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Purpose: This study aimed to develop a fully automated deep learning ciliary
body segmentation and assessment approach in three-dimensional ultrasound biomi-
croscopy (3D-UBM) images.

Methods: Each 3D-UBM eye volume was aligned to the optic axis via multiplanar refor-
matting. Ciliary muscle and processes were manually annotated, and Deeplab-v3+
models with different loss functions were trained to segment the ciliary body (ciliary
muscle and processes) in both en face and radial images.

Results:We trained and tested themodels on 4320 radial and 3864 en face images from
12 cadaver eye volumes. Deep learning models trained on radial images with Dice loss
achieved the highestmean F1-score (0.89) for ciliary body segmentation. For three-class
segmentation (ciliary muscle, processes, and background), radial images with Dice loss
achieved the highest mean F1-score (0.75 for the ciliary process and 0.82 for the ciliary
muscle). Part of the ciliary muscle (10.9%) was misclassified as the ciliary process and
vice versa, which occurred owing to the difficulty in differentiating the ciliary muscle–
processes border, evenby experts. Deep learning segmentationmade further editing by
experts at least seven times faster than a fully manual approach. In eight cadaver eyes,
the average ciliary muscle, process, and body volumes were 56 ± 9, 43 ± 13, and 99 ±
18 mm3, respectively. The average surface area of the ciliary muscle, process, and body
were 346 ± 45, 363 ± 83, and 709 ± 80 mm2, respectively. We performed transscle-
ral cyclophotocoagulation in cadaver eyes to shrink the ciliary processes. Both manual
and automated measurements from deep learning segmentation show a decrease in
volume, surface area, and 360° cross-sectional area measurements.

Conclusions: The proposed deep learning segmentation of the ciliary body and
3D measurements showed transscleral cyclophotocoagulation-related changes in the
ciliary body.

Translational Relevance: Automated ciliary body assessment using 3D-UBM has the
translational potential for ophthalmic treatment planning and monitoring.
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Introduction

Glaucoma, the second leading cause of blindness,
is defined as damage to the optic nerve mainly owing
to increased pressure (intraocular pressure [IOP]) in
the eye.1 Aqueous humor (AH), a clear fluid with a
consistency similar to water, is produced constantly
from the ciliary body. After being produced behind
the iris, AH travels through the pupil, circulates in
the anterior chamber, and drains away from the eye
through openings at the iridocorneal angle. At the
iridocorneal angle, a filtering meshwork (trabecular
meshwork [TM]) exists, which also helps to regulate the
drainage, as it forms resistance to the flow. Through
the TM, AH flows into Schlemm’s canal and then
to the collector channels and gets absorbed into
the episcleral veins. This drainage pathway repre-
sents approximately 80% of the drainage, and the
remaining 20% is drained through the uveoscleral
pathway.

If the drainage of AH does not match the produc-
tion, or if the normal circulation is blocked because
of various pathologies, there is an increase in the
IOP gradient to maintain an outflow equal to the
inflow. The normal range of the IOP is accepted to
be 10 to 21 mm Hg; an IOP of greater than 22 mm
Hg is defined as elevation. This increase in the IOP
leads to irreversible damage to the optic nerve, causing
glaucoma. Therefore, early detection, treatment, and
follow-up are crucial to preventing blindness.

Several types of glaucoma are mainly defined
by the cause of the IOP increase (e.g., inflamma-
tory, pigment dispersion, neovascular, and secondary
tumors), anatomic changes (e.g., open angle, closed
angle, narrow-angle, secondary to pupil block, and
traumatic), age of onset (e.g., congenital and juvenile),
and other reasons affecting AH circulation.

To truly understand the mechanism of glaucoma,
doctors need to visualize the ciliary body (ciliary
processes and ciliary muscles), iris, pupil, lens, sulcus,
anterior chamber, iridocorneal angle (and TM),
Schlemm’s canal, collector channels, and episcleral
veins in good detail.2–4 In congenital glaucoma, the
most severe form of glaucoma, the affected babies are
born with underdeveloped or malformed structures
affecting the normal circulation of AH. Therefore, in
many cases, understanding which part of the ocular
anatomy is altered allows the appropriate surgical
correction to normalize the structures or to allow
bypassing the blocked areas of drainage. Unlike in
adults, where the vast majority of the cases can be
treated with topical and/or oral medications, the
pediatric population and adult patients with advanced

or complicated glaucoma are treated with surgical
intervention.5,6

Surgical treatments for glaucoma involve angle
surgeries (i.e., goniotomy and trabeculotomy) or more
disruptive approaches (trabeculectomy, tube shunt,
and cyclophotocoagulation [CPC]).7 Surgical success
is highly correlated with the experience and approach
of the physician, timing, postoperative care, and the
wound-healing process of the individuals. However,
anatomic variations in the patients’ eyes inevitably
affect the outcome immensely, and many studies
have failed to show surgical success with underlying
anatomic variations.5,8–11

Ophthalmologists use different imaging techniques
to visualize the various anatomic structures. Histor-
ically, microscopes, magnifying lenses, and mirrors
have been used for direct visualization of the struc-
tures. These techniques are readily available in every
ophthalmic practice and hence widely used, but are
limited by their potential subjectivity, patient coopera-
tion, experience of the examiner, inability to see behind
the iris and through the sclera, and limited capturing
techniques.12

Objective assessment of the anterior segment is
enabled by imaging modalities such as ultrasound
biomicroscopy (UBM) and anterior segment optical
coherence tomography. UBM has been used to quanti-
tatively assess tissue structures important in the devel-
opment, mechanistic analyses, and the treatment of
glaucoma.13–15 Anterior segment optical coherence
tomography is noncontact and has a higher resolution
than UBM. However, it is expensive and has limited
ability to image structures posterior to the iris, that
is, the ciliary body, because the iris is opaque to light.
Optical coherence tomography also cannot be used in
the case of disease or injury causing increased opacity
in the eye.14 According to He et al.,13 the major contri-
bution of UBM is in glaucoma diagnosis, staging, and
surgeries.

Studies on assessing the ciliary body in the litera-
ture are either qualitative or only focus on the two-
dimensional (2D) distance-based biometrics of the
tissue, which is not automated, time consuming, and
observer dependent.2–4,16 Ku et al.3 showed that
patients with a large ciliary body had an increased
likelihood of having angle-closure glaucoma. Wang et
al.4 compared the structural differences of the ciliary
body in eyes with and without malignant glaucoma
using several point-to-point distance measures on
the ciliary body, such as the maximum thickness,
thickness at the point of the scleral spur, 1000 μm
from the scleral spur, anterior placement of the ciliary
body, and trabecular–ciliary process angle. They
found that the ciliary body was anteriorly rotated
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and decreased in thickness in eyes with primary angle
closure.4 Moreover, they stated the need for studies
to “elucidate the relationship between ciliary body
parameters and the mechanism of primary-angle
closure.” Safwat et al.16 showed a decrease in the
IOP and morphological change in the ciliary body
(decrease in length-based metrics) after CPC, where
part of the ciliary body shrinks owing to laser applica-
tion. Besides glaucoma, the ciliary body is important
in the study of lens accommodation. Accommoda-
tion is the process through which a lens can adjust
its focus from distant to near objects (and vice versa)
using ciliary muscle contraction (and expansion).
Pardue et al.17 confirmed age-related changes in the
ciliary body. Another study explored the quantitative
measurements of ciliary muscle during accommo-
dation only using UBM images and argued that
“UBM … allowed reliable, objective, quantitative
measurements of the accommodative intraocular
biometric changes.”18 These important retrospective
2D studies, requiring the saving of optimal 2D-UBM
views, would be much easier and more accurate than
three-dimensional (3D)-UBM providing all views.

Three-dimensional UBM enables unique visualiza-
tion and quantification of anterior segment struc-
tures invisible to light, such as the ciliary muscle
and ciliary processes. Clinical 2D-UBM systems are
inexpensive, available, and reimbursed in the United
States, but they are underused owing to the lack of
clinical expertise and a dedicated ultrasound opera-
tor. Limitations lie in the visualization of the whole
anterior segment and accurate measurements of these
landmark-based biometrics, because these depend on
the ultrasound operator’s expertise to properly align
the probe and manually locate landmarks.13,19 Qureshi
et al.19 measured ciliary body biometrics (i.e., ciliary
body thickness, area, length, and ciliary body–iris
contact distance) from UBM images and found poor
agreement between observers. Li et al.20 measured
similar ciliary body biometrics with transverse images
(as opposed to longitudinal images) and showed good
intraobserver reliability and interobserver agreement.
They concluded that conventional longitudinal images
cannot capture the ciliary processes folds and leads to
poor agreement between observers. Although biomet-
rics from transverse images provide better agreement,
they are not capable of providing anatomic informa-
tion of the ciliary body relative to other structures.
With 3D-UBM, images are acquired by a nonspecial-
ist and interpreted intuitively. With interactive digital
slicing of a 3D-UBM volume, one can position planes
for accurate 2D biometric measurements. In addition,
3D-UBM allows both en face and conventional 2D
views alongside unique 3D visualization and measure-

ments of 3D biometrics, enabling a whole 360° anterior
segment evaluation, which is not possible by the current
clinical practice of 2D-UBM, because the ultrasound
operator takes images at a few selected orientations.

Semantic segmentation is the task of classify-
ing each pixel (voxel) in an image into a particu-
lar set of classes. Segmentation of the ciliary body
tissues, such as ciliary muscle and ciliary processes
in 3D-UBM volume, enables intuitive visualization
and measurements of the tissue not possible via a
manual approach. Deep learning–based approaches
have been very popular and applied successfully in
different tasks in the medical image domain, namely,
image reconstruction, anomaly detection, classifica-
tion, and semantic segmentation of organs.21–24 For
a specific task, deep learning networks learn from
examples and may be used to perform the same task
on an unseen dataset. Therefore, a trained deep learn-
ing segmentation network can predict the ciliary body
(muscle and processes) in 3D-UBM volumes.

In this study, we proposed a new method for the
visualization, segmentation, and 3D measurement of
the ciliary body with 3D-UBM. This process includes
acquiring 3D volume visualizations of the anterior
chamber and the ciliary body, creating radial and en
face views of the ciliary body, segmenting the ciliary
body using a deep learning method, and creating 3D
measurements.We evaluated the segmentationmethod,
and automated measurements are compared against
manual measurements. To our knowledge, this publi-
cation is the first focusing on the segmentation of the
ciliary body and automated measurements.

Methods

The 3D-UBM System

We created a 3D-UBM imaging system using
a conventional high-frequency (50 MHz) 2D-UBM
probe.25 Figure 1 shows the design of the 3D-UBM
system. Amotorized stage moves the ultrasound probe
across the eye to capture the 3D volume of the anterior
segment. The system is attached to a surgical micro-
scope for precise placement above the eye. A thin
plastic layer filled with water (ClearScan) is applied
to the eye, which acts as an acoustically invisible layer
between the probe and the eye. We developed software
that coordinates the motor and probe movements and
image acquisition. Each 3D volume consists of 1000
sagittal images acquired along the x-axis across an
approximately 16-mm anterior segment. Each volume
is of size 1000 × 384 × 2048, with a physical dimen-
sion of approximately 16 mm× 16 mm× 10 mm. Each
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Figure 1. A 3D-UBM system and images of ciliary body tissues. The 2D-UBM probe is translated across the eye using a motorized stage
and surgical microscope to acquire a 2D image (yz plane) stack along the slow-scan direction (x-axis). From the acquired rendered volume,
sagittal image (yz), axial image (xz), and en face image (xy) of the ciliary muscle and ciliary processes can be visualized clearly.

volume scan consisting of 1000 sagittal images takes
approximately 100 seconds.

Image Preprocessing

Our approach to automated measurements of the
ciliary body using 3D-UBM starts with image prepro-
cessing, which includes optic axis alignment of the
entire volume and extraction of en face and rotational
images.

Each 3D-UBMvolumewas aligned tomake sure the
coronal plane is perpendicular to the optic axis (Fig. 2).
We used Amira (ThermoFisher Scientific, Waltham,
MA) to first semiautomatically find the plane, which
is perpendicular to the optic axis of the eye. We resam-
pled the volume based on that plane geometry. After
optic axis alignment, the ciliary muscle and processes
are visible in the same en face view, decreasing the effort
during manual segmentation. We used a voxel size of
0.05mm× 0.05mm× 0.05mm to resample the volume
to make an isotropic volume V (x, y, z). En face images
(xy images) can be obtained directly from the volume.

To create radial images, we performed multiplanar
reformatting on data along the optic axis with the pupil
as the center. Each 2D radial image is expressed as
Iθ (r,z), where z and r are the axis and radii of the radial
image data, respectively, and θ is the rotating angle
along the z-axis with the pupil as the center. The yz
plane is rotated anticlockwise at a specific angle inter-
val, and the coordinates of the Iθ (r,z) are extracted
using the following formula:{x = r cosθ

y = r sin θ

z = z

We interpolated each radial image Iθ (r,z) data from
the 3D volume V using trilinear sampling and obtained
radial images, as shown in Supplementary Figure S1.

Deep Learning Segmentation of the Ciliary
Body

We performed deep learning semantic segmenta-
tion of the ciliary body (muscle and processes) on
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Figure 2. Alignment of the 3D-UBM volume to the optic axis. (a) Direction convention used in 3D-UBM; (b) before resampling, the z-axis is
not parallel to the optic axis (green line); (c) misaligned en face view contains parts of the iris; (d) sagittal view after aligning volume to the
optic axis; and (e) correctly aligned en face view of the ciliary body, which contains ciliary muscle and processes.

Figure 3. Segmentation of ocular structures in the anterior segment of the eye. Green, anterior chamber; purple, iris; blue, ciliary muscle;
red, ciliary processes. Ciliarymuscle and ciliary processes together are called the ciliary body. Experts performmanual annotation by looking
at the ciliary body in 3D. Frommanual annotation, 3D volumetric and area measurements of ciliary muscle and processes can be made.

the resampled en face and radial images (Fig. 3).
En face images show a better distinction between
the ciliary muscle and the ciliary processes, which
is why we used the en face plane to create ground
truth annotations and other planes for verification.
We used the Deeplab-v3+ model for training our
segmentation model.26 A detailed schematic of the
deep learning segmentationmodel is shown in Figure 4.
Deeplab-v3+ contains an encoder–decoder architec-
ture, where the encoder aggregates discriminative
features at multiple scales, and the decoder gener-

ates a dense semantic segmentation mask using the
high-dimensional features obtained by the encoder.
The encoder in Deeplab-v3+ contains a backbone
network (i.e., Resnet) pretrained on ImageNet and is
used for extracting features. A wider receptive field
(field of view) leads to better semantic segmentation.
In addition to convolution blocks, Deeplab-v3+ uses
atrous convolution in the last few blocks of the encoder,
which increases the receptive field (or field of view)
without adding any computational cost. Deeplab-v3+
also contains an atrous spatial pyramid poolingmodule
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Figure 4. Deep learning convolution neural network (Deeplab-v3+) architecture for the semantic segmentation of the ciliary body. In the
output-labeled image, the red area is the ciliary process, blue is the ciliary muscle, and black is the background. For two-class segmentation,
the ciliary muscle and body are lumped together and noted as the ciliary body.

that uses atrous convolution at three dilation rates
(6, 12, and 18) to obtain multiscale semantic contex-
tual information. The decoder is used to restore the
edge information and resolution of the feature map
to obtain the final semantic segmentation mask. By
using these novel structures, Deeplab-v3+ produces
accurate semantic segmentation results among differ-
ent datasets.

We created two-class and three-class ciliary tissue
segmentation models. For two-class segmentation, the
model creates a probability map for the ciliary body
and background. For the three-class segmentation,
the model creates a probability map for the ciliary
muscle, ciliary processes, and background. The models
were trained on two different loss functions: weighted
cross-entropy (WCE) and Dice loss. Losses in models
were minimized using an adaptive moment estima-
tion optimizer and weights within the model were
updated. Once training was completed, test en face and
radial images were provided to the network as inputs.
The network creates a probability map for the image.
Each pixel is assigned the class that has the highest
probability.

Biometrics Measurements of the Ciliary Body

After segmentation of the ciliary body (muscle and
processes), we calculated unique 3D measurements of

the ciliary body. From the ground truth annotations
and automated segmentation, we measured the volume
of the ciliary body, ciliary muscle, and ciliary processes.
Ciliary processes increase the surface area by adding
folds to allow more fluid production.26 We measured
the number of ciliary processes, surface area of the
ciliary processes, muscle, and body. We computed the
cross-sectional ciliary body area in each radial slice,
giving us a 360° map of area metrics. We also measured
2D biometrics (i.e., ciliary muscle thickness and ciliary
processes length) following the approach suggested by
Li et al.20 However, whereas their approach computed
these biometrics based on a small visible portion of the
ciliary body, our approach computes these biometrics
over entire 360° of the anterior segment.

Dataset

We acquired a total of 12 eye volumes from 8
cadaver eyes using our 3D-UBM system. Four cadaver
eyes from two donors (a 67-year-old man and a
58-year-old woman) were purchased from Tissue for
Research Ltd. The other four cadaver eyes were
acquired from an eye bank and were scanned before
and after overlapping circumferential applications of
transscleral CPC (TS-CPC). In TS-CPC, a diode laser
probe is placed on the anterior border of the limbus,
and a laser is applied to shrink the ciliary tissue.
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A diode laser probe (G-probe, IRIDEX, Mountain
View, CA) was positioned parallel to the optic axis
to perform TS-CPC, and the laser was delivered at
2000 mW power for 2.5 seconds between 12 o’clock
and 6 o’clock of the eye successively covering 180°.
Cadaver eyes were placed in a 3D-printed eye holder
apparatus for scanning. All data are provided by
the Division of Pediatric Ophthalmology and Adult
Strabismus, Rainbow Babies and Children’s Hospital.
To perform labor-intensive, accurate manual segmen-
tation of ciliary processes and muscles, images were
segmented by two trained undergraduate students and
reviewed, and sometimes edited, by a senior PhD
student and ophthalmology resident. The initial trainer
and final arbiter on segmentation was an ophthalmol-
ogy specialist (F.H.O.), with 18 years of experience
in pediatric ophthalmology, which included regular
imaging of anterior segment structures with UBM.
For the two-class segmentation (ciliary body and
background), ciliary muscle and ciliary process labels
were added to create a new label: ciliary body. Region
filling was used to fill any hole within the label. We
generated both en face and radial images of the ciliary
muscle and processes from the eye volumes. From each
volume, 360 radial images are generated at 0.5° inter-
vals, as described in the Methods. Radial image data
consist of 4320 (12 volumes × 360 images per volume)
images. The number of en face images generated from
3D volumes was 3864 (12 volumes × 322 images per
volume) for comparison.

Deep Learning Network Training and
Performance Evaluation

We used three types of images to train the segmen-
tation networks: en face, radial, and radial image slab
(radial images and adjacent ±1 slice). The input size
for training images was 256 × 352 pixels (0.0455 mm ×
0.043 mm) to ensure near isotropic pixels in both direc-
tions, while maintaining height and width as a factor
of 2N (N = 4). We performed data augmentation, that
is, random rotation, reflection, scaling, translation, and
random adjustment of brightness, and contrast on our
training data to make the model robust and prevent
overfitting.

We optimized the deep learning segmentation
models using the adaptive moment estimation
optimizer.27 We set the initial learning rate, learning
rate factor, drop factor, and drop period empirically at
0.0001, 10, 0.2, and 5, respectively. Transfer learning
was used to train the segmentationmodel. AResNet-50
model pretrained on ImageNet was used as a backbone
for the Deeplab-v3+ encoder networks. The models

were fine tuned using the combination of a small initial
learning rate (0.0001) and a high learning rate factor
(10) for the new layers, which ensured a faster learning
process for the new layers than the transferred layers.
We trained models using two loss functions: WCE
and generalized Dice loss over the softmax outputs.
The maximum number of epochs was set to 100. If
the validation loss did not improve in five consecutive
epochs (drop period), the learning rate was dropped
by the drop factor (0.2). Early stopping was used
if validation loss did not improve for 10 successive
epochs. This was performed to prevent overfitting.
Models with the lowest validation loss were saved. All
images were processed using Amira (ThermoFisher
Scientific) and MATLAB (R2020b, MathWorks, Inc.,
Natick, MA) on an NVIDIA GeForce GTX 1080Ti
GPU (11 GB RAM).

We performed leave-one-eye-out cross-validation,
where each model was trained on all images, except
images from one eye that was left for testing. Evalu-
ation metrics were calculated on images from the
left-out eye. This training and testing processes were
repeated eight times with the eight cadaver eyes. Each
model was discarded after training, and the models
did not share any parameters between themselves.
Finally, performancemetrics from all eightmodels were
averaged to show the mean and standard deviation of
the overall performance metrics. Network performance
was quantitatively evaluated using traditional metrics,
for example, accuracy, sensitivity, specificity, precision,
and F1-SCORE defined as below:

Accuracy = (TP + TN) / (TP + TN + FP + FN)
(1)

Sensitivity = TP/ (TP + FN) (2)

Specifficity = TN/ (TN + FP) (3)

Precision = TP/ (TP + FP) (4)

F1 − score = 2TP/ (2TP + FP + FN) (5)

where TP, FP, TN, and FN stand for true positive, false
positive, true negative, and false negative, respectively.
The F1-score is a harmonic mean of precision and
sensitivity. For two-class classifications, the F1-score
is the same as the Dice coefficient. For the three-class
segmentation, we showed confusion matrices to illus-
trate prediction performance.
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Results

We compared the performance of segmentation
models on two image inputs for the two-class segmen-
tation (ciliary body and background) to find the best
input and loss function combination. Table 1 shows
the performance of the two-class segmentation model
with different image inputs and loss functions (Dice
loss and WCE). Radial images with Dice loss achieved
the highest mean F1-score (0.8932) andmean precision
(0.8953). In direct comparison, Deeplab-v3+ models
trained with Dice loss outperformed models trained
with WCE. Models trained with two added sequential
radial slices did not perform better thanmodels trained
with only single 2D radial images. Figure 5 shows the
segmentation performance of the Deeplab-v3+ model

trained with 2D radial images as inputs and Dice loss
on sample test images. In the test images, error mostly
occurs at the boundary.

We evaluated the effects of analyst variability on
deep learning model training. Owing to the manual
effort involved, no eye was annotated by two experts.
To analyze analyst variability, we compared deep learn-
ing results on eyes labeled by specific analysts. In the
two-class segmentation performance evaluation using
leave one-eye out cross-validation (Table 1), each eye
was in the test set once while the other eyes were in the
training set. When eyes annotated by expert 1 were in
the test sets, the mean Dice score was 0.8949 ± 0.0335.
When eyes annotated by expert 2 were in the test sets,
the mean Dice score was 0.8907 ± 0.0217. The very
small difference in Dice scores (<0.51%) showed that

Table 1. Comparison of the Ciliary Body Segmentation Using Different Image Inputs and Loss Functions

Input Image
Loss

Function Accuracy

Sensitivity (HowMuch
of Actual CB is
Predicted) Specificity

Precision (HowMuch
of Predicted CB is

Actually CB)
Dice Coefficient

(F1-Score)

En face WCE 0.9851 ± 0.0024 0.9314 ± 0.0256 0.9875 ± 0.0026 0.7760 ± 0.0279 0.8461 ± 0.0139
Radial WCE 0.9902 ± 0.0013 0.9759± 0.0113 0.9906 ± 0.0012 0.7619 ± 0.0290 0.8555 ± 0.0196
Radial slice slab
(3 slices)

WCE 0.9851 ± 0.0023 0.9239 ± 0.0430 0.9871 ± 0.0016 0.6874 ± 0.0316 0.7878 ± 0.0292

Radial Dice 0.9937± 0.0013 0.8917 ± 0.0369 0.9968 ± 0.0007 0.8953 ± 0.0249 0.8932± 0.0253
Radial slice slab
(3 slices)

Dice 0.9880 ± 0.0025 0.8055 ± 0.0563 0.9937 ± 0.0013 0.7973 ± 0.0325 0.8007 ± 0.0382

Generally, performance is improved when using radial images rather than en face image inputs. The best performance
(highest sensitivity and Dice coefficient) using Deeplab-v3+was achieved using radial images and Dice loss. Adding adjacent
slices (image± 1 slice to create a radial slice slab) did not improve segmentation performance. Values presented in bold repre-
sent the highest mean performance metrics.

Figure 5. Deep learning segmentation of the ciliary body. All four panels (a)–(d) show expert annotation of the ciliary body, prediction
from deep learning segmentation, and the difference (top to bottom). Areas with yellow arrows show incorrect segmentation of the ciliary
body. Areas with a green oval indicate possible ciliary body location that might have been missed by experts.
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Table 2. Comparison of the Three-Class Segmentation of Ciliary Body Tissues Using Different Image Formats and
Loss Functions

Input Type +
Loss Function

Loss
Function Metrics Background Ciliary Process Ciliary Muscle

Radial Dice Sensitivity (%) 0.9965 ± 0.0009 0.7471 ± 0.0837 0.8311 ± 0.1158
Specificity (%) 0.8853 ± 0.0507 0.9961 ± 0.0015 0.9973 ± 0.0010
Precision (%) 0.9965 ± 0.0015 0.7596 ± 0.0866 0.8158 ± 0.0582
F1-score (%) 0.9965 ± 0.0008 0.7487 ± 0.0573 0.8173 ± 0.0568

Radial slice slab
(3 slices)

Dice Sensitivity (%) 0.9963 ± 0.0012 0.7385 ± 0.0854 0.8273 ± 0.1094

Specificity (%) 0.8834 ± 0.0447 0.9959 ± 0.0017 0.9972 ± 0.0013
Precision (%) 0.9964 ± 0.0013 0.7511 ± 0.0935 0.8085 ± 0.0723
F1-score (%) 0.9963 ± 0.0008 0.7390 ± 0.0565 0.8113 ± 0.0554

En face WCE Sensitivity (%) 0.9818 ± 0.0021 0.7979 ± 0.0714 0.8751 ± 0.0979
Specificity (%) 0.9460 ± 0.0240 0.9902 ± 0.0033 0.9870 ± 0.0029
Precision (%) 0.9975 ± 0.0011 0.6226 ± 0.0854 0.6238 ± 0.0807
F1-score (%) 0.9896 ± 0.0010 0.6935 ± 0.0505 0.7227 ± 0.0614

Similar to two-class segmentation, radial images as inputs perform better than en face image inputs. The highest precision
and F1-score (Dice coefficient) in the Deeplab-v3+ model are achieved using radial images as inputs and Dice loss and loss
function. Adding adjacent slices (image ± 1 slice to create a radial slice slab) did not improve segmentation performance.

there were no consistent differences between analysts
in labeling.

Table 2 shows three-class segmentation (ciliary
muscle, processes, and background) performance in
Deeplab-v3+ models with different image inputs and
loss functions. Models trained with 2D radial images
and Dice loss outperform other models in terms of the
meanF1-score (0.8173). Similar to two-class segmenta-

tion, adding sequential radial slices did not improve the
segmentation performance. Figure 6 shows the three-
class segmentation of sample test 2D radial images
using the best-performing model. In some areas, the
ciliary muscle was misclassified as ciliary processes and
vice versa. The boundary between the ciliary muscle
and processes is often challenging to distinguish in
some cases, even by trained experts. Table 3 shows

Figure6. Deep learning segmentationof the ciliarymuscle andciliaryprocesses. Panels (a)–(d) showexpert annotationof the ciliarymuscle
(green) and ciliary processes (purple), prediction from deep learning segmentation, and difference (top to bottom). Areas with yellow arrows
show incorrect segmentation of tissues, and areas with green ovals indicate possible volumes that might have been missed by experts.
Predicted labels are smoother possibly because interpolation and small discontinuities in ground truth are not maintained.
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Table3. ConfusionMatrix for the Three-Class Segmen-
tation of the Ciliary Muscle, Processes, and Background
Using Radial Images as Input and Dice Loss

Predicted
Background

Predicted
Ciliary

Processes

Predicted
Ciliary
Muscle

Actual background 0.9963 0.0026 0.0011
Actual ciliary processes 0.1553 0.7398 0.1049
Actual ciliary muscle 0.0704 0.1092 0.8205

Part of the ciliary processes (approximately 10%) is
predicted as ciliary muscle and vice versa. Some of this
misprediction can be attributed to the border between
the muscle and processes being difficult to segment and
intrareader variability.

the confusion matrix for the three-class segmentation.
Approximately 10% of the ciliary process was misclas-
sified as the ciliary muscle and vice versa. In both
two-class and three-class segmentations, the predicted
segmentation was smoother than the ground truth
segmentation.

Table 4 compares the ground truth ciliary body
volume measurements with volume measurements
from two-class automated deep learning segmenta-
tion. A paired t-test shows a P value of 0.5404, which
indicates the absence of a significant difference in the
ciliary body volume measurements between ground
truth and deep learning segmentation. Although the
three-class deep learning segmentation model provides
a great initial estimate of the ciliarymuscle and process,
further editing can be made on predicted segmenta-
tion tominimize ciliarymuscle–processes misclassifica-

Table 4. Comparison of the Measurements of the
Ciliary Body Volume Between Manual Annotation and
Deep Learning Segmentation Approach

Ciliary Body Volume Ciliary Body Volume
(in mm3) From (in mm3) From Deep

TS-CPC Manual Annotation Learning Segmentation

Eye 1 Pre 98.75 94.27
Post 102.55 102.36

2 Pre 134.2 129.66
Post 122.08 113.44

3 Pre 103.11 101.71
Post 91.51 92.6

4 Pre 69.09 71.09
Post 66.53 65.59

5 − 93.5 101.66
6 − 106.24 108.35
7 − 102.18 104.75
8 − 98.68 93.05

Paired t-test shows no significant difference between the
mean manual ciliary body volume measurements and deep
learning segmentation volume (P = 0.5404).

tion. The average time to manually annotate the ciliary
muscle and processes in a 3D-UBM volume is approx-
imately 20 hours. Editing on an already segmented
volume via deep learning can take approximately 2
to 3 hours, making the process at least seven times
faster. Deep learning segmentation and further refine-
ment allow unique visualization of the ciliary body and
volume and area measurements of the ciliary muscle
and processes (Fig. 7).

Table 5 shows the semiautomated quantitative
assessment of the ciliary body structures. We measured
the number of ciliary processes, ciliary process,
muscle volume, and surface area from deep learning

Figure 7. Visualization of ciliary muscle and processes in 3D-UBM volume. Rendering of the segmentation of the ciliary body provides
uniquevisualizationandmeasurements, that is, the total ciliarymuscle andprocesses volumeand surface area, numberof processes, average
ciliary process volume, and area.
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Figure 8. Ciliary body size reduction after TS-CPC treatment. Shown are renderings using semiautomated ciliary muscle and processes
segmentation before (a, c) and after (b, d) TS-CPC treatments on two cadaver eyes. Shown are both anterior to posterior views of the ciliary
body (a, b) and posterior to anterior views (c, d). Both eyes show a visible decrease in ciliary processes.

segmentation, followed by expert edits. In eight cadaver
eyes, the average ciliary muscle, processes, and body
volume were 55.95, 43.08, and 99.04 mm3, respec-
tively. The average surface area of the ciliary muscle,
process, and body were 345.78, 363.39, and 709.17
mm2, respectively. Table 5 also shows the length-based
biometrics measurements found in the literature.19,20
The average ciliary muscle thickness and average
ciliary processes length were 1.06 and 0.93 mm,
respectively.

TS-CPC was performed on four cadaver eyes using
a laser diode probe for 2.5 seconds to shrink the
ciliary processes. Rendering of the ciliary body shows
a decrease in ciliary processes after TS-CPC on two
cadaver eyes (Fig. 8). The 3D-UBM volumes before
and after TS-CPC were registered, and radial lines
drawn from the same point demonstrate a decrease in
ciliary processes in the operated region. Changes in
the ciliary process and muscle volumes were observed
after TS-CPC in three of four cadaver eyes. The
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Figure 9. Comparison of manual and automated measurements of the ciliary body cross-sectional area from radial images. The 3D-UBM
enables 360° 2Dmeasurements of the ciliary body. For two cadaver eyes after CPC, 2D cross-sectional areas of the ciliary body were reduced
in the location (12 o’clock to 6 o’clock) where CPC was performed.

decrease in ciliary process volume (17.6%–29.99%)
was higher than that in ciliary muscle volume (5.7%–
14.3%) (Supplementary Table 1 and Supplementary
Figure S2).

Figure 9 shows the whole 360° cross-sectional area
of the ciliary body before and after CPC using manual
ground truth and automated measurements, respec-
tively. Bothmeasurements show shrinkage in the ciliary
body after CPC. Eye 1 is considered an outlier, as

a cyst-like shape developed in one cadaver eye after
applying TS-CPC (Supplementary Fig. S3).

Discussion

Results of the automated processing of the ciliary
body are promising. Figures 5 and 6 demonstrate
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very good segmentations of the ciliary tissue with
our deep learning method. Remarkably, in some cases,
deep learning correctly segmented some tissues that
were missed by experts. In both two-class (ciliary
body vs. background) and three-class (ciliary muscle
vs. processes vs. background) models, we observed
that radial images with Dice loss provided the best
segmentation performance. An intuitive explanation
behind the better segmentation performance using
radial images is the eye’s rotational symmetry, requir-
ing fewer training images to obtain better perfor-
mance using the deep learning network than using
en face images. We observed no improvement when
using radial slice slabs as inputs rather than simple 2D
radial images. Table 4 shows no significant differences
between manual and automated measurements (P =
0.5404) with differences of 1% to 7%.

Using 3D-UBM will enable new 3D assessments
impossible with 2D. According to Li et al.,20 they had
difficulty capturing the complex 3D anatomy using
their 2D biometric measurements. In eight cadaver
eyes scanned, the number of ciliary processes was
75 ± 4, which agrees with literature data.28 Table 5
shows 3D biometrics such as the mean volume of the
ciliary muscle, processes, and body, and the average
surface area of the ciliarymuscle, process, and body. As
opposed to the point-based length metrics mentioned
elsewhere in this article,19,20 these measurements are
more indicative of the entire 3D anatomy of the ciliary
body than point measurements from a few selected
orientations. The 3D measurements do not require
identifying and positioning anatomic landmarks (i.e.,
scleral spur) as in 2D assessments. They are also
less sensitive to the angulation of the probe (tilting
bias), making them more reliable and reproducible
than length-based metrics. Experience with 3D-UBM
suggests that we can assess biometric data on patients
to evaluate changes in disease conditions, as has been
done for multiple studies using 2D ultrasound exami-
nation.29–31

In addition to 3D biometrics, conventional 2D
biometrics measurements (e.g., ciliary processes length
and muscle thickness) are improved with 3D imaging
(Table 5). Li et al.20 showed good reliability in measur-
ing ciliary processes length and muscle thickness from
transverse images. However, those measurements rely
on a small portion of the ciliary body and cannot
capture the global ciliary body information. Their
proposed measurements were also dependent on how
the probe was positioned. A slight angle in position-
ing would reveal a different plane of the ciliary body
leading to an error in length metrics. En face images
from 3D-UBM after alignment with the optic axis
provide the entire view of the ciliary body. Therefore,

measurements of ciliary body length and thickness
(Table 5) from 3D-UBMare indicative of the entire eye,
rather than a small visible area.

Our ciliary body segmentation approach includes
multiple preprocessing steps that were important for
reducing efforts in manual labeling and for improving
deep learning segmentation and measurement perfor-
mance. Preprocessing includes image alignment to
the optic axis, which removes tilting bias, making it
independent of how the probe was positioned for any
biometric measurements.32 Alignment brings the entire
ciliary body within fewer en face planes, making the
manual annotation process much easier. Initial results
showed that en face and radial images performed
better than did sagittal images. This finding is possi-
bly because the ciliary body size and shape in sagittal
images were constantly changing. This strategy would
require a lot more images to train a deep learning
model accurately. We used rotation as a data augmen-
tation technique, which makes the model robust to any
changes in alignment during testing. Therefore, even
in cases of different orientations of the probe creat-
ing tilting bias in UBM images, our approach can
accurately predict the ciliary body and create measure-
ments.

We demonstrated the application of the ciliary
body measurements for glaucoma treatment: TS-CPC,
which is applied to destroy the ciliary body so that it
does not produce enough fluid and decreases the IOP.16
No routine imaging of these structures is performed
to visualize these effects in the ciliary body after laser
application. The variable effects of TS-CPC on IOP
in different individuals can simply be due to tissue
response, poor application of the laser, or inappli-
cation of the laser to the intended areas. Figure 8
shows visually how ciliary processes shrunk after TS-
CPC application in the operated region of two cadaver
eyes. Table 5 and Supplementary Table 1 show that,
after TS-CPC, ciliary muscle and processes decreased
in both volume and surface area. In the operated
region, changes in the ciliary muscle ranged from 5.7%
to 14.3%, whereas changes in the ciliary processes
ranged from 17.6% to 30.0%, which indicates that
ciliary processes change faster than the ciliary muscle,
which is why it was more pronounced in Figure 8.
Although one cadaver eye had an increase in size, it
was likely due to the formation of a cyst near the
iris–ciliary body boundary. The appearance of the cyst
might have altered the shape of the ciliary body and
associated measurements after CPC. These automated
3Dmeasurements and visualization of the entire ciliary
body have never been conducted before, can potentially
be correlated to IOP change, and may help to guide
optimum treatment algorithms for the clinicians.
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Our approach has some limitations. While creat-
ing ground truth annotations, analysts used the en
face plane, but switched among different planes to
accurately delineate the ciliary body. This process made
creating ground truth annotations very time consum-
ing and challenging. This factor limited the number
of eyes that could be analyzed. Although these results
were obtained on cadaver eyes, we have recently done in
vivo imaging with good results after applying registra-
tion to account for small eye movements (not shown).
In this preliminary report, our deep learning segmen-
tation approach was found to be suitable for cadaver
eye images. Results may be degraded if applied to
another 3D ultrasound system with different image
quality characteristics or possibly in vivo images from
this system. Nevertheless, our demonstrated approach
would likely be applicable.

In summary, automated segmentation using deep
learning of 3D-UBM enables improved visualizations,
automated 360° measurements, and assessment of TS-
CPC treatment. Our approach shows that automated
deep learning segmentation models trained on radial
images with Dice loss provide the highest segmenta-
tion performance owing to the eye’s radial symmetry.
Automated segmentation provides comparable perfor-
mance with an analyst and can be edited quickly,
making the manual segmentation process much faster.
Automated segmentation leads to improved visualiza-
tion and automated 2D and new 3D measurements of
the ciliary body that indicate a reduction in ciliary body
area and volume after TS-CPC. Previously, we have
shown that 3D-UBM can be used to visualize implants
and devices, such as implanted intraocular lenses, a
microcatheter placed in Schlemm’s canal, and 360°
assessments of the iridocorneal angle.1,2 Our prelim-
inary results suggest that the 3D-UBM and analy-
sis methods presented herein may help to support
the diagnosis of glaucoma, aid in treatment decision-
making, and assess interventions.
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