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CT image segmentation 
for inflamed and fibrotic 
lungs using a multi‑resolution 
convolutional neural network
Sarah E. Gerard1*, Jacob Herrmann2, Yi Xin3, Kevin T. Martin4, Emanuele Rezoagli5,7, 
Davide Ippolito6, Giacomo Bellani5,7, Maurizio Cereda4, Junfeng Guo1,8, Eric A. Hoffman1,8, 
David W. Kaczka1,8,9 & Joseph M. Reinhardt1,8

The purpose of this study was to develop a fully‑automated segmentation algorithm, robust to 
various density enhancing lung abnormalities, to facilitate rapid quantitative analysis of computed 
tomography images. A polymorphic training approach is proposed, in which both specifically 
labeled left and right lungs of humans with COPD, and nonspecifically labeled lungs of animals with 
acute lung injury, were incorporated into training a single neural network. The resulting network is 
intended for predicting left and right lung regions in humans with or without diffuse opacification 
and consolidation. Performance of the proposed lung segmentation algorithm was extensively 
evaluated on CT scans of subjects with COPD, confirmed COVID‑19, lung cancer, and IPF, despite 
no labeled training data of the latter three diseases. Lobar segmentations were obtained using 
the left and right lung segmentation as input to the LobeNet algorithm. Regional lobar analysis 
was performed using hierarchical clustering to identify radiographic subtypes of COVID‑19. The 
proposed lung segmentation algorithm was quantitatively evaluated using semi‑automated and 
manually‑corrected segmentations in 87 COVID‑19 CT images, achieving an average symmetric 
surface distance of 0.495± 0.309 mm and Dice coefficient of 0.985± 0.011 . Hierarchical clustering 
identified four radiographical phenotypes of COVID‑19 based on lobar fractions of consolidated and 
poorly aerated tissue. Lower left and lower right lobes were consistently more afflicted with poor 
aeration and consolidation. However, the most severe cases demonstrated involvement of all lobes. 
The polymorphic training approach was able to accurately segment COVID‑19 cases with diffuse 
consolidation without requiring COVID‑19 cases for training.

Computed tomographic (CT) imaging has played an important role in assessing parenchymal abnormalities in 
lung diseases such as chronic obstructive pulmonary disease (COPD), and more recently, the novel coronavirus 
disease (COVID-19). CT imaging is important for diagnostics as well as quantifying disease involvement and 
progression over time. CT-based disease quantification can be used for patient stratification, management, and 
 prognostication1,2. Automated analysis of images is critical for objective quantification and characterization of 
large numbers of CT datasets. In particular, reliable lung and lobe segmentation is an important precursor to 
quantifying total lung and regional involvement of the disease.

Conventional lung and lobar segmentation approaches programmatically achieve segmentation using prior 
information about voxel intensity and second-order structure in small  neighborhoods3–9. More advanced 
methods have used shape priors in the form of atlases or statistical shape  models10–15. Recently, deep learning 
approaches have surpassed the performance of rule-based segmentation by learning important features for 
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segmentation from labeled training data. A multi-scale CNN approach for segmentation of acutely injured lungs 
in animal models demonstrated that incorporation of global features improved lung segmentation in cases with 
diffuse  consolidation16. FissureNet is a deep learning based fissure segmentation method which identifies the 
boundaries between  lobes17, a critical step for lobar segmentation. Preliminary work on extending FissureNet to 
segment lobes was proposed, although this method was only evaluated on chronic obstructive pulmonary disease 
(COPD) cases without density enhancing  pathologies18. Other methods have directly learned lobe segmentation 
without first explicitly identifying lungs and  fissures19,20.

Automated lung segmentation in patients with COVID-19 is a challenging task, given the multitude of 
nonspecific features that appear on CT (i.e., bilateral and peripheral ground-glass opacities and consolidation). 
Intensity-based segmentation methods may fail to include infected regions, which is critical for any image 
quantitative analysis. Furthermore, lung opacities can obscure the fissure appearance, making it challenging to 
identify lobes. CNNs have great potential for automated segmentation due to their ability to identify low-level 
and abstract features. However, a challenge with deployment of deep learning methods in medical imaging is the 
accessibility to labeled training data representative of all disease phenotypes—for example, a lobar segmentation 
network trained only on data from COPD patients is unlikely to perform well in COVID-19 patients with diffuse 
lung and focal lung consolidation.

Additional labeled training data may be available, although the labels may not have the desired level of speci-
ficity. For example, a voxel corresponding to parenchymal tissue may simply be labeled as lung (as opposed to 
non-lung) or it could be more specifically labeled as left or right lung (see Fig. 1). Although nonspecific labels 
may not be directly useful for training networks to predict specific labels, the nonspecific dataset may still contain 
important disease phenotypes absent from the dataset with specific labels. We thus hypothesize that data with 
generic labels can still be valuable when training a network to predict specific labels. Ideally, training would 
accommodate labels with different degrees of specificity (i.e., a hierarchical categorization). In this study, we 
propose a solution to accommodate partially labeled training data, wherein “partial” refers to different degrees 
of specificity in a hierarchical categorization of labels. We refer to this solution as “polymorphic” training. Poly-
morphism in biology and computer science refers to the ability of organisms and data types to exist as one of 
multiple subtypes (e.g., schnauzer is a subtype of dog, dog is a subtype of mammal). We propose a polymorphic 
training strategy that injects supervision at different network layers predicting different subtypes of voxel clas-
sification, specifically for data with hierarchical labels.

The specific aim of this work was to develop an algorithm for fully-automated and robust lung segmentation 
in CT scans of patients with pulmonary manifestations of COVID-19, to facilitate regional quantitative analysis. 
In related work,  FissureNet17 and  LobeNet18 were proposed for robust segmentation of pulmonary fissures and 
lobes. However, FissureNet and LobeNet cannot be applied directly to CT images, but require an initial lung 
segmentation which distinguishes left versus right lung. Automated lung segmentation for COVID-19 images 
is challenging due to diffuse consolidation obscuring lung boundaries. In this work, we propose a segmentation 
method which identifies left and right lungs in COVID-19 images. Given the scarcity of labeled COVID-19 CT 
images available for training, two existing datasets with complementary features were used: (1) a dataset from 
patients with COPD, with specifically labeled left and right lungs; and (2) a dataset from experimental animal 
models of acute lung injury, with only a single nonspecific lung label. The first dataset provides human training 
examples with specific left and right lung labels, while the second dataset contains important disease phenotypes 

Figure 1.  (A) Motivation for polymorphic training. In this work, the desired segmentation target is 
consolidated cases with specific labels of left lung (LL), right lung (RL), and background (B) (upper right). 
However, only normal cases with specific labels (upper left) and consolidated cases with non-specific labels 
of lung (L) and background (B) (lower right) are available for training. The proposed polymorphic training 
approach allows us to utilize the available training data and generalize to the target domain of consolidated 
specifically labeled cases (upper right). (B) Standard training (top) using only specifically labeled COPD images 
lacks the consolidation phenotype necessary to successfully segment injured regions in COVID-19 images. 
Polymorphic training (bottom) utilizes specifically labeled COPD images with nonspecifically labeled animal 
models of acute lung injury to achieve specific lung labels including injured regions in COVID-19 images. The 
specific lung labels are depicted in green and blue for left and right lung, respectively. The nonspecific lung label 
is depicted in orange.
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(i.e., ground glass opacification and consolidation) absent from the COPD images (see Fig. 1). The design of 
the polymorphic training is motivated by a need to accommodate labeled training data with heterogeneous 
degrees of subclassification, since datasets may have a single label for all lung tissue or labels distinguishing left 
and right lungs.

Materials and methods
Datasets. The number of images used for training and evaluation are summarized in Table 1. A combina-
tion of human and animal CT datasets with different diseases were utilized for training the lung segmentation 
model. Human datasets were acquired from  COPDGene21, a multi-center clinical trial with over 10,000 COPD 
patients enrolled. Animal datasets of acute lung injury models included canine, porcine, and ovine species  (see16 
for detailed description of datasets). In total, 1000 human CT images and 452 animal CT images were used 
for training the lung segmentation module. Note, only 1000 of the COPD CT images were used for training in 
effort to avoid a large imbalance between disease phenotypes in the training data. All training CT images have 
a ground truth lung segmentation generated automatically using the Pulmonary Analysis Software Suite (PASS, 
University of Iowa Advanced Pulmonary Physiomic Imaging  Laboratory22) with manual correction if necessary. 
For human datasets, ground truth segmentations distinguished the left and right lungs, whereas the animal 
datasets had only a single label for all lung tissue. It is important to note that separation of left and right lungs is 
not trivial due to close proximity of the left and right lungs, especially in the three animal species used due to the 
accessory lobe adjacent to both the left and right lungs.

A dataset of 133 clinical CT images of COVID-19 patients was acquired from: the Hospital of San Gerardo, 
Italy; University of Milan-Bicocca, Italy; Kyungpook National University School of Medicine, South Korea; and 
Seoul National University Hospital, South Korea. Patients were included based on confirmed COVID-19 diag-
nosis by nucleic acid amplification tests. Data use was approved by Institutional Review Boards at University of 
Milano-Bicocca, the Hospital of San Gerardo, Kyungpook National University School of Medicine, and Seoul 
National University Hospital. Given the retrospective nature of the study and in the presence of technical difficult 
in obtaining an informed consent of patients in this period of pandemic emergency, informed consent was be 
waived and all data was anonymized. All procedures were followed in accordance with the relevant guidelines. 
Details from the Korean COVID-19 cases are provided in Nagpal et al.23. Ground truth lung segmentations were 
performed for 87 cases using  PASS22 or pulmonary toolkit (PTK)24 with manual correction as necessary. Manual 
correction required an average of 94± 48 min per case.

To evaluate the performance on other pulmonary diseases, three additional evaluation datasets were utilized: 
5986 CT images from COPDGene, 1620 CT images from lung cancer patients undergoing radiation therapy, 
and 305 CT images from patients with idiopathic pulmonary fibrosis (IPF). Ground truth segmentations were 
generated using PASS followed by manual correction.

Multi‑resolution model. The LungNet module used a multi-resolution approach adapted  from16 to facili-
tate learning both global and local features important for lung segmentation. LungNet consists of a cascade of 
two CNN models; the low-resolution model LungNet-LR and the high-resolution model LungNet-HR.

LungNet-LR was trained using low-resolution images. All CT images and target label images are downsam-
pled to 4 mm isotropic voxels using b-spline and nearest-neighbor interpolation for the CT and label images, 
respectively. A Gaussian filter was applied to the CT images prior to downsampling to avoid aliasing. LungNet-LR 
yields a three-channel image, corresponding to predicted probabilities for left lung, right lung, and background.

LungNet-HR was trained with high-resolution images. The CT image, the output of LungNet-LR, and the 
target label image were resampled to have 1 mm isotropic voxels for consistency. The CT image and left/right 
probability maps were then combined to produce a three-channel input for training the high-resolution net-
work. Similar to LungNet-LR, the output of LungNet-HR was a three-channel probability image. The final lung 
segmentation was obtained by thresholding the left and right probability channels at p = 0.5.

Polymorphic training. We used a novel polymorphic training strategy, illustrated in Fig. 2, which incorpo-
rated all information in partially labeled datasets. The ultimate goal was to train a network that could distinguish 
left versus right lung, with or without abnormal pathological features. The three-channel prediction image pro-
duced by the last layer of Seg3DNet, denoted ŶLR , yielded channels corresponding to left lung, right lung, and 
background probabilities. To make this output compatible with the animal datasets, which have only a single 
lung label, an auxiliary layer with supervision was added to the network after ŶLR . The auxiliary layer performed 

Table 1.  Number of 3D CT images used for training and evaluation.

Training Evaluation

COPDGene 1000 5986

Animal ARDS 453 –

Cancer – 1620

IPF – 305

COVID-19 – 87

Total 1453 7998
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a voxelwise summation of the two channels of ŶLR corresponding to left and right lung prediction. The result-
ing single-channel image was concatenated with the background channel of ŶLR . This produced a two-channel 
prediction image, denoted ŶT , with the channels corresponding to lung versus background. During training, 
supervision was provided at both ŶLR and ŶT . Equal numbers of human and animal images were sampled for 
each batch. Ground truth images were denoted YLR for labeled images that distinguished left versus right lung, 
and YT for labeled images that had a single label for total lung. The loss between ŶLR and YLR was computed 
using only the human half of the batch, while the loss between ŶT and YT was computed using the entire batch 
by converting YLR to YT for human cases. These two losses were equally weighted during each training step.

Lobar analysis. Lobar segmentations were obtained by using the proposed left and right lung segmentation 
as input to the FissureNet and LobeNet algorithms, which is currently the leading performer in the LOLA11 
grand challenge. No additional training of FissureNet and LobeNet was performed. Regional lobar analysis was 
performed using hierarchical clustering to identify subtypes of COVID-19.

Ablation study. To evaluate the contribution of the polymorphic training approach for lung segmentation, 
the proposed approach was compared to a nonpolymorphic model. The nonpolymorphic model only used the 
human CT images of COPD for training (i.e., the auxiliary layer and animal training data were not utilized). 
Otherwise, there were no differences in the design or training of the polymorphic and nonpolymorphic models. 
A two-way analysis of variance was performed with model type as a categorical variable and nonaerated lung 
volume fraction as a continuous variable, as well as an interaction term.

Results
Lung segmentation. Lung segmentation results for the polymorphic and nonpolymorphic models are 
shown in Fig. 3. Quantitative evaluation of lung segmentations was performed on CT images by comparing the 
segmentations to ground truth manual segmentations. The Dice coefficient was used to measure volume over-
lap and the average symmetric surface distance (ASSD) was used to assess boundary accuracy. The ASSD and 
Dice coefficient results for each of the four evaluation datasets are shown in Table 2. Overall, on the COVID-19 
dataset the polymorphic model achieved an average ASSD of 0.495± 0.309 mm and average Dice coefficient 
of 0.985± 0.011 . By comparison, the nonpolymorphic model achieved an average ASSD of 0.550± 0.546 mm 
and average Dice coefficient of 0.982± 0.024 . ASSD and Dice coefficient results with respect to nonaerated 
lung volume fraction are displayed in Fig.  4. Two-way analysis of variance revealed a significant interaction 
between model and nonaerated fraction for each evaluation metric, indicating that the regression coefficients 
with respect to nonaerated fraction were significantly different for polymorphic versus nonpolymorphic models.

Lobar segmentation. Lobar segmentation results for the proposed method and PTK are shown in Fig. 5 
for right lungs and Fig. 6 for left lungs. For each image in the COVID-19 dataset (133 images in total), the lobar 
segmentation result was used to extract the amount of poor aeration ( −500 < HU < −100 ) and consolidation 
( HU ≥ −100 ) in each lobe. Common phenotypes of COVID-19 affected lungs were identified by hierarchical 
clustering over the fraction of poorly aerated and consolidated tissue in each lobe. Dendrographic analysis in 

Figure 2.  Polymorphic training accommodates labeled data with different degrees of specificity. In this case 
some labeled training have specific labels distinguishing left and right lung, while other training data only have a 
single label for all lung tissue.
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Fig. 7 reveals four primary clusters of patients that were identified by the hierarchical clustering: (a) mild loss of 
aeration primarily in the two lower lobes without consolidation; (b) moderate loss of aeration focused in the two 
lower lobes with or without consolidation in lower lobes; (c) severe loss of aeration throughout all lobes with or 
without consolidation; and (d) severe loss of aeration and consolidation throughout all lobes.

Figure 3.  Axial slices of CT images (left column) and lung segmentation results for the nonpolymorphic model 
(center column) and the polymorphic model (right column) algorithms for four COVID-19 patients (by row). 
Correctly classified voxels are displayed in blue and green for right and left lungs, respectively. False negative and 
false positive voxels are illustrated in pink and yellow, respectively.
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Discussion
In this study, we proposed and implemented a novel polymorphic training algorithm for lung and lobar seg-
mentation in a fully automated pipeline. The pipeline was independently evaluated on CT scans of subjects with 
COVID-19, lung cancer, and IPF—however, no COVID-19, lung cancer, or IPF scans were utilized for training 
the CNNs. Additionally, the pipeline was extensively evaluated on CT scans of patients with COPD. The COVID-
19 scans are considered very challenging cases for lung and lobe segmentation. Peripheral and diffuse opacities 
result in little contrast at the lung boundary. In many cases, the fissure appearance was irregular due to close 
proximity of infection. Furthermore, these are clinical scans with some cases having slice thickness greater than 
3 mm. Fissure segmentation is especially challenging on such cases. Success of the proposed algorithm on these 
cases lends to the generalizability of the proposed approach.

Out lung segmentation algorithm was quantitatively evaluated on 7998 CT images, consisting of four dis-
tinct pulmonary pathologies. To our knowledge, this is the most extensive evaluation of a lung segmentation 
algorithm to date. The polymorphic and nonpolymorphic models both achieve sub-voxel lung segmentation 
accuracy and demonstrate generalizability across datasets and diseases which were not used for training. The 
polymorphic and nonpolymorphic models achieved similar performance on COPD, IPF, and lung cancer cases 
and on COVID-19 cases without consolidation. The ablation studied demonstrated that the polymorphic model 
was able to accurately segment COVID-19 cases with severe consolidation, whereas the nonpolymorphic model 
failed on such cases.

Gerard et al proposed a transfer learning approach for lung segmentation in animal images, using a network 
pre-trained on human  datasets16. This resulted in two networks that performed well in their respective domains: 
humans with COPD, and animals with diffuse opacities. However, neither network was developed to performed 
adequately in the domain of humans with diffuse opacities. In this study, we utilized the human and animal data-
sets for training in a combined domain, which led to accurate performance on human datasets with diffuse opaci-
ties and consolidation (COVID-19). This was achieved using novel polymorphic training to accommodate both 
human and animal datasets with different degrees of label specificity. The lung module trained only with COPD 
datasets (i.e., nonpolymorphic training) performed poorly on COVID-19 cases with consolidation. By contrast, 
the fissure and lobar modules showed high performance despite being trained on COPD datasets exclusively.

Our lung segmentation which identifies left and right lungs can be used as input to the LobeNet algorithm to 
achieve lobar segmentation. The lobar segmentations can be used to quantify involvement of disease at the lobar 
level, and thus may identify clusters of patients with similar phenotypes indicative of disease stage or prognosis. 
Pan et al. reported predominant lower lobe involvement in early disease that progresses to all lobes at the peak 
of disease  severity25. Inui et al. reported similar findings in the Diamond Princess cohort and also found that 
83% of asymptomatic patients have more ground glass opacities than consolidation compared to only 59% of 
symptomatic  patients26. The four quantitatively identified clusters in our study match the results of qualitative 
scoring performed by radiologists in these  studies25,26. Cluster (a) is similar to early disease phenotype with 
predominantly ground glass opacities in the lower lobes; cluster (d) is similar to peak disease phenotype with 
large amounts of consolidation and ground glass opacities in all lobes; and clusters (b) and (c) may represent 
transitional phenotypes. Clinical information could be used to validate this analysis. Huang et al. performed a 
similar lobar analysis using a deep learning approach and also reported increasing opacification with disease 
progress. However, they did not show lobar segmentation results in a manner that allows us to qualitatively 
assess their  accuracy27.

Our computational pipeline required an average of 2.5 min to run on a GPU. By comparison, manual seg-
mentation of lungs and lobes takes several hours, which is not feasible in clinical settings. Our approach thus 
allows regional quantification of disease at the lobar level, which would otherwise not be possible in such a short 
time frame. Lobar characterization of disease involvement may also assist in identifying subtypes of COVID-19 
for treatment stratification.

A limitation of the current work is lack of comparison to other lung segmentation methods. Given this is the 
first attempt to handle training data with different levels of specificity, other comparisons would be limited to 

Table 2.  Lung segmentation results for polymorphic (Poly) and nonpolymorphic (Non-Poly) models. Results 
are stratified by lung (LL: left lung, RL: right lung) and the four evaluation datasets.. ASSD results are in mm.

COPD Cancer IPF COVID-19

N = 5986 N = 1620 N = 305 N = 87

LL RL LL RL LL RL LL RL

ASSD

Non poly 0.339 0.300 0.355 0.485 0.478 0.500 0.514 0.586

Poly 0.378 0.346 0.430 0.513 0.505 0.594 0.480 0.510

Dice

Non Poly 0.990 0.992 0.990 0.987 0.985 0.985 0.982 0.982

Poly 0.989 0.991 0.988 0.986 0.984 0.982 0.984 0.985
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training on only the COPD dataset. This would not be an appropriate comparison for evaluation on COVID-19 
cases, as demonstrated by the ablation study in this work. Another limitation is the number of COVID-19 cases 
available, making it difficult to draw conclusions from the regional analysis. We only proposed a type of analysis 
that can be performed, and did not make any conclusions regarding disease prognosis and stratification. In this 
work, polymorphic training approach was applied to identifying left versus right lung. However, this approach 
could be generalized to other problems with hierarchical labels. A natural extension of this work is to apply the 
polymorphic training to lobes, which can be explored in the future.

Figure 4.  Quantitative evaluation of lung segmentation on the COVID evaluation dataset ( N = 87 ). The 
proposed polymorphic model (black) is compared to a nonpolymorphic model (white) using ASSD and the 
Dice coefficient. Results are stratified by nonaerated lung volume percent in the right panel. Left and right lung 
results are denoted using left- and right-facing triangles, respectively (left: ◭⊳ , right: ◮⊲ ). Linear regression for 
polymorphic (solid) and nonpolymorphic (dashed) models revealed significantly different coefficients for ASSD 
in mm %−1 (polymorphic: 0.073, nonpolymorphic: 0.138, p < 0.001 ) and Dice coefficient in %−1 (polymorphic: 
− 0.003, nonpolymorphic: − 0.006, p < 0.001).
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Figure 5.  Sagittal slices of CT images (left column) and right lobe segmentation results for the PTK (center 
column) and proposed (right column) algorithms for four COVID-19 patients (by row).
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Figure 6.  Sagittal slices of CT images (left column) and left lobe segmentation results for the PTK (center 
column) and proposed (right column) algorithms for four COVID-19 patients (by row).
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Conclusion
In summary, we have demonstrated a robust deep learning pipeline for lung and lobar segmentation of CT images 
in patients with COVID-19, without requiring previously segmented COVID-19 datasets for training. A novel 
polymorphic algorithm was proposed to accommodate training data with different levels of label specificity. 
Our approach accurately segmented lungs and lobes across various pulmonary diseases, including challenging 
cases with diffuse consolidation seen in critically-ill COVID-19 patients. Automated and reliable segmentation is 
critical for efficient and objective quantification of infection from CT images, and may be valuable for identifying 
subtypes and monitoring progression of COVID-19.
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