID-19 with the presence of reduced
or increased cortisol. Figure 2 summarizes the studies to date regarding the association
between cortisol levels and disease severity. Further precise investigations with long-term
follow-up are necessary.
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4.7. Clinical Data in Patients Who Survive COVID-19 Infection

It is increasingly evident that the health impact of COVID-19 extends beyond the
initial infection, with up to 63% of patients reporting ongoing symptoms [70]. Fatigue and
some other symptoms could overlap with “post-COVID” or “long COVID” and AI. As AI is
eminently treatable, it is imperative to identify any contribution it may have to the persistent
symptoms experienced by patients after COVID-19 infection. A recently published study
assessed the HPA axis in patients at least 3 months after diagnosis of COVID-19. They all
had peak cortisol ≥450 nmol/L after tetracosactide, Synacthen (250 micrograms iv bolus),
consistent with adequate adrenal reserve. Basal and peak serum cortisol did not differ
according to disease severity or history of dexamethasone treatment (6 mg once daily for a
maximum of 10 days during COVID-19). Patients who were prescribed other steroids (oral,
inhaled, topical, or intra-articular) following recovery from COVID-19 and those taking
other medications known to affect CBG (including oral estrogens) were excluded from
the study. The authors reported for the first time that the fatigue after COVID-19 was not
accounted for the overt adrenal dysfunction [70].

Another group analysed the persistence of symptoms and their impact on quality
of life in people who had had COVID-19 one year after their admission for COVID-19,
and they explored the influence of treatment with systemic corticosteroids during the
acute phase of the illness. Most symptoms were less frequent in the group that received
corticosteroids, with statistically significant differences for headache, dysphagia, chest
pain, and depression. These patients also showed significantly better outcomes in the
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SF-36 domains for “bodily pain” and “mental health.” They concluded that corticosteroids
administered in the acute phase of COVID-19 could attenuate the presence of long-term
symptoms and improve patients’ quality of life [71].

5. Pre-Existing HPA Axis Disorders and COVID-19 Outcomes

The high degree of endocrine system involvement in COVID-19 quickly indicated the
clinical relevance of pre-existing endocrine disorders [1]. Both impaired cortisol secretion
and excess, as observed with AI and Cushing’s syndrome, may increase susceptibility to
SARS-CoV-2 infection and the risk of severe forms of COVID-19 and therefore position
those patients in potentially vulnerable groups [72]. As well as defined adrenal disorders,
long-term glucocorticoid treatment should be considered the most common cause of adrenal
dysfunction in the general population [73]. In addition, glucocorticoid therapy for moderate
to severe COVID-19 cases may either cause Cushing’s syndrome at supraphysiologic doses
or AI because of HPA axis suppression after drug withdrawal and consequently affect
COVID-19 outcomes in any direction [73]. The spectrum of pre-existing glucocorticoid
disorders and their impact on infection risk and COVID-19 severity is presented in Figure 3.
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5.1. Adrenal Insufficiency

Patients with AI possess compromised antiviral immune defense mechanisms due
to the impaired innate immune system with defective activity of neutrophils and natural
killer cells [74,75]. In addition, the lack of a physiological stress-induced increase in
serum cortisol during infection might further predispose them to progression to more
severe disease stages [76]. Previous studies reported an increased risk of infections and
increased hospitalization and mortality rates in AI patients compared to controls [76–78].
An additional concern is a high risk of an adrenal crisis during severe infections [79]. Even
when AI patients receive optimal treatment, the morbidity and mortality rates continue to
be higher than in the general population [73]. A recent paper demonstrated that patients on
conventional glucocorticoid therapy had a pro-inflammatory state and weakened immune
response, and a normalization of their immune system was observed with the restoration
of the physiological circadian cortisol rhythm by modified-release hydrocortisone [80].

Information regarding the prevalence and severity of COVID-19 in AI patients is
scarce, making the assessment of their vulnerability difficult. During the first wave of
the pandemic, three cross-sectional studies reported a low prevalence of SARS-CoV-2
infections among AI patients, with the disease severity similar to healthy controls [81]. In a
retrospective case–control study, including 279 patients with primary and secondary AI
and 112 controls, the prevalence of symptomatic patients was similar between cases and
controls, no AI patient required hospitalization, and no adrenal crisis was reported [82]. The
second study included 121 AI patients and demonstrated a lower prevalence of COVID-19
in that group compared to healthy controls and no need for hospitalization [83]. The last
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study again noted low prevalence and no need for hospitalization or reported adrenal crisis
in 159 patients with secondary AI [84]. A more recent longitudinal survey conducted in
two tertiary medical centers in the US confirmed these findings with a significantly lower
prevalence of COVID-19 among AI patients compared to the overall population (1.8% vs.
7.9%) [85]. Therefore, based on all the reported data so far, there is no evidence to suggest
that patients with primary or secondary AI are at increased risk of SARS-CoV-2 infection
or a severe COVID-19 course if they are adequately educated about procedures during
infection [75,81].

In order to accommodate for the insufficient serum cortisol increase during infection,
AI patients are advised to follow the “sick day rules” immediately when the first symptoms
might appear by a self-adjusted rise in hydrocortisone dose administration. They are
encouraged to contact their referral endocrinologist and continue with doubled or tripled
daily oral glucocorticoid doses in relation to the severity of COVID-19 symptoms until
the symptoms resolve [1,72,74,81]. Hospital admission and treatment with parenteral
glucocorticoids are recommended in the case of clinical deterioration or if the patients
experience vomiting or diarrhea [74,86]. Regarding the management of substitutive therapy
in patients with AI who have received a COVID-19 vaccine, a recent survey by the Pituitary
Society reported that 36% of clinicians recommended an increased glucocorticoid dosage
after the first injection. In contrast others planned to increase replacement therapy only in
the case of fever or other vaccination-related symptoms [87].

5.2. Glucocorticoid Excess

Hypercortisolemia induces persistent low-grade inflammation and immunosuppres-
sion with a hampered innate immune response and lowered activation of adaptive immune
mechanisms. Indeed, patients with exogenous or endogenous glucocorticoid excess have in-
creased susceptibility to infections and frequently experience a more severe and protracted
clinical course of respiratory viral infections and other various fungal, bacterial, and viral
infections [72,88]. In addition, multiple comorbidities known to increase COVID-19 severity
such as impaired glucose metabolism, arterial hypertension, obesity, and hypercoagulabil-
ity are overrepresented in these patients and commonly persist despite the remission of the
primary disease [88,89]. However, since these patients might have impaired cytokine rise
during severe infection, they might paradoxically be less prone to progressing to ARDS
in COVID-19 [72,76,90]. Furthermore, the initial signs and symptoms of COVID-19 in this
group of patients might be misleading, with typical symptoms such as fever and dyspnea
frequently absent [20].

The higher prevalence makes the data regarding exogenous glucocorticoid excess
more robust; however, despite the best efforts, it is difficult to definitively conclude the
vulnerability to SARS-CoV-2 infection in these patients. The growing amount of evidence
suggests a higher risk of infection and severe disease course in patients receiving high-dose
glucocorticoid therapy for autoinflammatory conditions after contracting SARS-CoV-2 [20].
Meta-analyses predominantly observed associations between glucocorticoid treatment and
adverse COVID-19 outcomes and demonstrated a particularly high risk in patients with
high-dose glucocorticoid therapy [20]. On the other hand, less data are available to analyse
the risk for patients with endogenous Cushing’s syndrome [20]. The first published study
by a single tertiary centre in Lombardy on a small number of Cushing’s disease patients
during the first wave of the pandemic demonstrated a higher prevalence of COVID-19
compared to the general population (3.2% vs. 0.6%) and severe clinical presentation was
particularly reported in patients with active disease [91]. Following that study, only a few
cases of patients suffering from endogenous hypercortisolemia and COVID-19 have been
reported to date [89]. The clinical course of COVID-19 in published cases ranged from mild
to death, and it seems that the severity of COVID-19 in that group of patients might depend
on the intensity of endogenous hypercortisolism [91–94].

Since patients treated with supraphysiological glucocorticoid doses might be at in-
creased risk of severe COVID-19 due to associated metabolic and cardiometabolic compli-
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cations, using the lowest effective glucocorticoid dose is recommended if the underlying
disease is well controlled [20,95]. Abrupt discontinuation of glucocorticoid treatment
should be avoided to prevent HPA axis suppression. Patients with active Cushing’s disease
infected with SARS-CoV-2 might be best treated with a “block and replace” approach to
reduce the risk of AI crises caused by an impaired HPA axis dynamic [72]. Highly prevalent
comorbidities such as diabetes and hypertension should be appropriately managed, as they
present significant risk factors for adverse COVID-19 outcomes [76]. Hypercortisolemia,
acute inflammation, and immobility are well-documented factors promoting clot forma-
tion, and therefore antithrombotic prophylaxis should be introduced early in the disease
process [89]. Furthermore, patients with active Cushing’s syndrome are at increased risk
for prolonged viral shedding and opportunistic infections; therefore, prolonged antiviral
treatment and empirical prophylaxis with broad-spectrum antibiotics should be considered
for hospitalized patients [89,90].

6. Conclusions

This review was conducted to present an endocrinological point of view on the rela-
tionship between SARS-CoV-2 infection, its direct HPA axis effects, the severity status of the
disease, and the whole spectrum of the potential COVID-19-related HPA axis dysfunction,
from endogenous- and exogenous-induced glucocorticoid insufficiency to excess. Despite
limited and inconsistent clinical data, the current literature supports multiple mechanisms
that can cause HPA axis impairment beyond GI-AI. The current level of evidence enables
some general recommendations for researchers and clinicians managing COVID-19 patients
worldwide. Since SARS-CoV-2, directly and indirectly, affects the HPA axis, AI is a probable
and mostly unrecognized condition. In addition, glucocorticoids remain the primary ther-
apy for moderately and severely ill patients; thus, in all patients, a low threshold to test for
AI is needed, even more importantly after glucocorticoid withdrawal. This is particularly
important for patients with nonspecific symptoms after the infection or glucocorticoid
cessation, including those with symptoms attributed to long COVID.

In addition, patients with pre-existing HPA axis disorders should still be considered
potentially vulnerable groups. However, low-quality evidence suggests that patients with
primary or secondary AI are not at increased risk of SARS-CoV-2 infection or more severe
disease course if they are adequately educated about procedures during infection. On the
other hand, some evidence supports a higher prevalence and severity in patients with
Cushing’s syndrome, and even stronger data support an increased risk for SARS-CoV-2
infection and severe disease in patients receiving long-term glucocorticoid therapy.
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