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Sulforaphane protects against 
rotenone-induced neurotoxicity 
in vivo: Involvement of the mTOR, 
Nrf2, and autophagy pathways
Qian Zhou1, Bin Chen2, Xindong Wang1, Lixin Wu1, Yang Yang1,3, Xiaolan Cheng1,3, 
Zhengli Hu1, Xueting Cai1,3, Jie Yang1,3, Xiaoyan Sun1,3, Wuguang Lu1,3, Huaijiang Yan1,3, 
Jiao Chen1,3, Juan Ye1,3, Jianping Shen1 & Peng Cao1,3

Sulforaphane, a naturally occurring compound found in cruciferous vegetables, has been shown to be 
neuroprotective in several neurological disorders. In this study, we sought to investigate the potential 
protective effects and associated molecular mechanisms of sulforaphane in an in vivo Parkinson’s 
disease (PD) model, based on rotenone-mediated neurotoxicity. Our results showed that sulforaphane 
inhibited rotenone-induced locomotor activity deficiency and dopaminergic neuronal loss. Additionally, 
sulforaphane treatment inhibited the rotenone-induced reactive oxygen species production, 
malondialdehyde (MDA) accumulation, and resulted in an increased level of total glutathione and 
reduced glutathione (GSH): oxidized glutathione (GSSG) in the brain. Western blot analysis illustrated 
that sulforaphane increased the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme 
oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase (NQO1), the latter two of which are anti-
oxidative enzymes. Moreover, sulforaphane treatment significantly attenuated rotenone-inhibited 
mTOR-mediated p70S6K and 4E-BP1 signalling pathway, as well as neuronal apoptosis. In addition, 
sulforaphane rescued rotenone-inhibited autophagy, as detected by LC3-II. Collectively, these findings 
demonstrated that sulforaphane exert neuroprotective effect involving Nrf2-dependent reductions 
in oxidative stress, mTOR-dependent inhibition of neuronal apoptosis, and the restoration of normal 
autophagy. Sulforaphane appears to be a promising compound with neuroprotective properties that 
may play an important role in preventing PD.

Parkinson’s disease (PD) is a chronically progressive disease, that most commonly manifests between the fifth and 
seventh decade with resting tremor on one or both sides, bradykinesia, rigidity, and abnormal postural reflexes1. 
It affects approximately 6 million people worldwide, with the prevalence expected to double over the next two 
decades in parallel with an increasingly aged population2. Its pathological hallmarks include loss of dopaminergic 
neurons in specific brain regions, and the presence of proteinaceous cytoplasmic inclusions known as Lewy bod-
ies in the remaining dopaminergic neurons3. Although PD has been studied intensively for almost two centuries, 
since James Parkinson gave the first description of the disease in 18174, the aetiology and pathogenesis of the dis-
ease remain unknown. Currently, there is no cure for PD, and additional effective treatments for this devastating 
disease are urgently needed.

Oxidative stress is widely considered to be central to many forms of PD5. Postmortem studies have revealed 
evidence for oxidative injury in PD brains, demonstrating lipid peroxidation and oxidative modification of pro-
teins and DNA6. The oxidative stress results from an imbalance of pro-oxidant/antioxidant homeostasis that 
leads to an abnormal production of reactive oxygen species (ROS). The brain is particularly vulnerable to oxi-
dative stress because of its high oxygen consumption, high content of oxidizable polyunsaturated fatty acids, 
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and low antioxidant defence capacities; this is especially true for aging brains7. NF-E2-related factor-2 (Nrf2) is 
a transcription factor that regulates the expression of antioxidant and phase II detoxifying enzymes. One criti-
cal enzyme induced by Nrf2 is NAD(P)H quinone oxidoreductase-1 (NQO1), which detoxifies protein-bound 
quinone, and maintains alpha-tocopherol and coenzyme Q10 in their reduced (antioxidant) states. Another 
Nrf2-regulated protein is the stress responsive inducible enzyme heme oxygenase 1 (HO-1), which metabolizes 
prooxidant heme to the antioxidant pigment biliverdin, ferrous iron, and carbon monoxide8. The Nrf2 pathway 
responds to ROS by activating the transcription of phase II detoxification enzymes. Thus, activation of Nrf2 
appears to be an attractive approach for treating or mitigating PD9.

Mammalian target of rapamycin (mTOR), a serine/threonine (Ser/Thr) protein kinase, is a central control-
ler of cell proliferation, growth, and survival. mTOR regulates phosphorylation of p70 S6 kinase (p70S6K) and 
eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1), the two best-characterized downstream effec-
tor molecules of mTOR10. Studies have demonstrated that loss of mTOR activity may be detrimental during PD, 
as mTOR dysfunction has been shown in animal models of PD to lead to the death/apoptosis of dopaminergic 
neurons11,12. Depression of mTOR signalling by siRNA interference inhibits phosphorylation of both p70S6K 
and 4E-BP1, which leads to apoptosis13. However, dopaminergic neuronal death/apoptosis can be blocked 
with agents that increase mTOR activity14. Recently, our group has demonstrated that PD mimetics including 
6-hydroxydopamine (6-OHDA), N-methyl-4-phenylpridine (MPP+), and rotenone suppressed mTOR signalling, 
accelerated cleavage of caspase-3 and PARP in PC12 cells and primary neurons, and subsequently triggered neu-
ronal apoptosis. However, restoration of mTOR, p70S6K, or 4E-BP1 was remarkably potent in protecting against 
neuronal apoptosis caused by these PD mimetics10,15.

Studies have now confirmed that dysregulation of autophagy results in the accumulation of pathologic pro-
teins and/or damaged organelles, as is commonly observed in PD16. In particular, autophagy is deregulated in PD 
brains17. Many studies have consistently shown that rapamycin is neuroprotective against PD through autophagy 
enhancement18,19. Microtubule-associated protein light chain 3 (LC3) is one of the most commonly used bio-
markers for autophagy process. LC3-I is cytosolic, whereas LC3-II is membrane bound. During autophagy, LC3-I 
is lipidated by an ubiquitin-like system to generate LC3-II20. Thus, the amount of LC3-II is correlated with the 
autophagy level, and is a reliable marker for monitoring autophagy-related processes21.

Sulforaphane, a naturally occurring compound found in cruciferous vegetables (i.e. broccoli, cabbage, water-
cress and Brussels sprouts), has been reported to have potential as a therapeutic agent or preventative in PD. 
For example, sulforaphane was shown in vitro to be cytoprotective against damage evoked by 6-OHDA, MPP+, 
and rotenone22–26. Using in vivo neurodegeneration models, Jazwa et al. demonstrated that sulforaphane, in an 
Nrf2-dependent manner, protected against nigral dopaminergic cell death, astrogliosis, and microgliosis in the 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) subacute mouse model of PD27. Morroni et al. reported 
that sulforaphane exerted a neuroprotective effect in a 6-OHDA-induced acute mouse model, and attributed it to 
the ability of sulforaphane to enhance glutathione levels and its dependent enzymes, to up-regulate Nrf2, and to 
modulate the ERK1/2 pathway in the brain28. Surprisingly, no data regarding the effectiveness of sulforaphane in 
a rotenone-induced chronic PD model have been reported.

Rotenone, derived from the roots or leaves of certain plant species, is a pesticide that is widely used to kill 
insects and nuisance fish in lakes around the world5. Rotenone is extremely lipophilic, and thus freely crosses 
cellular membranes independently of any transporters (unlike MPP+); it easily crosses the blood-brain barrier 
and enters into the brain rapidly29. Unlike 6-OHDA-based models, generating the chronic oral rotenone model in 
mice does not require stereotaxic neurosurgical intervention. In fact, accumulated data show rotenone exposure 
to humans would most commonly involve ingestion1. Interestingly, chronic oral administration of rotenone to 
rodents in vivo induces many key features of PD, including selectively and progressive nigrostriatal DA neuro-
degeneration, abnormal behaviours (not seen in the MPTP mouse model), and formation of Lewy bodies (not 
seen in either the MPTP or 6-OHDA mouse model)30. In this study, by using chronic oral rotenone treatment as 
an in vivo PD model, we explored the effectiveness of sulforaphane against rotenone-induced motor deficits and 
dopaminergic neuron loss; we also determined whether the possible underlying mechanisms of its effects were 
associated with Nrf2-regulated anti-oxidative, mTOR-mediated anti-apoptotic, and/or autophagy systems.

Material and Methods
Chemicals and reagents.  Rotenone, sulforaphane, dimethyl sulfoxide (DMSO), 2′​,7′​-dichlorodihydroflu-
orescein diacetate (DCFH-DA) and 2′​,7′​-dichlorofluorescein (DCF) were purchased from Sigma (St. Louis, MO, 
USA); CMC: (Nacalai Tesque, Kyoto, Japan); Protease and phosphatase inhibitor mini tables (Thermo Scientific, 
USA); RIPA lysis buffer was purchased from Beyotime, China. The following antibodies were used: phospho-S6K 
(Thr389), 4E-BP1, Cleaved-caspase-3, LC3A/B (Cell Signalling Technology, Beverly, MA, USA); phospho-mTOR 
(Ser2448), mTOR (all from sigma); p70S6K; Nrf2, heme oxygenase-1 (HO-1); NAD(P)H dehydrogenase, qui-
none 1/(NQO1) and monoclonal mouse anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Santa 
Cruz Biotechnology, Santa Cruz, CA, USA). Tyrosine hydroxylase (TH) (Millipore, Billerica, MA). Dulbecco’s 
Modified Eagle’s Medium (GIBCO, Gaithersburg, MD, USA). Other chemicals were provided by local commer-
cial sources and were of analytical grade quality.

Animals care.  All experimental procedures were approved by the Institutional Animal Care and Use 
Committee of the Jiangsu Province Institute of Traditional Chinese Medicine and written up following the 
ARRIVE guidelines. Experiments were performed in strict accordance with the National Institutes of Health 
(NIH) Guidelines for the Care and Use of Laboratory Animals. Male C57BL/6 mice (7–8 weeks old, 25–28 g) were 
purchased from the Institute of Laboratory Animal Science at the Chinese Academy of Medical Sciences (Beijing, 
China) and housed in a specific pathogen-free facility maintained at 20–22 °C, with cycles of 12 h light-dark and 
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food and water ad libitum. All mice were initially allowed to adapt to the experimental animal laboratory for 1 
week.

Cell culture.  SH-SY5Y cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 
10% heat-inactivated fetal bovine serum, and cultured at 37 °C under humidified 5% CO2 atmosphere.

Experimental design.  Sulforaphane stock solution was prepared using dimethyl sulfoxide (DMSO) and 
stored at −​20 °C. Immediately prior to experimentation, the stock solution was diluted with sterile saline to a 
concentration of 50 mg/kg (final DMSO concentration 1%)31,32. The pharmacological effects in vivo were exam-
ined using the following groups (n =​ 10 per group): (a) vehicle control, 0.5% carboxymethyl cellulose sodium 
salt (CMC) plus saline (containing 1% DMSO) administered once daily; (b) sulforaphane (50 mg/kg dissolved 
in saline (containing 1% DMSO)) injected intraperitoneally every other day; (c) rotenone (30 mg/kg rotenone 
suspended in 0.5% CMC) administered orally daily for 60 consecutive days; and (d) rotenone +​ sulforaphane, 
rotenone treatment orally alone or followed by sulforaphane injected intraperitoneally every other day. Body 
weight was measured every five days for the 60-day duration, while the mice were undergoing behaviour tests. 
Fig. 1b shows the experimental schedules.

Behavioural Tests.  The tests below have been validated in PD mouse models33. In each test, mice were tested 
individually, and the equipment cleaned between each animal (except when tests utilised home cages).

Spontaneous activity tests.  A mouse was placed in a clear glass cylinder and recorded with a video cam-
era for 3 min in a quiet area, to prevent distractions and accidentally causing freezing behaviour. The videos were 
used to manually count the number of rears per mouse. A rear is defined as a vertical movement with both fore-
limbs above shoulder level and making contact with the cylinder wall, followed by removal of both forelimbs from 
the cylinder wall and contact with the floor34. All mice performed 3 trials.

Adhesive Removal.  A mouse was kept in its home cage, but the feeder bin removed to allow the mouse to 
habituate to the testing environment for 1 hour. Then the mouse was gently restrained, and a pair of small forceps 
used to place one adhesive label onto its snout. The mouse was released, and a stopwatch used to record the time 
until the attempts to contact the label with its forepaws, and the time to remove the label (contact and removal 
time, respectively). The mice were given a maximum of two minutes. All mice performed 3 trials.

Challenging Beam Traversals.  This evaluates sensorimotor integration by requiring a mouse to balance 
steadily on a narrow beam. The test-apparatus consists of four 25 cm beam sections of different widths placed on 
top of inverted mouse cages. A mouse was trained by being positioned on the widest section of the beam, and 

Figure 1.  Sulforaphane ameliorated rotenone-induced motor function deficits in mice. (a) Chemical 
structure of sulforaphane. Animals were submitted to the combined protocol of sulforaphane and rotenone 
(b). Body weights were measured every five days for the full 60 days (c). Animals underwent behavioural tests 
on day 60. Spontaneous activity in the cylinder (d), adhesive removal test (e) and challenging beam (f) were 
measured. Each value is presented as mean ±​ SEM, n =​ 3. *P <​ 0.05, **P <​ 0.01 vs. control group; #P <​ 0.05, 
##P <​ 0.01 rotenone group vs. rotenone +​ sulforaphane treatment group.
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then trained to step forward on the beam to return to its home cage. The training was performed two consecutive 
days, until the mouse traversed the full beam on its own without correction. On the test day, a video camera was 
placed nearby to record the beam travel times. All mice performed 3 trials.

Tissue Preparation.  After the behaviour tests, the mouse was euthanized by decapitation. The whole brain, 
cerebral cortex, and striatum were dissected carefully on dry ice as described previously35. The whole brain 
regions were immediately homogenised for ROS, malondialdehyde (MDA), total glutathione and reduced glu-
tathione (GSH): oxidized glutathione (GSSG) ratio assays. Some of the dissected cerebral cortex and striatum 
were quickly immersion-perfused with 4% paraformaldehyde in 0.1 M phosphate-buffered saline (PBS) for 
2 days, and then transferred to 15% sucrose solution in PBS containing 0.1% sodium azide at 4 °C. The other 
non-perfused brain regions were snap frozen in −​80 °C 2-methylbutane and stored in a −​80 °C freezer until 
further processing for protein extraction.

ROS Assay.  ROS generation was measured based on the oxidation of 2′​7′​-dichlorodihydrofluorescein diace-
tate (DCFH-DA) to 2′​7′​-dichlorodihydrofluorescein diacetate (DCF)36. Briefly, the brain homogenate was diluted 
1:20 (v:v) with ice-cold Locke’s buffer (154 mM NaCcl, 5.6 mM KCl, 3.6 mM NaHCO3, 2.0 mM CaCl2, 10 mM 
D-glucose and 5 mM HEPES, pH 7.4) to obtain a concentration of 10 mg tissue/ml. The reaction mixture (1 ml) 
containing Locke’s buffer (pH 7.4), 0.2 ml homogenate and 10 μ​l of DCFH-DA (5 mM) was incubated for 45 min 
at room temperature, and the fluorescence intensity of DCF was recorded by excitation at 485 nm and emission at 
535 nm using a SynergyTM 2 Multi-function Microplate Reader (Bio-Tek Instruments Inc., Winooski, Vermont, 
USA). Background fluorescence was corrected by the inclusion of parallel blanks. Total protein concentration 
was determined using the bicinchoninic acid assay kit (Pierce, Rockford, IL, USA). ROS formation was quantified 
from a DCF-standard curve and data are expressed as pmol DCF formed/min/mg protein.

MDA Assay.  This assay assesses lipid peroxidation29. Brain tissue was homogenised with 1:10 (w/v) PBS on 
ice, then centrifuged at 3,000 rpm for 15 min at 4 °C in an Eppendorf centrifuge, and the supernatant was col-
lected. Protein concentration in the supernatant was determined using the bicinchoninic acid assay kit (Pierce, 
Rockford, IL, USA). The concentration of MDA was measured and expressed as nmol/mg protein using an MDA 
assay kit (Jiancheng Institute of Biotechnology, Nanjing, China), according to the manufacturer’s protocols.

Total Glutathione Levels and GSH:GSSG Ratio.  Total glutathione and GSSG were determined using 
a GSH and GSSG Assay Kit (Beyotime Institute of Biotechnology, Shanghai, China) according to the manufac-
turer’s protocol. Absorbance was measured at 412 nm using a Biotek microplate reader. GSH was calculated as 
the difference between total glutathione and GSSG, and GSH:GSSG ratio was determined. Protein concentration 
was determined using the bicinchoninic acid assay kit (Pierce, Rockford, IL, USA). Total glutathione content is 
expressed as nmol/mg protein.

Immunohistochemistry Analysis.  The cryoprotected cerebral cortex and striatum were cut into 30 μ​M 
slices on a cryostat as previously described27. Sections were rinsed in Tris-buffered saline (TBS). Tissue per-
oxidase was inactivated by incubating in 3% hydrogen peroxide in TBS for 30 min. After three washes in PBS, 
sections were incubated for 3 h in blocking solution (3% bovine serum albumin (BSA), 0.3% Triton X-100 in 
TBS) and then for 24 h at 4 °C with mouse monoclonal antibodies against tyrosine hydroxylase (TH) diluted in 
PBS containing 1% BSA. Sections were then rinsed in PBS and incubated with the appropriate biotinylated sec-
ondary antibody at 1/1000 dilution for 1 h at room temperature. Sections were subsequently developed using the 
avidin-biotin peroxidase complex system (ABC kit, BOSTER Ltd. Wuhan) followed by counterstaining with hae-
matoxylin. The images of stained sections were taken with a Nikon Eclipse Ti-S microscope equipped with a dig-
ital camera. Densitometric quantification of TH-positive dopaminergic neurons in the striatum and fibres in the 
cerebral cortex was performed using Image-Pro Plus 6.0 software (Media Cybernetics Inc., Newburyport, MA).

Western Blotting Assay.  For protein electrophoresis and immunoblotting, the cerebral cortex and stria-
tum were homogenized on ice with lysis buffer (Beyotime Institute of Biotechnology, Shanghai, China). Protease 
and phosphatase inhibitor min-tablets (Thermo Scientific, USA) were added according to the manufacturer’s 
instructions. After centrifugation, protein extracts were collected, and 50 μ​g of protein lysates were resolved by 
SDS-PAGE and electrophoretically transferred onto Immobilon-P membranes (0.22 μ​M; Millipore). Membranes 
were blocked with 5% non-fat milk for 2 h, then incubated with primary antibodies overnight at 4 °C. After wash-
ing with PBS-T, membranes were incubated with the fluorescent-conjugated secondary antibodies in PBS-T/milk 
for 2 h at room temperature. Membranes were then rewashed, after which the labelled proteins were detected 
using an Odyssey infrared fluorescent scanner (LI-COR) with Odyssey ver. 3 software used for analysis.

Quantification and statistics.  Results were expressed as mean ±​ standard error of the mean 
(mean ±​ SEM). Student’s t-test for non-paired replicates was used to identify statistically significant differences 
between treatment means. Group variability and interaction were compared using either one-way or two-way 
ANOVA followed by Bonferroni’s post-tests to compare replicates means. A level of P <​ 0.05 was considered to 
be significant.

Results
Sulforaphane ameliorated rotenone-induced motor function deficits in mice.  Sulforaphane did 
not show any toxicity in our study, and has been used previously as a protective reagent at a dose of 50 mg/kg 
in vivo27,37,38. We used the schematic design depicted in Fig. 1b. Body weight gain was significantly attenuated 
from day 30 to day 60 in the rotenone-exposed group, compared with the vehicle-treated group. Sulforaphane 
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treatment did not affect body weight gain, but significantly rescued the reduction of weight gain induced by 
rotenone (Fig. 1c).

Two hours after administration of the last dose of drugs, mice were observed for sensorimotor function 
changes. We found no difference in neurobehavioral performance between the sulforaphane and the vehicle 
group (Fig. 1d–f), whereas, the rotenone group showed a robust decrease in hind limb stepping in the cylin-
der (Fig. 1d). At the same line, the time taken by the rotenone group was significantly longer in the adhesive 
removal and challenging beam traversal tests (Fig. 1e,f). However, intraperitoneal administration of sulforaphane 
at 50 mg/kg every other day before rotenone exposure significantly rescued motor function (Fig. 1d,f). These 
results suggest that sulforaphane can reverse the loss of body weight gain and PD-related motor deficits caused 
by rotenone.

Sulforaphane attenuated rotenone-induced dopaminergic neurodegeneration.  Since the 
pathological changes in PD include a loss of dopaminergic neurons (TH-positive neurons), and a decrease in 
TH expression on the lesioned side, we measured the integrated intensity of labelling in the cerebral cortex and 
striatum. After 60 days of rotenone exposure, a marked loss of TH-positive neurons and fibres were observed 
(Fig. 2a). The optical density was decreased in TH-positive neurons by 60% in the stratum, and TH-stained fibres, 
by 53% in the cerebral cortex, respectively (Fig. 2d). Interestingly, co-administration of sulforaphane significantly 
rescued the rotenone-induced the loss of TH-stained neurons and fibres (Fig. 2a,d). To further confirm the effects 
of sulforaphane in neuroprotection after rotenone injury, the TH protein levels were analysed by western blotting. 
Rotenone elicited a 75% and a 55% reduction of TH expression in the extracted cerebral cortex and striatum 
(Fig. 2b,c). More importantly, sulforaphane rescued TH protein levels, to over 50% of vehicle control group levels, 
in both lesioned brain regions (Fig. 2e). These results indicate that sulforaphane attenuated rotenone-induced 
dopaminergic neurodegeneration.

Sulforaphane rescued rotenone-induced oxidative damage by activating the Nrf2 pathway.  
ROS generation is a necessary by-product of oxidative metabolism, and is tightly regulated in cells by various 
oxidant and antioxidant enzymes39. MDA is a product of lipid peroxidation and a good indicator of oxidative 
stress in a cell or tissue29. We firstly investigated the effects of sulforaphane on rotenone-induced ROS production 
and MDA levels. Results indicated rotenone induced robust ROS generation (Fig. 3a). In addition, exposure of 
mice to 30 mg/kg rotenone for 60 day significantly increased MDA levels (Fig. 3b). Rotenone also resulted in a 
consistent, significant decrease in total glutathione content (Fig. 3c) and GSH:GSSG ratio (Fig. 3d). However, 
co-administration of sulforaphane potently inhibited all of the above pro-oxidative stress effects (Fig. 3a–d). These 
results imply that sulforaphane may be able to prevent oxidative damage in the brain after rotenone exposure.

It is well known that the Nrf2 pathway is able regulate antioxidant enzymes, especially HO-1 and NQO13,8. To 
explore the molecular mechanisms underlying the protective effects of sulforaphane in the rotenone mouse model 
of PD, we next analysed Nrf2 pathway in both cerebral cortex and striatum. Western blot analysis demonstrated 
that exposure to rotenone for 60 days resulted in a strong inhibition of Nrf2 expression, which was profoundly 
restored by co-administration of sulforaphane (50 mg/kg), in the cerebral cortex and striatum, respectively 
(Fig. 3e,f). We also analysed the expression of Nrf2-dependent anti-oxidative and detoxifying enzymes after sulfo-
raphane treatment in the rotenone model mice. Compared with the rotenone group, the sulforaphane +​ rotenone 
group demonstrated increased protein expression of HO-1, 1.4-fold higher in the cerebral cortex and 1.6-fold 
higher in the striatum, respectively (Fig. 3e–h). Similarly, sulforaphane partially rescued rotenone-decreased 
expression of NQO1 level in the cerebral cortex, improving expression by 2.2-fold, and striatum, by 7.3-fold 
(Fig. 3e–h). Collectively, treatment with sulforaphane rescued rotenone induced oxidative damage by activating 
the Nrf2 pathway.

Sulforaphane inhibited rotenone-induced neuronal apoptosis by restoring the mTOR pathway.  
Disturbances in the balance of mTOR activity in the brain can impair neuronal functions, and have detrimen-
tal consequences on neuronal regeneration after damage40. p70S6K and 4E-BP1 are the two best-characterized 
downstream effector molecules of mTOR10. In the nervous system, inhibition of mTOR pathway, including 
its downstream effectors p70S6K and 4E-BP1, usually promotes neuronal apoptosis11. Previously, we found 
that rotenone could negatively regulate mTOR-mediated p70S6K and 4E-BP1/Eif4E pathways, that leads to 
caspase-3 dependent neuronal apoptosis in vitro15. Here, we tested the hypothesis that sulforaphane prevents 
rotenone-induced neuronal apoptosis by targeting the mTOR pathway in vivo. Western blot analysis revealed 
that sulforaphane alone did not obviously alter the expression of mTOR signalling components, but was highly 
resistant to the inhibition of phosphorylation of mTOR, p70S6K and 4E-BP1 by rotenone, in both the cerebral 
cortex and striatum (Fig. 4a,b).

To further assess the role of mTOR in neuronal survival and confirm the apoptosis signalling pathways reg-
ulated by sulforaphane, we analysed the level of cleaved-caspase-3. As shown in Fig. 4f,g, sulforaphane alone 
was not toxic to brain tissues. By contrast, the rotenone group demonstrated increased protein expression of 
cleaved-caspase-3 relative to the control group. In addition, co-administration of sulforaphane potently blocked 
rotenone-increased expression of cleaved-caspase-3 (Fig. 4f,g). Collectively, our findings support the notion that 
sulforaphane inhibited rotenone-induced neuronal apoptosis by restoring mTOR pathway.

Sulforaphane protected against rotenone neurotoxicity via modulating autophagy.  Recent 
reports indicate that the pathology of PD is closely related to the accumulation of aberrant proteins, which 
in theory could be reduced by autophagy16. Therefore, we evaluated whether sulforaphane protected against 
rotenone neurotoxicity by modulating autophagy using the LC3-II biomarker (see Introduction). In the rote-
none group, LC3-II expression was significantly decreased compared to the vehicle-injected control. Though 
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sulforaphane alone did not increase LC3-II levels, it blocked the significant decrease in LC3-II expression when 
co-administered with rotenone in vivo. (Fig. 5a,b). We further verified these results in vitro. SH-SY5Y cell line 
cultures were pre-treated with sulforaphane (10 μ​M) for 2 h and then exposed to rotenone (0.5 and 1 μ​M) for 24 h. 
Consistent with the observation in vivo, sulforaphane alone did not affect LC3-II expression, but significantly 
rescued rotenone-inhibited LC3-II expression. In addition, sulforaphane inhibited rotenone-induced neuronal 
apoptosis, as detected by the protein expression of cleaved-caspase-3 in the SH-SY5Y cell line (Fig. S1).

Figure 2.  Sulforaphane attenuated rotenone-induced dopaminergic neurodegeneration. (a) Immunohistochemistry 
with anti-tyrosine hydroxylase (TH) antibody in the brain. Pictures show 30 μ​M-thick sections of cerebral cortex and 
striatum between different groups. (b) Immunoblots of cerebral cortex protein extracts blotted with TH and GAPDH 
antibodies. (c) Immunoblots of striatal protein extracts blotted with TH and GAPDH antibodies. (d) Densitometric 
quantification of TH-positive neurons and fibres. (e) Blots for TH were semi-quantified using NIH ImageJ. Relative density 
expressed as the ratio TH/GAPDH. Each value is presented as mean ±​ SEM, n =​ 3. aP <​ 0.01 vs. control group; bP <​ 0.05, 
cP <​ 0.01 rotenone group vs. rotenone +​ sulforaphane treatment group.
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Figure 3.  Sulforaphane rescued rotenone-induced oxidative damage by activating the Nrf2 pathway. 
(a) Reactive oxygen species (ROS) level was measured based on the oxidation of DCFH-DA to DCF using a 
microplate reader. The malondialdehyde (MDA) levels (b), total glutathione activity (c) and reduced:oxidized 
glutathione (GSH/GSSG) ratio (d) in the brain. GAPDH was used as loading control for western blots. At 
least three independent experiments were performed. Representative immunoblots for Nrf2, HO-1, NQO1 
and GAPDH in cerebral cortex (e) and striatum (f). Blots for Nrf2, HO-1, and NQO1 were semi-quantified 
using NIH imageJ. Relative density is expressed as the ratio Nrf2/GAPDH, HO-1/GAPDH, NQO1/GAPDH 
in cerebral cortex (g) and striatum (h), respectively. Each value is presented as mean ±​ SEM, n =​ 3. aP <​ 0.05, 
bP <​ 0.01 vs. control group; cP <​ 0.05, dP <​ 0.01 rotenone group vs. rotenone +​ sulforaphane treatment group.
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Figure 4.  Sulforaphane inhibited rotenone-induced neuronal apoptosis by restoring mTOR pathway 
activity. Representative immunoblots for p-mTOR, mTOR, p-p70S6K, p-70S6K, 4E-BP1, and GAPDH in 
cerebral cortex (a) and striatum (b). Blots for p-mTOR, p-p70S6K and 4E-BP1 were semi-quantified using NIH 
imageJ. Relative density expressed as the ratios of p-mTOR/GAPDH (c), p-p70S6K/GAPDH (d), and 4E-BP1/
GAPDH (e) in cerebral cortex and striatum, respectively. Representative immunoblots for cleaved-caspase-3 
in cerebral cortex (f) and striatum (g). Blots for cleaved-caspase-3 were semi-quantified using NIH imageJ. 
Relative density expressed as the ratio cleaved-caspase-3/GAPDH (h). Each value is presented as mean ±​ SEM, 
n =​ 3. aP <​ 0.05, bP <​ 0.01 vs. control group; cP <​ 0.05, dP <​ 0.01 rotenone group vs. rotenone +​ sulforaphane 
treatment group.
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Discussion
PD is a commonly occurring neurodegenerative disorder that produces muscular rigidity, bradykinesia, tremor in 
resting limbs and loss of postural balance1,39. The basic neuropathology of PD involves the selective degeneration 
of dopaminergic cells in specific brain regions like the striatum; when degeneration in these neurons reaches a 
threshold reduction of 80% dopamine, the motor symptoms of PD emerge29. The cerebral cortex, which is abun-
dant with neurons and easily accessible, demonstrates its importance in modelling PD3.

The plant-based pesticide rotenone is a prototypical toxin that can mimic clinical and pathological features 
of PD in an animal model5. We successfully utilized the rotenone-based model established by Inden et al.30, 
inducing PD-like symptoms characterised by evident motor deficits and the loss of TH-positive neurons in mice 
(Figs 1 and  2). Sulforaphane, derived from the corresponding glucoraphanin glucosinolate found in abundance 
in cruciferous vegetables, has recently been recognised as an effective neuroprotective compound. Tarozzi et al. 
found that pre-treatment with sulforaphane effectively abolished 6-OHDA and H2O2 induced oxidative stress and 
cytotoxicity in a dopaminergic-like neuroblastoma SH-SY5Y cell line24. Denzer et al. indicated that sulforaphane 
was protective effect against rotenone-induced cell damage in PC12 cells26. In addition, sulforaphane crosses the 
blood brain barrier, and was neuroprotective in the MPTP and 6-OHDA mouse model of PD27,28. Consistent with 
the above results, we found that sulforaphane also effectively protected against rotenone-induced motor dysfunc-
tion and TH–positive neurons loss in vivo (Figs 1 and 2).

Patients with PD exhibit prominent evidence of oxidative stress, including decreased levels of reduced glu-
tathione and increased oxidative modification to DNA, lipids, and protein5. Recently, we showed that rotenone 
elicited ROS overproduction in PC12 cell line and primary neurons, which led to neurotoxicity15. In this study, 
long-term administration of rotenone in C57BL/6 mice triggered marked oxidative stress in the brain. However, 
pre-treatment with sulforaphane markedly inhibited rotenone-mediated increases in every oxidative marker we 
tested (Fig. 3a–d). These results are in line with a recent study demonstrating that sulforaphane decreased dopa-
minergic cell loss, as well as enhanced GSH synthesis and conjugation, in both in vitro and in vivo drosophila 
models of PD41. In addition, the reduced total glutathione content and lower ratio of GSH:GSSG were analysed 
and interpreted as evidence of redox imbalance, and has been associated with various human disease, including 
PD42,43. Several important findings suggest Nrf2 activity declines is a significant risk factor for PD27. Similarly, 
rotenone triggered a robust decrease of Nrf2, HO-1 and NQO1 expression in the cerebral cortex and striatum, 
which was potently rescued by sulforaphane (Fig. 3e–h). Some studies suggested that sulforaphane treatment 
alone could induce Nrf2 and its dependent enzymes in vivo44,45. However, in our experiment, even a 2-month 
repeated injection protocol did not appear to activate the Nrf2 pathway in healthy animals. Interestingly, our 
results are consistent with other studies showing that repeated sulforaphane treatment could result in a long-term 
elevation of free radical defence, though the sustained elevation of expression of Nrf2, HO-1 and NQO1 seems 
unlikely27,46,47. Collectively, our data support the notion that sulforaphane protects against rotenone-induced oxi-
dative stress by activating the Nrf2 pathway.

Figure 5.  Sulforaphane protected against rotenone neurotoxicity via modulating autophagy. Representative 
immunoblots for LC3 and GAPDH in cerebral cortex (a) and in striatum (b).
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Neuronal apoptosis is reported to play a predominant role in the pathological progress of neuron loss in PD48. 
There are two major pathways through which apoptosis are induced, but both pathways converge on caspase-3 
activation, resulting in nuclear degradation and cellular morphological change49. mTOR signalling is involved in 
regulating differentiation and survival in neurons, as well as synaptic plasticity, learning and memory, and food 
uptake in adult brain15. In the nervous system, inhibition of mTOR-mediated p70S6K and 4E-BP1 signalling usu-
ally promotes neuronal apoptosis11. Rotenone is assumed to exert its cytotoxicity in part through the induction of 
apoptosis. Previously, we have found that by inhibiting mTOR signalling, rotenone increased cleaved-caspase-3 
expression and led to neuronal apoptosis in vitro10,15. We also demonstrated that ectopic expression of wild-type 
mTOR, constitutively activate S6K1, or downregulated 4E-BP1 partially prevented rotenone-induced neuronal 
apoptosis, suggesting that rotenone-induced neuronal loss in PD may be prevented by activating mTOR sig-
nalling15. Consistent with these data, we found that rotenone inhibited mTOR-mediated p70S6K and 4E-BP1 
activity, and triggered neuronal apoptosis, as detected by increased expression of cleaved-caspase-3 in vivo 
(Fig. 4). Studies have shown that sulforaphane is able to regulate cell cycle arrest and apoptosis50. For exam-
ple, sulforaphane attenuated cell necrosis and apoptosis in renal injury rats51 and type 1 diabetes mice52 mod-
els. Interestingly, it is reported that sulforaphane activated the PI3K/Akt pathway to confer protection against 
6-OHDA induction of apoptosis in PC12 cells23. Here, as expected, co-treatment with sulforaphane strongly 
reversed rotenone-inhibited phosphorylation of mTOR, p70S6K and 4EBP1 (Fig. 4a–e), as well as neuronal 
apoptosis detected by cleaved-caspase-3 (Fig. 4f–h). Our findings strongly suggest that sulforaphane attenuated 
rotenone-induced inhibition of mTOR signalling pathway as well as neuronal apoptosis.

Autophagy has been reported to be involved in rotenone-mediated neurotoxicity, based on LC3-II decreases53. 
Our results herein showed that rotenone treatment triggered a robust decrease of LC3-II, probably through inhi-
bition of autophagy, which aggravated deposition of aberrant proteins and subsequent cell death53. Sulforaphane 
alone cannot directly stimulate autophagy at the 50 mg/kg dose associated with neuroprotection, but it could 
rescue rotenone-inhibited autophagy (Fig. 5a,b). It seems this study is in contrast to recent reports that indi-
cate that administration of sulforaphane alone enhances autophagic activities54,55. To address this discrepancy, 
we further investigated the effects of sulforaphane and rotenone treatments in the SH-SY5Y cell line. Our 
results were in line with the in vivo data, that sulforaphane itself did not affect LC3-II expression, but signif-
icantly rescued the rotenone-inhibited expression of the protein. Furthermore, sulforaphane significantly 
attenuated rotenone-induced neuronal apoptosis in the SH-SY5Y cell line (Fig. S1). Our observations imply 
that sulforaphane may not directly affect autophagy at the concentration and over the time course associated 
with neuroprotection that we used, but it can still rescue rotenone-inhibited autophagy. This is consistent with 
previous investigations showing that sulforaphane induction of autophagy is cell-type, concentration and time 
dependent54,56.

The kinase mTOR is a major negative regulator of autophagy57. However, the interplay between mTOR and 
autophagy is complex in PD. For example, some studies found that rapamycin, an inhibitor of mTOR, protected 
against neuronal injury through induction of autophagy in vivo16,58,59. A similar scenario was also observed, in 
which rapamycin-activated autophagy inhibited rotenone-induced neuronal apoptosis19. However, one report 
showed that the autophagy process is altered independently of mTOR pathway disruption, and that the two inhib-
ited could contribute to neuronal damage in PD57. Therefore, though alterations in mTOR signalling are linked to 

Figure 6.  The possible molecular mechanism of sulforaphane-mediated neuroprotection against rotenone 
neurotoxicity in vivo. 
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autophagy, the relationship between sulforaphane neuroprotection, mTOR signalling, and autophagy processes in 
PD does not seem mutually dependent. It has been shown that Nrf2 is related to mTOR, and our data supported 
the notion that sulforaphane exerts neuronal protective effects via activating Nrf2 and mTOR. This is consistent 
with a recent report that salvianolic acid A results in a dramatic activation of the Akt/mTOR signalling, followed 
by activation of the Nrf2/HO-1 axis in retinal pigment epithelia cells60. Understanding the interactions among 
these systems may be helpful in revealing the full mechanism of how sulforaphane suppresses rotenone-induced 
neurotoxicity. A summary of our findings is shown in Fig. 6.
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