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Abstract: Hydroxypropyl methylcellulose (HPMC) is a common hydrophilic and biodegradable
polymer that can form films. This study incorporated aluminum nanoadditives as an enhancement
reagent into a HPMC matrix. Mechanical properties of nanocompoistes, including the tensile strength
and the elastic modulus, were analyzed with a nano-tensile tester. The incorporation of additives
in HPMC films significantly enhances their mechanical and film barrier properties. Evidence of
bonding between the additive and matrix was observed by Fourier-transform infrared spectrometer
analysis. The additives occupy the spaces in the pores of the matrix, which increases the tendency of
the pore to collapse and improves the chemical bonding between the base material and the additives.
The incorporation of excess additives decreases the tensile strength due to ineffective collisions between
the additives and the matrix. The wear test proves that the addition of nano-additives can improve
the tribology performance of the HPMC composite while reducing the wear volume and the friction.
Bonding between the nanoadditives and the matrix does not help release the nanoadditives into
the wear interface as a third-body layer. The main reason to enhance the tribology performance is
that the nanoadditives improve the load-capacity of the composite coating. This hybrid composite
can be useful in many sustainability applications.
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1. Introduction

Hydroxypropyl methylcellulose (HPMC) is the most commonly used hydrophilic, biodegradable
polymer to form films, primarily because HPMC functions as a pH-independent and viscous gelling
agent. It is the most important hydrophilic carrier material used to prepare orally controlled drug
delivery systems, and it exhibits thermal gelation properties. In other words, when the solution is
heated to a critical temperature, the solution congeals into a non-flowable but semi-flexible mass.
This critical temperature is inversely related to the concentration of the HPMC in the solution and
the concentration of the methoxy groups within the HPMC polymer. As the concentration of methoxy
groups increases, the critical temperature decreases. The inflexibility/viscosity of the resulting mass
is also directly related to the concentration of the methoxy groups (with a higher concentration,
the resulting mass is more viscous and less flexible).

The efficacy of cellulose and its derivatives has been proposed as a possible alternative for
non-degradable synthetic plastics for use in bio-based packaging applications. This bio-based polymer
is an attractive alternative for existing packaging materials due to its biodegradability, renewability,
and large-scale availability at a relatively low cost. Among the cellulose derivatives, HPMC is a good
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material for films, and it has potential for packaging applications due to its flexibility, transparency, and
resistance to oil and fat [1]. Moreover, HPMC has already been approved for food-based applications,
which makes it suitable for preparing edible films and coatings [2]. Recently, many studies on bio-based
research topics have been proposed, which also show great potential for future applications, such as
montmorillonite nanoclay [3] and bio-based coatings [4].

Several studies have examined the characterization of HPMC biopolymers with regard to their
tribology properties [5–9], green protective layer [10,11], self-healing properties [12,13], corrosion
inhibition [14,15], and quick and easy analysis [16,17]. Biopolymer materials display a good
performance in a variety of fields; however, there remain some gaps with respect to the knowledge of
fundamental biopolymer characteristics in comparison to synthetic polymers. Therefore, some studies
have investigated the mechanism of biopolymer reinforcement [18–21], specifically in mechanical
applications [22,23]. However, there are few basic studies on the HPMC matrix, such as the influence
of its molecular weight on mechanical properties and its anti-wear properties.

Aluminum is the second most widely used metal in the world. It is desirable because of its low
density, high strength, excellent corrosion resistance, and ease of recyclability. Aluminum is generally
nontoxic, and it naturally occurs in many food products. The hydrophobic nature of aluminum makes
nanometric aluminum attractive. Significant efforts have been made to modify the hydrophobicity of
aluminum surfaces [24,25].

Previous studies have shown that the addition of particulate additives can enhance the tribology
properties of HPMC [26]. However, the influence of additives on the mechanical properties of
the composite film, the correlation between the mechanical and tribology properties, and its wear
resistance properties remain unclear. In this study, the mechanical properties of HPMC biopolymer films
with a variety of molecular weights were investigated. In addition, the mechanism of strengthening
the material and improving the mechanical properties by adding aluminum nanoparticles is discussed.
The mechanism of additive-reinforced composites is also discussed. Glass displays are widely used in
daily life. Under light load conditions, high penetrability and wear protection requirements are very
suitable for the application of the aluminum nanoadditive-reinforced HPMC composite.

2. Experimental Details

2.1. Film Preparation

Different types of HPMC (Pharmacoat 645, 606 and 615, Shin-Etsu, Tokyo, Japan), based on
the molecular weight, were obtained. The specifications of the different HPMC powders are listed in
Table 1. Aluminum nanoparticles have an average diameter of 110 nm and a spherical appearance.
The aluminum nanoparticles were purchased from I-Mei Materials, Co., Ltd. (New Taipei City, Taiwan).

Table 1. Specification of the HPMC powders.

Grade Molecular Weight (g/mol) Viscosity (mPa·s) @ 20 ◦C, 2 wt.%

HPMC 645 20,000 4.5

HPMC 606 35,600 6

HPMC 615 60,000 15

The HPMC powder (3 g) was added to a mixture of water and ethanol (20:80 mL) while
performing magnetic stirring. Aluminum nanoadditives (113 ± 41 nm, spherical shape) with different
concentrations were then added to the HPMC solution. Four concentrations of Al were used from 0 to
2 wt.%. The amounts of Al nanoadditives that were used in the film preparation process are shown
in Table 2. The Al/HPMC solution was sonicated for 30 min and the mixture (30 mL) was poured
into a glass substrate (Corning, Taiwan) and placed in an environmental chamber (DE60, Denyng
Instruments, New Taipei city, Taiwan) at 30 ± 10 ◦C and RH 40% ± 10% for 6 h. In order to observe



Polymers 2020, 12, 1246 3 of 9

the effect of the interaction force between the additive and the HPMC matrix, no plasticizers were used
for film formation. The film preparation process was demonstrated in Figure 1.

Table 2. Amount of Al nanoparticle additives and the corresponding weight percentages.

Al (g) 0 0.259 0.518 1.041 2.103
Al (wt.%) 0 0.25 0.5 1 2
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Figure 1. Schematic drawing of the film preparation process.

2.2. Evaluation of the Mechanical Properties

The mechanical properties of the HPMC and the composite films were determined using
a micro/nano tensile testing machine (DDS32, Kammrath and Weiss GmbH, 44141 Dortmund, Germany)
while following the ASTM D882 standard. The thicknesses of the coatings were measured using a laser
3D profiler (VK9700, Keyence, Osaka, Japan). The coating thickness was controlled so that it was in
the range 75 ± 5 µm.

2.3. Fourier Transform Infrared Spectroscopy (FTIR)

Attenuated total reflection mode of Fourier transform infrared spectroscopy (Thermo Nicolet
NEXUS 470, GMI, Golden Valley, MN, USA) was performed to confirm the interfacial interaction
between the additives and the HPMC matrix.

2.4. Tribology Behavior of the HPMC Composites

AISI 52100 chrome steel balls with a diameter of 6.35 mm were used as the counter bodies. Wear
tests were conducted on a rotary ball-on-disk tribometer (POD-FM406-10NT, Fu Li Fong Precision
Machine, Kaohsiung, Taiwan). The wear behavior under an applied normal force of 2 N and a sliding
speed of 3 mm/s with a wear distance of 30 m was measured with dry sliding conditions. The tribometer
was equipped with a controlled environment, i.e., a temperature of 25 ± 5 ◦C and a relative humidity
of 70% ± 10%.

2.5. Third-Body Velocity Accommodation Mode

The relative speed of the two contacting objects is not zero. This indicates that the object moves
relative to the maximum static friction force, which causes friction and wear [27,28]. The velocity
accommodation mode is used to describe the movement state of the contact object and its interface
at different relative speeds, with information on the sites and the manner in which the velocity is
accommodated [29].

3. Results and Discussion

3.1. Mechanical Properties of the Nanocomposite Films

The mechanical properties of polymer materials are highly related to the molecular weight. In
contrast, the tribology properties of soft film composites are strongly related to their strength and
the characteristics of the additives [30]. This study first observed the mechanical properties of the HPMC
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matrix film with different molecular weights. Then, the matrix will form a composite with the aluminum
additives to observe the effect on the mechanical properties and the tribology performance.

The tensile strength, elastic modulus, and nanocomposite elongation were measured to evaluate
the mechanical properties of the composite films in comparison to pure HPMC. The stress–strain
curves of the composite films with three different molecular bond lengths are illustrated in Figure 2.
The results show that when the HPMC substrate molecular chain is long, the mechanical properties
improve. By increasing the length of the HPMC matrix’s molecular chain, more intermolecular bonds
will be produced between the chains. In addition, mechanical forces may exist between the long chains
if they are entangled. Therefore, in comparison with the HPMC matrix, a higher molecular weight
polymer (i.e., a polymer with a longer chain length) will provide excellent mechanical properties with
a high elastic modulus (E) and a superb ultimate tensile strength (UTS). Adding a small amount of Al
particles (0.25 wt.%) can increase the E and UTS; however, it simultaneously reduces the elongation
(EL). The reason for this is that the additive may form a local bond with the matrix [31]. When more
Al particles are added, the UTS and EL can decrease significantly. Too many additives may cause
agglomeration, the characteristics of the high surface area may be lost, and defects may easily form,
resulting in a reduction in the mechanical properties.
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(b) Al/HPMC 606 composite (c) Al/HPMC 615 composite.

The results from the tensile tests are further organized and plotted in Figure 3 (UTS), Figure 4 (E),
and Figure 5 (EL). As displayed in Figure 3, the UTS of the composite film is best with a 0.25 wt.% Al
addition. When the amount of incorporated Al increases, the UTS decreases significantly. The E of
the composites is shown in Figure 4. Figure 4 demonstrates that a small number of additives can result
in an enhancement effect. At this moment, the dispersibility of the additive plays an important role.
The main factors that affect the particle dispersibility include the viscosity of the matrix solution and
the size of the additive (agglomeration) [32]. In a low additive concentration condition, the dispersion
of the additive is better, and the enhancement of the UTS and E is noticeable. When the additive
concentration is high, it is easy to form an agglomeration due to its matrix viscosity, which causes a high
fluctuation in the UTS and E. This phenomenon will be discussed in more detail in the subsequent FTIR
analysis. The EL results in Figure 5 show that the addition of the Al nanoparticles can cause the film to
become more brittle, thus, transforming them from materials that were previously elastic. However, in
the application of anti-wear protective layers, a high specific strength and E are the main considerations.
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According to Olea-Mejia et al., nanoparticle additives are better than micron-sized additives
in terms of improving the tribology properties [33]. The main wear mechanism for the composite
is adhesion after the polymer material and the nano-aluminum additive are mixed. The wear
debris resembles sheet-like pieces of nano-aluminum metal that have been flattened. The sheet-like
nano-aluminum metal coats are the first to wear, which can effectively reduce the wear rate of
the substrate. In this study, nano-sized aluminum particles were added to embrittle the material
properties of the Al/HPMC nanocomposite. Under applied pressure, when abrasion occurs, the metal
on the surface of the nanocomposite can easily break down and leave the substrate. This will expose
the Al particles and bring them into contact with the abrasive components to produce a sheet-like
protective layer under the compressive stress, thus resulting in substrate wear reduction.

3.2. FTIR Evidence of Intermolecular Bonding

To further investigate the effects of Al nanoparticle additives on the interfacial bonding of
the HPMC matrix, FTIR analysis was used to measure the changes in the bonding after particle addition.
The FTIR spectra of Al/HPMC 606 composites are displayed in Figure 6. A new band was observed
at 875 cm−1 after the addition of Al to the pure HPMC, which corresponds to the Al-O-OH group
(Figure 6a). This depends on the interaction between Al3+ and the OH group of the HPMC. The peak
observed at 750 cm−1 was due to the stretching vibration of Al-O in Al-O-OH (Figure 6a) [34,35].
However, intermolecular OH bonding of the composite film decreased when the amount of additive
was increased, which resulted in a bond between Al3+ and OH− (Figure 6b) [36]. Hence, the bands
became broader and moved toward a lower wave number with increasing additive content. The results
of the FTIR analysis show that the interfacial bonding decreases due to the addition of Al nanoparticles.
This is consistent with the previous results shown by Figures 3–5 in terms of the mechanical properties
of the films. The surface pattern and SEM image of Al 1 wt.%/HPMC composite are shown in Figure 6c,d.
The image shows that the additive and HPMC matrix are in good condition, and there is no obvious
particle agglomeration.
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606 (d) SEM image of Al/HPMC 606.
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3.3. Tribology Behavior of the Al/HPMC Composites

There is no significant difference between HPMC 606 and 615 in terms of their mechanical
properties. HPMC 606 has a lower viscosity, which is better for the manufacturing process. Therefore,
HPMC 606 was used as a matrix for the following wear test.

As shown in Figure 7, the addition of aluminum nanoadditives effectively reduces the wear
volume by more than 70% and the friction coefficient by 60%. This shows that the contribution of
the aluminum nanoadditives to enhancing the tribology performance of the composite is greater than
the effect of the HPMC matrix. By comparing an additional amount of aluminum nanoadditives,
a higher concentration of nanoadditives only slightly reduces the wear volume and the coefficient of
friction. This shows that the increase in the number of nanoparticle additives only provides a higher
load capacity. Based on the FTIR results of Figure 6, there is a bond between the Al particles and
the HPMC matrix. The aluminum nanoadditives are not released to the interface of the wear pair
during the abrasion process: they are trapped in the matrix. Additives play an important role during
abrasion due to the need for speed accommodation. At this time, when the additive forms a bond with
the polymer material, the additive cannot easily escape from the constraints of the matrix or provide
a third-body wear mechanism to the system. It is very important to choose a proper concentration
of additives [31]. A composite with a very high strength or one that is too brittle is not suitable for
a dry abrasive layer. Therefore, in order to control the composite properties of dry lubrication and
the protective coatings, proper strength, and toughness are important factors. In addition, bonding
between the additive and the matrix must be controlled. A good composite material can provide
a better load capacity. During abrasion, the additive particles can be released to the interface of
the abrasion pair to form an efficient velocity accommodation mode, thus providing an effective
wear mechanism.
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4. Conclusions

Al/HPMC composite films were successfully prepared by the solvent evaporation method. Their
mechanical properties, such as tensile stress and elastic modulus, were enhanced with the addition of
0.25 wt.% Al additive. The FTIR results revealed an interfacial adhesion between the Al nanoadditives
and the HPMC matrix. The wear resistance and reduction in the coefficient of friction can be observed
in the Al/HPMC composite. Aluminum nanoadditives provide an effective load capacity and good
tribology performance. The lightweight and high specific strength dry wear protective layer that was
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prepared has the characteristics of sustainability, being easy to recycle and prepare with lubricating
behavior. This can serve as a good candidate to be applied as a protective coating for large glass screens.
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