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STAG2 deficiency induces interferon responses via
cGAS-STING pathway and restricts virus infection
Siyuan Ding1,2,3, Jonathan Diep1, Ningguo Feng1,2,3, Lili Ren1,2,3,4, Bin Li5, Yaw Shin Ooi1, Xin Wang6,10,

Kevin F. Brulois3,7, Linda L. Yasukawa1,2,3, Xingnan Li8, Calvin J. Kuo8, David A. Solomon 9, Jan E. Carette1 &

Harry B. Greenberg1,2,3

Cohesin is a multi-subunit nuclear protein complex that coordinates sister chromatid

separation during cell division. Highly frequent somatic mutations in genes encoding core

cohesin subunits have been reported in multiple cancer types. Here, using a genome-wide

CRISPR-Cas9 screening approach to identify host dependency factors and novel innate

immune regulators of rotavirus (RV) infection, we demonstrate that the loss of STAG2, an

important component of the cohesin complex, confers resistance to RV replication in cell

culture and human intestinal enteroids. Mechanistically, STAG2 deficiency results in spon-

taneous genomic DNA damage and robust interferon (IFN) expression via the cGAS-STING

cytosolic DNA-sensing pathway. The resultant activation of JAK-STAT signaling and IFN-

stimulated gene (ISG) expression broadly protects against virus infections, including RVs.

Our work highlights a previously undocumented role of the cohesin complex in regulating IFN

homeostasis and identifies new therapeutic avenues for manipulating the innate immunity.
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Genome-wide CRISPR-Cas9 loss-of-function screens have
emerged as a powerful tool to interrogate pathogen–host
interaction at the molecular level1. This new method

enables complete disruption of target genes and thereby identifies
high-confidence host protein candidates that are critical for
pathogen replication1. Novel host factors for several viral
pathogens, including dengue virus, Zika virus, West Nile virus,
hepatitis C virus, HIV, and murine norovirus, have been recently
uncovered using this approach2–6. Rotaviruses (RVs) are icosa-
hedral viruses with segmented, double-stranded RNA genomes7.
Clinically, RVs are a leading cause of severe gastroenteritis and
diarrheal mortality in young children worldwide8, causing over
200,000 deaths annually. In addition to their public health rele-
vance, RVs serve as a prototypic enteric model system to inves-
tigate host innate immune responses to microbial pathogens in
the intestinal mucosa. For instance, we have recently identified
the type I and type III interferons (IFNs) as key determinants of
RV host range restriction9. We also recently found the intestine-
specific Nlrp9b inflammasome to be a cardinal host factor that
protects against RV infection in vivo10. Despite recent advances
in proteomics and small interfering RNA (siRNA)-based screens
for RVs11–14, the nature and identity of many pro-RV and anti-
RV host factors remain unknown.

Here we employ a genome-scale CRISPR-Cas9 screening
approach to systematically identify host factors that support RV
replication as well as novel regulators of the host innate immune
signaling. We uncover several uncharacterized cellular pathways
and stromal antigen 2 (encoded by STAG2) that facilitate RV

infection. Importantly, depletion of STAG2 triggers host genomic
DNA damage, recognition of cytoplasmic microchromatin, and
the activation of cGAS-STING-IRF3 signaling, which culminates
in IFN production and resistance to multiple RNA virus
infections.

Results
Genetic screen identifies novel pro-rotaviral host factors. To
enable the genome-wide CRISPR-Cas9 screen for RV host
dependency factors, we first transduced H1-Hela cells with a pool
of lentiviruses encoding Cas9 and the GeCKO single-guide RNA
library (sgRNA, 6 per coding gene, 4 per miRNA locus, and 2000
non-targeting controls) as described3. This heterogeneous H1-
Hela cell population was exposed to the cytopathic NCDV strain
of bovine RV (G6, P[1]) for multiple rounds of infection until the
appearance of visibly apparent survival colonies, which were then
harvested and processed for next-generation sequencing (Fig. 1a).
Ranking the enriched genes using MAGeCK algorithm15 revealed
a large panel of novel host-dependency factors for RV infection
(Fig. 1b). Using this screening strategy, consistent with published
studies12,14,16, we identified several genes known to be critical for
RV infection (Supplementary Data 1), including SLC35A1, GNE,
and CMAS in the sialic acid synthesis pathway; UGCG, which
catalyzes glycosphingolipid biosynthesis; and FA2H, a fatty acid
2-hydroxylase. We also found LATS2 (hit #39), a Hippo pathway
kinase recently shown to negatively regulate IFN activity17,
highlighting the fact that our screen is able to uncover innate
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Fig. 1 A genome-wide CRISPR-Cas9 screen reveals STAG2 as a pro-RV host factor. a Schematic flowchart for RV CRISPR-based loss-of-function screening
approach. b Bubble plot of host factors essential to RV infection. The top 20 genes were colored and grouped by function. Size of bubbles corresponds to
the number of significant sgRNAs scored for each gene. c Wild-type (WT), STAG2−/−, and STAG2−/− HT-29 cells transduced with V5-tagged STAG2
were infected with RV (MOI= 1) and viral NSP5 mRNA level was measured at 24 h.p.i. by RT-qPCR (left panel). Cell lysates were analyzed by western blot
with the indicated antibodies (right panel). For c, experiments were repeated at least three times in triplicates. Data are represented as mean ± SEM
(***P≤ 0.001)
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immunity-associated host factors. Notably, we identified STAG2,
a core subunit of the nuclear cohesin complex18,19, as a top
candidate (#6) in the screen. In addition to STAG2, we noticed an
enrichment of SMC3 (#209) and STAG1 (#610), two other
cohesin components. It was particularly interesting that the
replication of RV was highly restricted by the absence of several
key components of the nuclear cohesin complex, even though RV
replication is thought to take place exclusively in the cytoplasm7.

To further examine this fascinating phenotype, we first
validated the screen results by knocking out STAG2 in Caco-2
and T84 cells, both human colonic cancer-derived epithelial cell
lines (Supplementary Fig. 1A). Consistent with our findings in
H1-Hela cells, RV replication was significantly reduced in these
two STAG2-depleted cell lines (Supplementary Fig. 1B). To study
the role of STAG2 in RV infection more directly, we then
generated a single clonal STAG2 knockout in HT-29 cells,
another human intestinal epithelial cell (IEC) line commonly
used for RV studies. Complete STAG2 deletion was confirmed by
both western blot and Sanger sequencing (Supplementary
Fig. 1C). These cells did not exhibit severe defects in survival or
proliferation (Supplementary Figs. 1D-F). Importantly, RV
infectivity was significantly decreased (~3 log) in STAG2−/−

HT-29 cells compared to wild-type (WT) cells, as measured by
the expression of the gene encoding RV NSP5 (Fig. 1c).
Surprisingly, we found a profound defect in multiple steps of

the RV replication cycle, including transcription, viroplasm
formation, and release of virus progeny into the supernatant
(Supplementary Figs. 2A-D). Susceptibility to RV infection was
restored upon exogenous expression of WT STAG2 in STAG2−/−

HT-29 cells (Fig. 1c), suggesting that the effect was specifically
due to the loss of STAG2. Besides the bovine RV NCDV strain,
we tested additional human and animal RV strains and they were
all reduced in the absence of STAG2 (Supplementary Fig. 3A).

Loss of STAG2 activates IFN and ISG expression. Remarkably,
the replication of several unrelated RNA viruses, including vesi-
cular stomatitis virus (VSV), chikungunya virus (CHIKV), and
two subtypes of influenza A virus, was also significantly inhibited
in STAG2−/− HT-29 cells compared to WT cells (Fig. 2a and
Supplementary Fig. 3B). Conversely, the replication of several
flaviviruses and DNA viruses was not affected (Supplementary
Fig. 3C). Taken together, these data suggest that the loss of
STAG2 likely leads to an alteration of signaling pathways within
host cells that is commonly shared by RV, VSV, CHIKV, and
influenza viruses.

To identify the mechanism by which the loss of STAG2 leads to
a suppression of RV growth, we first performed an unbiased
RNA-sequencing analysis, using two different platforms, to
profile the transcriptome of WT and STAG2−/− HT-29 cells.
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Strikingly, canonical ISGs such as MX1, IFITM1, and IFI6 were
significantly upregulated (>100-fold) in STAG2−/− HT-29 cells
compared to their WT counterparts, in the absence of any virus
infection (Fig. 2b and Supplementary Data 2). Gene ontology
pathway analysis revealed a distinct IFN signature in the STAG2
−/− HT-29 cells (Supplementary Fig. 4A). Transfer of condi-
tioned media from STAG2−/− HT-29 cells elicited luciferase
expression driven by IFN-stimulated responsive element promo-
ters (Supplementary Fig. 4B). An increase in ISG expression and
secretion of IFN-λ in the supernatant in STAG2−/− HT-29 cells
were further demonstrated by reverse transcriptase quantitative
PCR (RT-qPCR) and enzyme-linked immunosorbent assay
(ELISA), respectively (Fig. 2c, d). In contrast, we did not detect
an increase in the secretion of IFN-α/β and tumor necrosis factor
(TNF)-α, which were found in VSV-infected WT HT-29 cells
(Supplementary Fig. 4C). Finally, we found a partial nuclear
localization of IRF3 in uninfected STAG2−/− HT-29 cells,
indicative of spontaneous IFN activation, similar to that seen in
VSV-infected cells (Supplementary Fig. 4D).

We hypothesized that the observed IFN activation mediates
broad resistance to virus infection in STAG2-deficient cells.
Consistent with this hypothesis, treatment with the selective
Janus-activated kinase 1/2 (JAK1/2) inhibitor ruxolitinib, which
effectively blocks all three types of IFN signaling20, led to a
dramatic reduction in ISG expression in STAG2−/− HT-29 cells
(Supplementary Fig. 4E). Furthermore, CRISPR-induced knock-
out of signal transducer and activator of transcription factor 1
(STAT1) in the background of STAG2 deficiency completely
abolished ISG expression and these double knockout cells re-
gained their susceptibility to RV and VSV infections to levels
comparable to WT HT-29 cells (Fig. 2e and Supplementary
Fig. 4F), supporting the conclusion that a hyperactive IFN-JAK-

STAT pathway is responsible for suppressing multiple viral
infections in STAG2−/− cells.

STAG2 deletion triggers DNA damage and DNA-sensing
pathway. We next sought to determine mechanistically how the
cell-intrinsic IFN activation occurred in the STAG2−/− cells. We
assayed the phosphorylation status of several signaling pathways,
based on cohesin’s function in CTCF locus binding and cell
division18,21. Interestingly, in the absence of ionizing or genotoxic
agents, strong phosphorylation of the histone H2A variant H2AX
(γH2AX), a hallmark of extensive DNA damage, was observed in
STAG2−/− cells, concurrent with strong STAT1 phosphorylation
(Fig. 3a). Further analysis suggested that this DNA damage
response was mediated through double-stranded DNA breaks
(DSBs) and the downstream ATM-53BP1 pathway (Supplemen-
tary Fig. 5A). Stronger 53BP1 staining was detected in STAG2−/−

HT-29 cells than in WT cells while single-stranded DNA breaks,
as measured by single-cell electrophoresis, were not visibly dif-
ferent between these two cell populations (Supplementary
Fig. 5B). Coincidental with increased DSBs, we found markedly
more micronuclei-like cytoplasmic DNA in the STAG2−/− cells
and this increased DNA did not exclusively co-localize with the
mitochondria (Fig. 3b). Cytosolic DNA is a well-characterized
pathogen-associated molecular pattern (PAMP) that stimulates
IFN production through the cGAS-STING-sensing pathway22,23.
Paralleling the results of STAG2 deficiency, we found that eto-
poside treatment, which induced chromosome instability and
increased γH2AX levels (Supplementary Fig. 5C), also activated
STAT1 phosphorylation and ISG expression (Supplementary
Figs. 5C and 5D). Importantly, RV replication was also sig-
nificantly inhibited in etoposide-primed cells (Supplementary
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Fig. 5E), suggesting that the suppression is not restricted to
STAG2 and is shared by various host DNA damage induction
mechanisms.

To pinpoint the DNA sensor responsible for IFN induction in
the STAG2−/− cells, we carried out a small-scale siRNA screen to
knock down all reported DNA sensors and their downstream
adaptor proteins. Our results indicated that siRNA silencing of
either cGAS or STING led to a significant decrease in IFN
expression in STAG2−/− HT-29 cells (Supplementary Fig. 6A),
whereas knockdown of MAVS had a minimal effect (Supple-
mentary Fig. 6B). A combined siRNA treatment targeting both
cGAS and STING resulted in the greatest level of IFN inhibition,
similar to that observed with a dual silencing of IRF3 and β-TrCP
(Supplementary Fig. 6A), two adaptor proteins downstream of
the cGAS-STING-TBK1/nuclear factor-κB pathway24.

To further examine the role of STING in IFN induction in the
STAG2−/− cells, we generated WT and STAG2−/− HT-29 cell
lines stably expressing HA-STING to circumvent a lack of
antibodies suitable for direct immunofluorescence analysis of
STING. As expected, STING exhibited an activation status,
marked by perinuclear, punctate structures, in STAG2−/− HT-29
cells, as opposed to the diffuse pattern in WT cells (Supplemen-
tary Fig. 7A). We then constructed double knockout HT-29 cells
that lack both STAG2 and TMEM173, the gene that encodes
STING (Supplementary Fig. 7B). These double knockout cells
were completely unresponsive to cytosolic DNA stimuli (Supple-
mentary Fig. 7C), and STAT1 hyper-phosphorylation was
abolished compared to STAG2 single knockout cells (Supple-
mentary Fig. 7B). Most importantly, they phenocopied our prior
results in STAG2−/−STAT1−/− cells and restored infectivity for
RNA viruses (Fig. 3c). We also noticed a decrease in DSBs in
STAG2−/−STING−/− cells (Supplementary Fig. 7B), consistent

with the recent observation that IFN signaling potentiates an
ATM-dependent DNA damage response25.

In attempting to validate these findings in a second cell line, we
made the initially perplexing observation that HEK293 cells, a
human fibroblast cell line, upon clonal STAG2 deletion, did not
have an abnormal IFN signature despite high levels of DNA
damage induction (Supplementary Fig. 8A). Nor were these
STAG2−/− HEK293 cells characterized by an IFN signature and
lower levels of RV replication compared to WT HEK293 cells
(Supplementary Fig. 8B). Coincidentally, we found that the
HEK293 cells were profoundly defective in their cytosolic DNA-
sensing IFN induction capability (Supplementary Fig. 8C). We
validated that several HEK293 cell lines, regardless of their
sources, naturally lack cGAS or STING expression at the protein
level (Supplementary Fig. 8C). Therefore, to further explore the
role of cGAS-STING pathway, we established an HEK293 cell line
that stably express Flag-tagged cGAS and HA-tagged STING
(Supplementary Fig. 8D). The restoration of an intact cytosolic
DNA-sensing pathway was confirmed by adenovirus infection,
which did not trigger IFN production in WT HEK293 cells
(Supplementary Fig. 8E). As predicted, we observed a potent IFN
induction and STAT1 phosphorylation in this new cell line upon
genetic depletion of STAG2 (Supplementary Fig. 8D). In addition,
we reconstituted the DNA-sensing-competent STAG2−/−

HEK293 cells with STAG2 deletion mutants and examined their
respective ability to inhibit DDR signaling and IFN induction
(Supplementary Fig. 9A). The full-length WT STAG2 but none of
the truncation mutants rescued aberrant DSB-ATM signaling and
the subsequent STAT1 activation (Supplementary Fig. 9B). These
data suggest that the STAG2 mutations that compromise the
integrity of the cohesin complex26 may contribute to the
induction of chromosomal instability and IFN dysregulation.
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STAG2 depletion reduces RV infectivity in human enteroids.
Finally, we extended our findings in transformed cell lines to
more physiologically relevant human intestinal enteroids, a pri-
mary human small bowel IEC culture that recapitulates enteric
epithelial cell diversity and supports RV infection27. We partially
depleted STAG2 expression in ileum enteroids derived from five
healthy individuals (Fig. 4a). A complete knockout of STAG2 at
the protein level was detected in approximately 30% of the pri-
mary IECs (white arrows in Fig. 4a) and it was sufficient to induce
a hyperactive type III IFN response in these enteroids (Fig. 4b),
even greater than that observed in STAG2−/− HT-29 cells
(Fig. 2c). Our results were further confirmed in additional
experiments using duodenum and jejunum enteroids (Fig. 4c),
suggesting that the role of STAG2 in tightly regulating IFN
activity is conserved in various sections of the human small
intestine. Accordingly, RV replication was significantly reduced in
STAG2 partially depleted human enteroids (Fig. 4d), as evidenced
by the RV RNA levels and yield of infectious virus.

Discussion
In this study, we report a critical function of cohesin complex in
immune homeostasis by preventing host DNA from being
recognized as a PAMP (Fig. 5). The genome-wide loss-of-
function screen and RNA-seq dataset revealed that STAG2
depletion elicits an excessive IFN expression. The constitutive
IFN activation is reminiscent of recent publications of Trex1−/−,
Atm−/−, and Lats1/2−/− cells, where the basal expression levels of
IFNs were elevated and exhibited an autoimmune-like manifes-
tation17,28,29. Given the association between cohesin and DNA
damage30,31, it is tempting to speculate that other proteins in this
signaling pathway are likely also critical for modulating IFN

responses and preventing autoimmune- or lupus-like syn-
dromes32. During the period of peer review of this manuscript,
several studies were published in agreement with our finding that
cytoplasmic DNA, originated from the host nucleus, is generated
during senescence or genomic instability and activates cGAS-
STING signaling and IFN induction33–36. Our findings may also
have implications for cancer biology studies. STAG2 mutations
are frequently detected in multiple tumor types and its loss of
function is believed to induce aneuploidy19,37. Our examination
of two glioblastoma cell lines (U138MG and H4 cells) that
naturally do not express STAG2 indicates that both are defective
in the cGAS-STING pathway (Supplementary Fig. 9C). By
downregulation of the DNA sensor cGAS, the adaptor protein
STING, or both, these STAG2-deficient tumors may benefit from
the unchecked proliferation due to chromosomal multiplication
while not having to face the potential adverse consequences of
eliciting antitumoral IFN activation. Furthermore, our results
imply that the current cGAS or STING ligands under develop-
ment for treating or serving as adjuvants in certain cancers38,39

will likely not work in tumor types defective in STAG2 and the
cytosolic DNA-sensing pathway. Our data also imply that for the
other cancers that harbor STAG2 mutations and an intact DNA-
sensing mechanism, depending on the type of IFN induction,
certain oncolytic viral vectors may also fail to function as
expected.

Methods
Cells and reagents. H1-Hela (CRL-1958), Caco-2 (HTB-37), T84 (CCL-248),
HEK293 (CRL-1573), HEK293T (CRL-3216), U138 (HTB-16), and H4 (HTB-148)
cells were obtained from American Type Culture Collection (ATCC) and cultured
in complete Dulbecco’s modified Eagle’s medium (DMEM) medium; HT-29
(HTB38) cells were obtained from ATCC and cultured in complete advanced
DMEM/F12 medium; MA104 (CRL-2378.1) cells were obtained from ATCC and
cultured in complete M199 medium. STAG2−/− HT-29 cells rescued with pLX304-
STAG2 were cultured in the presence of blasticidin (5 μg/ml). WT or STAG2−/−

HT-29 cells expressing HA-STING were generated using puromycin selection (1
μg/ml). WT or STAG2−/− HEK293 cells expressing HA-STING and Flag-cGAS
were selected under puromycin (1 μg/ml) and G418 (500 μg/ml). Full-length V5-
tagged STAG2 in pLX304 vector was purchased from DNASU Plasmid Repository
(HsCD00438827). Flag-SBP tagged STAG2 full-length plasmid and mutants (S97X,
S653X, S1075X, Q1117X, S1215X) in pcDNA3.1 vector were purchased from
Addgene (#73963, 73964, 73965, 73967, 73968, 73970, respectively). pSpCas9(BB)-
2A-GFP (PX458) and lenti-CRISPR_v2 were purchased from Addgene (#48138
and 52961, respectively). pCMV6-Entry-Flag-cGAS was purchased from Origene
(RC212386). pcDNA3.1-HA-STING was previously described40. Ruxolitinib was
reconstituted at 10 mM stock solution in dimethyl sulfoxide and used at 100 nM in
cell culture (Selleckchem, S1378).

Genome-wide CRISPR-Cas9 screen. The GeCKO v2.0 Human CRISPR Knock-
out Pooled Library from MIT Zhang lab was used to generate heterogeneous H1-
Hela knockout cell population as previously described3. A total of 2.8 × 108

mutagenized cells (1.4 × 108 cells for both library A and B) were infected with
bovine RV NCDV strain at a multiplicity of infection (MOI)= 10 in serum-free
medium for 48 h, recovered in complete DMEM for 24 h, and repeated for an
additional 9 rounds of infection until the appearance of visibly viable colonies.
Genomic DNA was harvested from the live cells and sgRNAs were amplified for
sequencing on Illumina NextSeq platform. The MAGeCK algorithm15 was used for
data analysis, taking into account multiple different sgRNAs per gene, number of
sequencing reads per gene, and the enrichment of sgRNAs compared to the
uninfected pooled library. A complete list of genes and scores can be found in
Supplementary Data 1.

CRISPR-Cas9 knockout cells. Single clonal knockout HT-29 and HEK293 cells
were obtained using the PX458 vector that expresses Cas9 and sgRNA against
STAG2, STAT1, and STING (Supplementary Table 1). Green fluorescent protein
(GFP)-positive single cells were sorted at 48 h post-transfection using BD Aria II
into 96-well plates (see Supplemental Information for gating strategy) and screened
for knockout based on western blot and Sanger sequencing. Pooled knockout Caco-
2, T84 cells, and human intestinal enteroids were obtained by lentiviral trans-
duction with the lenti-CRISPR_v2 vector that expresses Cas9 and STAG2 sgRNA
for a minimum of 14 days under puromycin selection.

STAG2-SMC1-SMC3
cohesin complex

DNA damage

Cytoplasmic DNA

cGAS

STING

IFN Intestinal epithelial cells

Rotavirus

IRF3
Antiviral status

?

Fig. 5 Working model of RV–cohesin interaction. Host genomic DNA
damage induced by cohesin deficiency led to an increase in the levels of
cytoplasmic DNA, which feeds into the cGAS-STING DNA-sensing
pathway to activate IFN and ISG expression. These processes enable the
host cells to enter an antiviral status and render them resistant to rotavirus
infection. Future studies will focus on whether rotavirus has evolved
strategies to dampen the host DNA damage response and subsequent IFN
production. Cohesin is multimeric nuclear protein complex that includes
STAG2 and is associated with vital roles during cell division. Here, in a
genome-wide CRISPR-Cas9 screen, the authors identify a novel role of
STAG2 as a crucial component of the innate immune response to rotavirus
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Viruses and virus infections. All human and animal RV strains used in this study
were propagated in MA104 cells and RV infection was performed as previously
described11. Recombinant VSV (strain Indiana) expressing GFP was a kind gift
from Dr. Jack Rose (Yale University). Influenza A viruses (H1N1 A/California/7/
2009, H3N2 A/Victoria/361/2011), enterovirus-D68 (strain US/MO/14-18947),
human rhinovirus (strain A2), ZIKV (strain P6-740), DENV-1 (strain 276RKI),
CHIKV (strain 181/25), and adenovirus serotype 5 were used as previously
described13. Vaccinia virus (strain MVA) and SV40 (strain EK) were purchased
from ATCC.

Lentiviruses used in this study include pLX304 vector encoding V5-tagged
STAG2 and lenti-CRISPR_v2 vector encoding Cas9 and STAG2 sgRNA. Both were
packaged in HEK293T cells by co-transfection with psPAX2 and pMD2.G as
previously described41. Supernatants were collected at 48 and 72 h post-
transfection, passed through a 450 nm filter, and added to target cells in the
presence of polybrene (8 μg/ml).

Cell survival and proliferation. The cell numbers of WT, STAG2−/− or STAG2
−/−STING−/− HT-29 cells in 24-well plates were determined by the luminescence
production using the RealTime-Glo™ MT Cell Viability Assay (Promega, G9711)
according to the manufacturer’s instructions. WT and KO HT-29 cells in six-well
plates were harvested and stained with the Live/Dead Fixable Aqua Dead Cell Stain
Kit (Invitrogen, L34957) using flow cytometry.

Single-cell electrophoresis. WT or STAG2−/− HT-29 cells in 6-well plates were
treated with 100 μM hydrogen peroxide at 4 °C for 20 min and harvested. Cells
were then embedded into low melting point agarose for comet SCGE assay kit
(Enzo Life Sciences, ADI-900-166) according to the manufacturer’s instructions.

Transfection. HT-29 cells in 24-well plates were transfected with siRNA (2.5 μl of
5 μM) using DharmaFECT1 (1 μl per reaction) reagent (GE Life Sciences). All
siRNAs used in this study were SMARTpool ON-TARGET siRNA purchased from
Dharmacon (Supplementary Table 1). Canonical cGAMP (2’3’ cGAMP) (8 μg/ml)
was transfected into HT-29 and HEK293 cells using lipofectamine 2000 as pre-
viously described42. 2’2’ cGAMP (Invivogen) was used as a negative control for
which no IFN induction was observed.

Western blot. Cell lysates were harvested in RIPA buffer (Sigma-Aldrich) sup-
plemented with protease inhibitor cocktail and phosphatase inhibitors (Roche).
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was performed as pre-
viously described43 using the following primary antibodies: p-ATM Ser1981 (CST,
D6H9, #5883, 1:1000), Flag (Sigma, M2, #F3165, 1:1000), glyceraldehyde 3-
phosphate dehydrogenase (BioLegend, #631402, 1:1000), γH2AX Ser139 (CST,
#2577, 1:1000), MX1 (CST, D3W7I, #37849, 1:1000), STAG2 (CST, #4239, 1:1000),
p-STAT1 Tyr 701 (CST, 58D6, #9167, 1:1000), STING (CST, D2P2F, #13647 S,
1:1000), and V5 (CST, D3H8Q, #13202, 1:1000). Secondary incubation was per-
formed with anti-rabbit (CST, #7074, 1:5000) or anti-mouse (CST, #7076, 1:5000)
immunoglobulin G horseradish peroxidase-linked antibodies. Protein bands were
visualized with Clarity ECL substrate (Biorad, #170–5061), Amersham Hyperfilm
(GE Healthcare), and STRUCTURIX X-ray film processor (GE Healthcare).

ELISA for IFN and viral antigen. Supernatants from mock or VSV-infected HT-29
cells were collected and measured by human IL-29/IL-28B (IFN-lambda 1/3)
Duoset ELISA kit (R&D Systems, DY 1598B-05), human pan IFN-α ELISA kit
(R&D, 41100-1), human IFN-β ELISA kit (R&D, 41410-1), and human TNF-α
ELISA kit (R&D, DY210-05) according to the manufacturers’ instructions.

RNA extraction and RT-qPCR. Total RNA was extracted as previously descri-
bed41. Except for strand-specific PCR for NSP3, random hexamer was used for
reverse transcription reaction. qPCR was performed with the Stratagene Mx3005P
(Agilent) with a 25 µl reaction consisting of 50 ng of cDNA, 12.5 µl of Power SYBR
Green master mix (Applied Biosystems), and 200 nM both forward and reverse
primers. All SYBR Green primers (Supplementary Table 1) have been validated
with dissociation curves and electrophoresis of the correct amplicon size.

RNA sequencing. Total RNA from WT and STAG2−/− HT-29 cells was extracted
using the RNeasy Mini Kit (Qiagen). RNA sample quality was examined by
NanoDrop spectrophotometer (Thermo Fisher) and Bioanalyzer 2100 (Agilent).
Libraries were sequenced on both Illumina HiSeq4000 and BGISEQ-500 platforms.
The SE reads were aligned to the hg19 build using Bowtie2 to map clean reads to
reference gene and using HISAT2 to reference genome with the following para-
meters: --phred64 --sensitive -I 1 -X 1000. Reads were counted using Subread and
differential gene expression analysis of BGI data was performed using DESeq2
(Supplementary Data 2).

Immunofluorescence. Confocal analysis was performed as previously described13.
In brief, cells were fixed with 4% paraformaldehyde and stained with the following
primary antibodies or fluorescent dyes: 53BP1 (Abcam, #ab21083, 1:200), dsDNA

(Santa Cruz, HYB331-01, sc-58749, 1:100), HA (6E2)-Alexa Fluor 647 (CST,
#3444, 1:100), p-IRF3 Ser396 (CST, D6O1M, #29047, 1:200), NSP2 (clone 191,
1:200)-Alexa Fluor 488, STAG2 (CST, D25A4, #5882), VP6 (clone 1E11, 1:200)-
Alexa Fluor 488, MitoTracker Red CMXRos (Thermo Fisher, M7512), and
Phalloidin-Alexa Fluor 647 (Thermo Fisher, A22287). Stained cells were washed
with phosphate-buffered saline, mounted with Antifade Mountant with 4,6-dia-
midino-2-phenylindole (Thermo, P36962), and imaged with Zeiss LSM 710 Con-
focal Microscope. Z-stack was applied for imaging 3D human enteroids. Co-
localization was analyzed by Volocity v5.2 (PerkinElmer) and 53BP1 punta were
quantified with ImageJ.

Human intestinal enteroids. Lgr5+ crypt cells were isolated from ileum biopsies
of healthy individuals and small intestinal enteroids were cultured and infected as
previously described27. In brief, after removal of Matrigel, enteroids were trans-
duced with empty vector or lenti-CRISPR_v2 to deplete STAG2 for 10 days and
then infected with human RV WI61 strain (MOI= 1) for 24 h. Mock or RV-
infected enteroids were harvested for qPCR measuring RV NSP5 level and plaque
assay for titration. All human intestinal enteroid experiments are in compliance
with Stanford University human subject IRB requirements.

Statistical analysis. The bar graphs are displayed as means ± SEM. Statistical
significance in Fig. 2a, c and in Supplementary Figs. 1B, 2D, 3A, 3C, 4E, 5A, 5D,
and 6B was calculated by Student’s t-test using Prism 7.0c (GraphPad) and indi-
cated on each figure (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001). Statistical significance in
Figs. 1c, 2e, and 3c and in Supplementary Figs. 1E, 2A, 4B, 4C, 5E, 6A, 7C, and 8E
was calculated by a pairwise analysis of variance (ANOVA) test using Prism 7.0c
(GraphPad). Statistical significance of Supplementary Fig. 2B was calculated by
two-way ANOVA test using Prism 7.0c (GraphPad). All experiments, unless
otherwise noted, have been repeated at least three times.

Data availability. All relevant data are available from the paper or from the
authors upon request.
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