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Abstract

Multiple transcriptomic predictors of tumour cell radiosensitivity (RS) have been proposed, but they have not been benchmarked
against one another or to control models. To address this, we present RadSigBench, a comprehensive benchmarking framework
for RS signatures. The approach compares candidate models to those developed from randomly resampled control signatures and
from cellular processes integral to the radiation response. Robust evaluation of signature accuracy, both overall and for individual
tissues, is performed. The NCI60 and Cancer Cell Line Encyclopaedia datasets are integrated into our workflow. Prediction of two
measures of RS is assessed: survival fraction after 2 Gy and mean inactivation dose. We apply the RadSigBench framework to seven
prominent published signatures of radiation sensitivity and test for equivalence to control signatures. The mean out-of-sample R2

for the published models on test data was very poor at 0.01 (range: −0.05 to 0.09) for Cancer Cell Line Encyclopedia and 0.00 (range:
−0.19 to 0.19) in the NCI60 data. The accuracy of both published and cellular process signatures investigated was equivalent to the
resampled controls, suggesting that these signatures contain limited radiation-specific information. Enhanced modelling strategies
are needed for effective prediction of intrinsic RS to inform clinical treatment regimes. We make recommendations for methodological
improvements, for example the inclusion of perturbation data, multiomics, advanced machine learning and mechanistic modelling.
Our validation framework provides for robust performance assessment of ongoing developments in intrinsic RS prediction.
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INTRODUCTION
Radiation therapy (RT) has been used as a treatment
for cancer for over 120 years [1, 2]. The vulnerability of
human cells to ionising radiation was realised quickly
after the discovery of X-rays and led to their use in the
treatment of malignancies [3]. Today, around 50% of can-
cer patients receive RT at some point during their treat-
ment, often combined with chemotherapy and surgery
[4]. The development of RT has been multifaceted with
improvements in dose delivery technology (for exam-
ple, high-energy linear accelerators), three-dimensional
imaging and treatment planning for improved precision
in dose delivery to the tumour. This has enabled treat-
ments to be delivered while reducing dose to normal
tissue and associated side-effects [5]. However, despite
this physical personalisation, biological personalisation
in radiotherapy remains limited.

Genomic information offers great potential for opti-
misation of cancer treatment, partly due to rapidly
decreasing sequencing costs [6]. Indeed, genetic anal-
ysis has revealed considerable diversity underpinning

tumour biology [7, 8]. However, in contrast to targeted
chemotherapy [9], attempts at genome-driven biological
personalisation of radiotherapy have not yet translated
to clinical practice. Although some transcriptome-
based tumour radiosensitivity (RS) predictors have been
tested in patient cohorts, they have performed poorly
in independent in vitro validation leading to debate
concerning their accuracy and specificity to radiation
response [10, 11]. In this work, we review a selection
of prominent RS prediction models and evaluate their
performance in two different in vitro datasets [12, 13].
Response to radiation exposure is heterogeneous across
cell lines and tumours [14–16]. It is believed that two of
the key factors, which determine these responses, are
intrinsic RS and proliferation status.

Intrinsic RS describes the sensitivity of individual
cells to ionising radiation, typically determined through
clonogenic assays, and is primarily governed by the
cellular response to DNA damage. In particular, the
quantity of a complex form of DNA damage, called
double strand breaks (where both strands of the DNA
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molecule are severed in close proximity), is a key factor
determining cell survival [17]. The cell cycle distribution
of irradiated cells is also important, affecting both
the complexity of radiation-induced damage and the
repair mechanisms available to the cell, conferring
radioresistance in S-phase and sensitivity in late G2 and
mitosis [17]. Alterations in DNA damage repair pathways
are characteristic of cancer, driving differences in
intrinsic RS across tissues, cancer types and individuals
[18]. Mutations in key DNA damage repair genes are
well-established risk factors for cancer development and
influence clinical decision making (for example BRCA
mutation in breast cancer), but equivalent applications
in prediction of response to radiation treatment have not
reached the clinic [9–11].

Within tumours, higher cell proliferation rates gener-
ally require increased radiation dose to achieve equiva-
lent tumour control probability [19]. Proliferation may be
measured using the mitotic index and by the number of
cells in the S-phase of the cell cycle [20]. Active prolifera-
tion may also change repair and cell death pathways due
to changing cell cycle distributions. Thus, while many
gene expression signatures have been developed using in
vitro measurements of radiation sensitivity, proliferation
may be a confounding factor when these signatures are
applied for patient stratification. Notably, Venet et al.
[21] showed that a large portion of published breast
cancer signatures were no longer associated with clin-
ical outcomes when an indicator of proliferation was
accounted for.

Measuring tumour cell RS
RS is commonly measured in vitro with the clonogenic
assay, where a population of tumour cells is prepared
and divided into two sets, and one is irradiated, while
the other serves as a control [22]. After a defined period
(usually 1–3 weeks), cells forming colonies of over 50
cells are deemed clonogenic. The surviving fraction is
then calculated by the ratio of the plating efficiencies for
the treated condition relative to untreated cells. Under
normal exposure conditions, this is typically considered
to reflect the intrinsic RS of the cell line.

Cell survival (S) after exposure to radiation dose (D) is
typically characterised by a linear-quadratic model (Eq.
1) from which several parameters may be derived to
characterise cellular responses

S = e−αD−βD2
. (1)

These include the fitting parameters from the linear
quadratic model (α, β), survival fraction at 2 Gy (SF2)
and the integral of the dose–response curve (mean inac-
tivation dose; MID). These values have shown utility in
predicting clinical outcomes such as survival and recur-
rence [23]. SF2 was reported to be independent of T and
N-category, age and sex, although the same study found
negligible correlation between in vitro measures of RS and

in vivo loco-regional tumour control, which may reflect
intratumoural heterogeneity [24, 25].

The clonogenic assay is time-consuming, making the
large-scale assessment of a diverse range of cell lines
difficult. However, a recently developed high-throughput
RS assay based upon a luminescent readout of ATP lev-
els was used to compare irradiated cells to controls
and showed good agreement with clonogenic survival at
doses greater than 2 Gy [26].

Matched RS and genomics datasets
Data characterising the genetic background of cancer
cells is publicly available from a variety of well-
maintained repositories; availability of matched RS
measurements is the limiting factor in the development
of RS predictors. Identification of genetic determinants
of RS has focused on targeted investigations in individual
cell lines, together with some interrogation of resources
such as the NCI60 and the Cancer Cell Line Encyclopedia
(CCLE) [12, 13]. Although both of these cell-line datasets
were initially developed for anti-cancer drug screening,
subsequent characterisation of their response to radi-
ation has led to them becoming the largest and most
frequently employed datasets in tumour RS modelling.

The NCI60 is a panel of 60 cell lines covering lung,
skin, blood, colon, central nervous system (CNS), ovary,
breast, prostate and kidneys cancers [13], with detailed
genomic characterisation at the DNA, RNA and protein
level available, including radiation-induced changes to
the transcriptome [16, 27]. Clonogenic RS data have been
available for the NCI60 for a number of years [14, 16],
and consequently, the NCI60 forms the basis for most of
the cell line RS studies described here; however, the rel-
atively small sample size hinders validation on held-out,
independent test data. The diversity in tissue-of-origin
across the NCI60 may also have contributed to previ-
ously reported poor performance for some RS signatures
[10, 11].

The CCLE also provides rich functional genomics
data [mutations, copy number variations (CNVs), RNA
microarray and RNAseq] for a significantly larger
number of cell lines [12] and has recently [15] been com-
plemented with RS measurements (n = 533). Although
some cancers are underrepresented, CCLE represents
the largest integration of radiogenomic data to date and
offers opportunity for testing of previously developed
signatures with an increased sample size.

RS gene signatures—models and validation
In vitro RS measures described in the previous sections
are not amenable to direct clinical use given difficulties
in culturing primary tumour cells [23]. Molecular stud-
ies have the advantage of both revealing mechanisms
underpinning RS and acting as biomarkers for clinical
applications. In this section, we discuss the development
and validation of published RS gene signatures from in
vitro RS data.
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Table 1. Selected RS expression signatures trained using in-vitro assays of RS

Reference Training tissue(s) RS measure Feature selection Number
of genes

Prediction model Validation set(s)

Eschrich [14] NCI60 (n = 48 cell
lines)

Clonogenic assay
(SF2)

Univariate linear
regression and network
analysis for feature
selection

10 Linear regression
on ranked
expression

NCI 60 (n = 12 cell lines);
[11, 31, 32, 34–37, 66]

Kim [28] NCI60 (n = 60 cell
lines)

Clonogenic assay
(SF2)

Significant analysis of
microarrays (FDR ≤ 0.10)

31 None reported [67, 68]

Amundson [16] NCI60 (+3
Leukaemia cell
lines; n = 63)

Clonogenic assay
(SF2, D0)

Weighted gene analysis 175 None reported [11]

Zhang [29] NCI60 (n = 60 cell
lines)

Clonogenic assay
(SF2)

Significance analysis of
microarray (FDR < 0.01).
PLS method to produce
latent variables.

129 SVM Clinical datasets: GSE4271,
GSE4412, GSE17537,
GSE15736, GSE17260,
GSE9891

Hall [11] Head and neck
(n = 11) cell lines

Clonogenic assay
(SF2)

Ranked product
differential expression
analysis (FDR < 0.05)

42 PCA NCI60

Tewari [30] Cervix (n = 8
primary samples)

IVRRA Forward stepwise selection
in genes with Pearson’s
correlation coefficient
with a > 5-fold difference

54 None reported [11]

An early stage in the modelling workflow for signature
development applies feature selection to determine
differentially expressed genes between radiosensitive
and radioresistant phenotypes. The majority of RS gene
signatures to date have used microarray gene expres-
sion from the NCI60 dataset to identify differentially
expressed genes according to RS (SF2) (Table 1). Many
candidate RS prediction models have focused upon
pan-cancer prediction (i.e. agnostic to anatomical site),
which may result from necessity rather than design
because each cancer site is represented by fewer than
10 samples. Significance analysis of microarrays is
frequently employed with control for false positives by
false discovery rate (FDR) and often a minimum fold-
change requirement [11, 14, 28, 29]. Feature selection
may be informed by functional annotation using Gene
Set Enrichment Analysis, the Kyoto Encyclopedia of
Genes and Genomes, Gene Ontology, Ingenuity pathway
Analysis or Expression Analysis Systematic Explorer
[16, 28, 29] to identify the overrepresentation of genes
involved in functions related to radiation response and
DNA damage (Table 1). Some studies fitted a predictive
model [11, 14, 29], while others were limited to gene
signature discovery [16, 28, 30] (Table 1). Models aimed at
prediction ranged in complexity from a linear regression
model of 10 ‘hub’ genes [14] to more involved machine
learning approaches such as a support vector machine
(SVM) with 129 genes as features [29]. Importantly,
among the studies considered here, only one reported
parameters sufficient for direct replication of their
prediction model [14].

Previous studies have taken two broad approaches for
signature validation: assessment on held out in vitro data,
or clinical outcome prediction. The Eschrich et al. model
was tested on 12 held out cell lines from the NCI60;

the initial publication reported a negative correlation
between measured and predicted SF2 values [10, 14]. The
Eschrich et al. model was further tested independently on
cervix and HNSCC cell lines and showed no statistically
significant predictive power [11]. Models trained using
HNSCC and cervical cell lines also showed poor ability
to separate high and low SF2 values when implemented
in the NCI60 dataset [11]. Despite poor performance on
held out in vitro data, several signatures have shown
potential to predict outcome in clinical studies. However,
attribution of potential clinical value to the signatures’
ability to predict intrinsic RS is difficult, given biological
confounding factors and the clinical differences between
treatment groups [21, 29, 31–37].

Summary and aims
RS prediction models have been developed based on
small sample, heterogeneous datasets, with limited inde-
pendent verification. While some published signatures
can separate clinical trajectories [14, 29], in most stud-
ies, the potential confounding effects of other biological
pathways governing tumour response, such as prolifera-
tion, have not been considered. Therefore, it is difficult
to definitively attribute the models’ clinical capabilities
to the prediction of the underlying RS. Additionally, per-
formance differences across tissues have not been well
characterised owing to small sample sizes.

Here, we present the RadSigBench framework to study
the above considerations and demonstrate its use with
two relatively large cancer cell line datasets. Specifically,
we consider the following:

(i) Do published RS predictors outperform models gen-
erated by uniformly randomly resampling from all
genes on the microarray?
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(ii) How does RS prediction using published gene signa-
tures compare to key cellular process signatures?

(iii) How do RS models perform across cells from differ-
ent tissues or anatomical sites?

METHODS
Gene expression data for RS prediction
Microarray (Affymetrix; HG U133 Plus 2.0) data (RMA
normalised) were downloaded from the CCLE (https://
portals.broadinstitute.org/ccle) and cell line identifiers
were used for matching with published RS measures
(MID) [15]. Gene expression data from the HG U133 Plus
2.0 chip were also downloaded for NCI60 ([38]; GSE32474)
and matched with published RS data (SF2) [49]. Probe-
Sets were annotated to gene symbols according to the
Affymetrix specification for HG U133 Plus 2.0. For pub-
lished models providing specific ProbeSet IDs, expression
data were extracted for use in evaluation [11, 14]. For
published models reporting only gene symbols, ProbeSets
representing the same gene symbol were averaged using
the limma package in R [16, 28–30]. Genes that could
not be mapped were excluded; details are reported in
Table S1 (see Supplementary Data available online at
http://bib.oxfordjournals.org/).

Published signature implementation
We chose area under the dose–response curve (MID) for
analysis with CCLE data, which was previously shown to
have good agreement with clonogenic survival [26], while
SF2 was used with NCI60 since it is the most common RS
measure taken for the training of previously published
models (Table 1). The list of genes for each signature
is provided along with code in the GitHub repository
(https://github.com/SJMcMahonLab/RadSigBench). The
benchmarking workflow is outlined in Figure 1. Across
all published signatures, only Eschrich et al. [14] provided
both a model and all model parameters, enabling it
to be used directly for benchmarking against SF2 in
the NCI60 cell lines. Since model parameters were not
reported in the Zhang et al. [29] model, we retrained
using the original features and model classes [i.e. Partial
Least Squares (PLS) followed by SVMs]. We note that
the NCI60 data used here are identical to that used
originally by Zhang et al. [29] and from the same cell
lines as five out of seven of the models. The Hall et al.,
Amundson et al., Tewari et al. and Kim et al. studies [11,
16, 28, 30] either used principal component analysis
(PCA) or did not report a predictive model and were
retrained in RadSigBench with RS being predicted using a
principal components regression (i.e. a linear regression
with the principal components as explanatory variables
and RS as the response variable) and taking sufficient
components to cover as close as possible to 80% of
the variance in the signature’s gene expression values
(Figure 1). Model performance was assessed by 3-fold
cross-validation and the workflow for each ‘fold’ of the
cross-validation is given in Figure S1 (see Supplementary

Data available online at http://bib.oxfordjournals.org/).
Absolute difference between the measured and predicted
values (absolute error; AE) was taken for performance
evaluation and mean AE (MAE) calculated for overall
model performance.

The CCLE data [12] were analysed as described above.
Evaluation with CCLE data required retraining since all
studies which reported predictive models were developed
to predict SF2, while CCLE gave MID as the RS mea-
sure. The originally published model classes remained
the same for the Eschrich et al. (i.e. linear regression on
ranked expression) and Zhang et al. signatures (i.e. PLS
and SVM) [14, 29].

Cellular process signatures
In order to provide context for the error values of
published signatures, the RadSigBench framework
incorporates signatures representative of biological
pathways that have been previously identified as
important in radiation response. While not exhaus-
tive, this approach seeks to evaluate the predictive
performance of genes from key pathways against
signatures trained using RS data. Genes representing
cellular processes known to be involved in radiation
response were obtained from the Reactome database
(release #77) [39]. The selected pathways were Apoptosis
(R-HSA-109581.3), Autophagy (R-HSA-9612973.2), Cell
Cycle Checkpoints (R-HSA-69620.2), Mitosis (R-HSA-
69278.4), Chromosome Maintenance (R-HSA-73886.2),
DNA repair (R-HSA-73894.3), DNA Replication (R-HSA-
69306.5) and Translation (R-HSA-72766.4). In addition,
in order to explore if there is any correlation between
proliferation and in vitro RS, we took a proliferation
signature from a previous study (https://doi.org/10.1371/
journal.pcbi.1002240.s002) which selected the top 1% of
genes most correlated (Pearson correlation) to PCNA [21].
This proliferation signature is an established confounder
in associations between the transcriptome and breast
cancer outcomes [21]. The predictive ability of the
cellular process signatures was assessed using the
principal components regression method described in
Published signature implementation section.

Resampled signatures and intercept only models
Since previous work has shown that randomly resampled
genes correlate with clinical outcome in cancer [21],
we applied this approach in order to develop negative
control signatures. The accuracy of the negative control
signatures at different sizes (number of genes) thus pro-
vides a comparator for benchmarking potential RS signa-
tures. Published signatures with similar accuracy to the
resampled signatures are unlikely to contain significant
biological information relevant to intrinsic RS response.

Control signatures were produced for both datasets by
resampling from the ProbeSet-averaged data (n = 20 068
genes). For a given signature size, 500 different control
signatures were resampled with replacement using the
‘sample’ function in R-base, and RS models were fitted

https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
https://github.com/SJMcMahonLab/RadSigBench
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab561#supplementary-data
https://doi.org/10.1371/journal.pcbi.1002240.s002
https://doi.org/10.1371/journal.pcbi.1002240.s002
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Figure 1. Workflow for benchmarking published signatures on CCLE and NCI60 data. Model training was dependent on whether a predictive model was
reported in the paper. If not (‘NO’ route above), a principal components regression method was used to build a predictive model on the training data.
This model was then applied to the held-out test set to predict the RS measure using the number of principal components that was closest to 80% of
variance covered in the training set. If a predictive model was reported (‘YES’ route above) and the RS measure was the same (for example, SF2 in NCI60),
the model was implemented exactly as reported (for example, Eschrich et al. model) or trained using the same model classes where parameters were
not available (for example, Zhang et al. model). When the RS measure was not the same as originally published (for example, MID in CCLE), models were
retrained using the original model classes (for example, linear model with ranked expression for ten hub genes in Eschrich et al. model).

using the principal components regression method. Six-
teen different sizes of control signature were generated,
matching the seven published signatures (i.e. 10, 19, 31,
49, 97, 129 and 168 genes) and the nine cellular process
signatures (i.e. 114, 127, 131, 146, 182, 272, 289, 306 and
546 genes). The median accuracy (by MAE) signature at
each size was used for performance comparison. The
95% confidence interval for MAE was calculated from the
performance of the median accuracy signature on each
cell line. A further negative control model was also fitted
using the intercept only, which is equivalent to taking the
mean value of the training data as a fixed prediction for
new data.

Statistical testing
All data analysis was performed using R 4.0.3 [40] with
the limma [41] package from the Bioconductor repository
[42], as well as the data.table [43], reshape2 [44], Rfast
[45], caret [46] and e1071 [47] packages. Visualisations
were produced using the ggplot2 [48], ggrepel [49], GGally
[50] and ggpubr [51] packages. Published and cellular pro-
cess signatures were compared (by MAE) to median accu-
racy control signatures of the same size using a two one-
sided tests (TOST) procedure from the TOSTER package
[52]. The smallest effect size of interest was set to ±0.1 for
both SF2 and MID. A value of 0.1 was previously used in
the development of the Eschrich et al. [14] model given
that it is approximately equal to the reliability of the

clonogenic assay. The same value was used for CCLE here
because a change of 0.1 Gy in MAE is smaller than the
inter-experimental variation in MID reported between
different studies [53]. The TOST paired t-test function
was used with an alpha value of 0.003 (0.05 divided by 16
to correct for multiple comparisons). Out-of-sample R2

was calculated for the published models, which may be
negative in cases where the mean of the data is closer to
observations than the model predictions (i.e. sum of the
squared residuals is greater than total sum of squares).
The correlation between accuracy and the number of
genes in control signatures and MAE was assessed using
linear regression. The association between sample size
and MAE variation across models was also assessed using
linear regression (lung cell lines were excluded from the
model as the sample size was an outlier).

RESULTS
Measures of RS from NCI60 and CCLE showed con-
siderable differences in mean and standard deviation
between tissues (Figure 2). The performance of seven
published RS signatures was compared with resampled
negative control signatures, cellular process signatures
and an intercept-only model (Figure 3). The control
signatures showed a modest improvement in predictive
performance with increasing size and MAE significantly
decreased from 10 to 546 genes (P < 0.001). Errors for
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Figure 2. RS by anatomical location across CCLE (top) and NCI60 (bottom).
The mean of all cell lines is shown as a red dashed line. A wide range
is seen within and across sites for both MID (top) and SF2 (bottom).
Autonomic Ganglia, soft tissue, bone, endometrium, breast and biliary
tract had the largest deviation from the mean in CCLE. Breast cell lines
also deviated considerably from the overall mean in the NCI60, and blood
cell lines had a very large difference compared to other sites.

cellular process signatures were equivalent to the
negative control signatures, suggesting difficulty in
accurate prediction of in vitro RS in the NCI60 and
CCLE data using genes linked to processes known to be
involved in radiation response of the cell. The accuracy
of all signatures fell within the 95% CI of the control
signatures (Figure 3). Additionally, all published and
cellular process models were equivalent to the median
control signature within the bounds of −0.1 and 0.1,
i.e. −10 to 10% in SF2 for NCI60 and −0.1 to 0.1 Gy for
MID in CCLE (Figure 4). The mean out-of-sample R2 for
the published models on test data was very low at 0.01
(range: −0.05 to 0.09) for CCLE and 0.00 (range: −0.19
to 0.19) in the NCI60 data (Table S2, see Supplementary
Data available online at http://bib.oxfordjournals.org/).

The MAE for each published model over all tissues
ranged from 0.849 to 0.921 Gy for MID in the CCLE
dataset and from 0.155 to 0.188 for SF2 in the NCI60
dataset (Table 2). Averaging MAE for each tissue over all
RS models in CCLE cells highlighted differences, with
cells derived from the urinary tract being predicted

Figure 3. Performance of signatures predicting MID in the CCLE (top)
and SF2 in NCI60 (bottom). MAE is plotted for each published model
(black filled dots) and cellular process model (black unfilled dots) with
size of the signature on the x-axis. Performance of the median accuracy
resampled control signature is plotted with a red line; the grey shaded
region represents 95% CI. Results from prediction models using only the
intercept are shown as a blue dashed line. The performance of all models
investigated was within the 95% CI for the size-matched control signature
in both the NCI60 and CCLE data.

the best (MAE = 0.66) and those from the salivary
gland (MAE = 1.31) the worst on average (Table 2).
The equivalent best and worst tissues in the NCI60
data were prostate (MAE = 0.08) and blood (MAE = 0.25)
(Table 2). Prediction error was similar for individual
tissues for all models in the CCLE (Figure 5), particularly
in those with large samples (for example lung and
large intestine). Sites with lower sample sizes in CCLE
and NCI60 showed more variation between models
(Figures 4, 5 and 6; NCI60: P = 0.03, CCLE: P < 0.01). In
the CCLE, a greater difference between mean tissue
RS and the mean RS across all tissues (Figure 2) was
correlated with MAE in 4/7 published models (P < 0.05)
(Figure S4, see Supplementary Data available online at
http://bib.oxfordjournals.org/). The variation in RS for
each tissue also correlated with MAE in 4/7 models

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab561#supplementary-data
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Figure 4. Results from equivalence testing in the CCLE (top) and NCI60
(bottom). Points represent the difference (and 90% CI) in MAE between
signature predictions and the median resampled control signature of the
same size. All models were equivalent to the control signature within ±0.1
for both datasets.

for the CCLE (Figure S4, see Supplementary Data avail-
able online at http://bib.oxfordjournals.org/; P < 0.01).
Although there were indications of similar trends in the
NCI60 data, these were not significant, possibly due to
the low sample size (Figure S5, see Supplementary Data
available online at http://bib.oxfordjournals.org/).

DISCUSSION
We present the RadSigBench framework for assessing
the accuracy of transcriptomic predictors of intrinsic RS
in the frequently utilised CCLE and NCI60 datasets and
apply it to seven published models. To help evaluate
performance, signatures based on resampled genes and
an intercept-only model were developed as negative con-
trols. Cellular process signatures were also investigated
to evaluate the predictive power of genes in processes
believed to be associated with RS. Neither the published
RS signatures nor the cellular processes evaluated had

better performance than the resampled control signa-
tures in both CCLE and NCI60 datasets. Assessment of
predictions by tissue of origin showed substantial vari-
ation, suggesting potential for model improvements by
incorporation of anatomical location.

Model comparison
Correlations between predictions from the studied mod-
els were weak to moderate in both the CCLE and NCI60
datasets. Better performing models showed greater cor-
relation with each other than models with lower perfor-
mance (Figures S2 and S3, see Supplementary Data avail-
able online at http://bib.oxfordjournals.org/). Inclusion of
a greater number of genes within the control signatures
was associated with decreased error. The published sig-
natures had performance equivalent to the resampled
control signatures in both datasets. The Eschrich et al.
[14] model was trained on NCI60; therefore, the poor
performance on this dataset is unexpected. However, we
note that the error values reported here are in line with
those given in the original publication [14] and in inde-
pendent validation [11, 54]. High error rates for blood cell
RS prediction have been previously reported and were
reiterated here, which may be due to the known high
rates of apoptosis following irradiation of haematological
cell lines, coupled with underrepresentation in training
data [14]. Errors for Zhang et al. (2014) were much larger
than reported in the original work (RMSE = 0.01), sug-
gesting overfitting in the original analysis. Interestingly,
this signature has previously showed utility in separating
clinical cohorts by outcome, aligning with previous work
demonstrating that the expression of randomly resam-
pled genes may predict cancer patient trajectories [29].
The use of appropriate control models in our framework
provides context to previously reported error values that
were considered acceptable (for example the Eschrich
et al. signature [14]), while evaluation on the test data
suggests that the error rate was underestimated in some
models (for example the Zhang et al. model [29]).

In addition to modelling methods, measurement pro-
tocols for RS and gene expression may contribute to
higher error on replication. Differences between mea-
sured in vitro RS values can result from experimental
protocol divergence (for example cell culture conditions)
and inter-observer error. Although the coefficient of vari-
ation for SF2 from clonogenic assay is below 30% for A549
cells, RS values had a large range across published arti-
cles and are associated with seeding time [53]. Disparity
could also arise during microarray data processing (for
example the use of different background correction and
normalisation techniques).

Some relatively simple steps using existing data
(for example incorporation of site-to-site differences
and appropriate null hypotheses) may increase the
performance of signatures aiming to predict in vitro
cell line RS. The poor performance of the models
evaluated, including cell process signatures, could reflect
a limitation of steady-state gene expression data for

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab561#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab561#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab561#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab561#supplementary-data
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Table 2. MAE for predicted RS across anatomical sites. Data are presented for the CCLE (MID) and NCI60 (SF2) databases and are
sorted by the highest mean error over all models for each dataset. The three-colour scale represents error values from blue
(minimum) though white (50th percentile) to yellow (maximum). Almost all of the models examined had worst performance on
tissues with outlying RS values, including Autonomic Ganglia, Breast and Blood

prediction of the dynamic behaviour of cell populations.
Indeed, perturbation time series data [55], as well as
multiomics, protein abundance and post-translational
modifications have proven valuable for cancer drug
sensitivity models [56] and are likely to enable improved
prediction of intrinsic RS. In contrast to the relatively
straightforward modelling approaches employed in
the signatures evaluated here, methods such as deep
learning and executable modelling with multimodal data
are also expected to result in better performance [57,
58].

In vitro and clinical discrepancy
Tumour response is believed to depend on both intrinsic
RS and cellular proliferation. We assessed the prolifer-
ation marker PCNAsig here in order to investigate any
correlation between proliferation and intrinsic RS in vitro.
No relationship between proliferation and RS was seen,
which could reflect in vitro experimental conditions (e.g.
the clonogenic assay is typically performed when all cells

are cycling and does not depend on the time taken by
cells to undergo division). However, previous work shows
that PCNAsig is indicative of clinical outcomes [21], sug-
gesting that proliferation might act independently of
intrinsic RS to determine tumour response. Since >50%
of the transcriptome in breast cancer correlates with
proliferation, it is likely that many genes identified as
indicative of intrinsic RS in vitro might also reflect prolif-
eration in vivo, which may act as a confounder in clinical
validation [21]. Previous studies have provided evidence
for predictive (as opposed to prognostic) capacity of radi-
ation sensitivity signatures by showing their association
in RT-treated groups and not in no RT groups (or inter-
action between signature and RT/noRT); although some
covariates are adjusted for, clinical differences between
RT/noRT patients may remain a confounder [32, 35].
Other physiological features present in clinical tumours,
which are not found in vitro, may further impact on the
relationship between intrinsic RS and tumour control—
most notably hypoxia, which has been shown to impact
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Figure 5. Performance of published models in predicting MID in the CCLE dataset for 20 anatomical locations. Only those with more than five samples are
shown. Differences between models within tissue were small, particularly where there were a large number of cell lines, for example in lung. Differences
between tissues were larger; some sites were predicted relatively poorly across almost all models (for example, autonomic ganglia), in contrast to other
tissues that had relatively low error rates (for example, urinary tract and pleura).

Figure 6. Performance of RS models across nine anatomical locations in the NCI60 dataset. The seven models evaluated are shown on the x-axis and
MAE for SF2 prediction is shown on the y-axis. We found greater differences within the NCI60 anatomical sites than for CCLE (Figure 5), possibly due to
smaller sample sizes for the NCI60 dataset. The models examined had generally poor performance on the blood cell lines compared with other sites.

significantly on tumour outcomes and gene expression
profiles [59].

Future directions
While some models based on clinical data have incorpo-
rated multiomics, cell line derived models have typically
utilised gene expression microarray data. One study [60]
took CNV and gene expression data from NCI60 to build a
model predictive of SF2, reporting modest improvement
on previous work with expression only [29]. Inclusion

of multiomics data may improve RS prediction but will
require more computational resource and added com-
plexity in validation both on independent in vitro data
and patient cohorts.

There is scope for considerable improvement in RS
prediction for cell lines using existing data (Figure S6,
see Supplementary Data available online at http://bib.
oxfordjournals.org/). Although the larger sample size in
CCLE did not improve predictions here relative to NCI60,
increased sample diversity is likely to be beneficial for

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab561#supplementary-data
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more complex models incorporating tissue differences
and perturbation data. Many existing models were
trained on NCI60 where differences in responses between
tissues may hinder training and validation of predictive
models, given the low sample sizes for many tissues.
High-throughput measures of RS on CCLE cell lines
could aid the development of predictive approaches [15].
Larger samples may also allow for the use of tissue
site as variable for estimating RS, which might have a
considerable impact upon performance; indeed, previous
models have shown improved performance when some
tissues were removed; for example the Eschrich et al. [14]
model and leukaemia. Training of future signatures may
also benefit from integration of genes identified across
multiple platforms [28]. This approach may be extended
to assays of in vitro RS (for example clonogenic or high
throughput) and the parameters chosen to represent cell
vulnerability to radiation (for example SF2, SF8 and MID).
Time-lapse measurement of RS in cell culture is likely
to provide more informative endpoints, as suggested
for measurement of drug sensitivity [61]. In clinical
validation, confidence in model specificity to RT could
be improved using adjustment for proliferation and by
taking resampled signatures as a comparator. Although
many studies have shown signatures to be related to
known pathways involved in radiation sensitivity (for
example DNA repair), similarities between signatures are
limited and may be dominated by differences between
tissues.

Steady state transcriptome measurements used by
all the signatures studied here may be augmented
by incorporation of perturbation data (i.e. changes
in expression after exposure to radiation, chemicals
or other factors such has environmental stress). For
example, Amundson et al. [16] make available radiation
perturbation data for NCI60. Work on drug sensitivity
has demonstrated the value of dynamic information
in predicting cell responses [62]. Indeed, perturbations
reveal dynamic response mechanisms that may help to
pinpoint radiation-specific biochemical circuitry con-
trolling key outcomes, such as cell death, and facilitate
sophisticated modelling approaches [63]. For example,
mechanistic models include detailed formulations of the
physical, chemical and biological determinants of RS,
offering a powerful framework to capture the molecular
basis for cellular response to radiation [64, 65]. The
framework and analysis described here provides a base-
line for existing models and offers a systemic method
for robust validation of future developments in the
prediction of cellular RS from functional genomics data.

Key Points

• Few transcriptomic signatures of intrinsic cancer
radiosensitivity (RS) have been independently validated.

• We review current state-of-the-art intrinsic RS prediction
approaches and present a framework for robust eval-
uation on multiple measures, including benchmarking

against control signatures and key cellular processes.
• Published RS prediction signatures were evaluated in two

datasets: the NCI60 and the Cancer Cell Line Encyclopae-
dia. The performance of the published signatures was
equivalent to control signatures generated by uniformly
randomly sampling from all genes measured by the
microarray.

• Prediction of cancer cell RS may be improved by inclu-
sion of perturbation data, using larger sample sizes,
multiomics, advanced analysis approaches and external
validation.

Data and code availability
All data and code are accessible from: https://github.
com/SJMcMahonLab/RadSigBench

Supplementary Data
Supplementary data are available online at https://
academic.oup.com/bib.
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55. Rampášek L, Hidru D, Smirnov P, et al. Dr.VAE: improving drug
response prediction via modeling of drug perturbation effects.
Bioinformatics 2019;35:3743–51.

56. Costello JC, Heiser LM, Georgii E, et al. A community effort to
assess and improve drug sensitivity prediction algorithms. Nat
Biotechnol 2014;32:1202–12.

57. Baptista D, Ferreira PG, Rocha M. Deep learning for drug
response prediction in cancer. Brief Bioinform 2021;22:
360–79.

58. Sharifi-Noghabi H, Jahangiri-Tazehkand S, Smirnov P, et al. Drug
sensitivity prediction from cell line-based pharmacogenomics
data: guidelines for developing machine learning models. Brief
Bioinform 2021;00:1–14.

59. Yang L, Roberts D, Takhar M, et al. Development and validation
of a 28-gene hypoxia-related prognostic signature for localized
prostate cancer. EBioMedicine 2018;31:182–9.

60. He QE, Tong YF, Ye Z, et al. A multiple genomic data fused SF2
prediction model, signature identification, and gene regulatory
network inference for personalized radiotherapy. Technol Cancer
Res Treat 2020;19:1533033820909112.

61. Niepel M, Hafner M, Chung M, et al. Measuring cancer drug
sensitivity and resistance in cultured cells. Curr Protoc Chem Biol
2017;9:55–74.

62. Niepel M, Hafner M, Pace EA, et al. Profiles of basal and stim-
ulated receptor signaling networks predict drug response in
breast cancer lines. Sci Signal 2013;6(294):ra84.

63. Subramanian A, Narayan R, Corsello SM, et al. A next generation
connectivity map: L1000 platform and the first 1,000,000 pro-
files. Cell 2017;171:1437–1452.e17.

64. McMahon SJ, Prise KM. A mechanistic DNA repair and survival
model (Medras ): applications to intrinsic radiosensitivity, rela-
tive biological effectiveness and dose-rate. Front Oncol 2021;11:
1–18.

65. McMahon SJ, Prise KM. Mechanistic modelling of radiation
responses. Cancers (Basel) 2019;11(2):205. https://doi.
org/10.3390/cancers11020205.

66. Strom T, Torres-Roca JF, Parekh A, et al. Regional radiation
therapy impacts outcome for node - positive. J Natl Compr Canc
Netw 2017;15:473–82.

67. Meng J, Li P, Zhang Q, et al. A radiosensitivity gene signature
in predicting glioma prognostic via EMT pathway. Oncotarget
2014;5:4683–93.

68. Jang BS, Kim IA. A radiosensitivity gene signature and PD-L1
status predict clinical outcome of patients with invasive breast
carcinoma in the cancer genome atlas (TCGA) dataset. Radiother
Oncol 2017;124:403–10.

 https://doi.org/10.3390/cancers11020205
 https://doi.org/10.3390/cancers11020205

	 RadSigBench: a framework for benchmarking functional genomics signatures of cancer cell radiosensitivity
	INTRODUCTION
	METHODS
	RESULTS
	DISCUSSION
	Key Points
	Data and code availability
	Supplementary Data
	 Acknowledgements
	Funding


