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Abstract: With the global prevalence of type 2 diabetes mellitus steeply rising, instances of chronic,
hard-healing, or non-healing diabetic wounds and ulcers are predicted to increase. The growing
understanding of healing and regenerative mechanisms has elucidated critical regulators of this
process, including key cellular and humoral components. Despite this, the management and suc-
cessful treatment of diabetic wounds represents a significant therapeutic challenge. To this end, the
development of novel therapies and biological dressings has gained increased interest. Here we
review key differences between normal and chronic non-healing diabetic wounds, and elaborate on
recent advances in wound healing treatments with a particular focus on biological dressings and
their effect on key wound healing pathways.
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1. Introduction

The global impact of diabetes, including type 2 diabetes mellitus (T2DM), is severe,
costing over 760 billion dollars—constituting 10% of adults’ annual health expenditure.
More importantly, diabetes is projected to affect over 700 million individuals by 2045 (7.8%
of the global population) [1,2]. In 2019 alone, more than 4 million adults died from direct
and associated complications of diabetes. This prevalence and burden clearly outline
diabetes and its associated complications as pressing global concerns.

Diabetic patients develop wounds characterized by impaired healing, prolonged
inflammation, and reduced epithelization kinetics. Notably, 15% of patients suffering
from T2DM develop ulcers localized on the lower limbs, referred to as diabetic foot ulcers
(DFUs). DFUs represent the most severe form of diabetic wounds which may lead to lower
limb amputation or death [3]. In fact, DFUs precede 84% of all diabetes-related lower
limb amputations. Therefore, there exists a substantial need to elucidate the pathological
processes causing ulceration, and which affect wound healing in diabetics.

Wound healing is defined as a natural physiological process occurring as the reaction
to structural damage of tissues, including skin. These mechanisms involve sophisticated
complimentary interactions between different cell types, acting through networks of soluble
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mediators, including cytokines, chemokines, growth factors, and metabolites. Wound
healing consists of four subsequent and overlapping phases: hemostasis, inflammation,
proliferation (re-epithelization), and remodeling (scar maturation).

Interestingly, diabetic hyperglycemia contributes to a variety of systemic complica-
tions, causing an array of local pathologies manifesting within the wound microenvi-
ronment, including chronic inflammation, dysregulated angiogenesis, hypoxia-induced
oxidative stress, neuropathy, advanced glycation end-products, and impaired neuropeptide
signaling [4]. Here we discuss the influence of diabetes on wound healing and the forma-
tion of diabetic foot ulcers. Moreover, we discuss strategies for diabetic wound treatment
concentrated on the use of skin substitutes and biological dressings.

2. Wound Healing Starts with Homeostasis

Immediately after wounding, degranulation of mast cells induces capillary perme-
ability, in addition to vasodilation, increasing bleeding and allowing the influx of immune
cells. Furthermore, the coagulation system is activated, and a scab is formed of provisional
components [5]. Simultaneously, activated keratinocytes, fibroblasts, and platelets release
soluble mediators: (a) growth factors, such as platelet-derived growth factor (PDGF), epider-
mal growth factor (EGF), and vascular endothelial growth factor (VEGF); (b) chemokines,
including IL-8 (CXCL-8) and CXCL-2; (c) danger-associated molecular patterns (DAMPs)
such as histones, genomic DNA, adenosine 5′-triphosphate (ATP), high mobility group
box protein 1 (HMGB1); and (d) cytokines; namely, thymic stromal lymphopoietin (TSLP),
IL-33, and IL-25 [6–9]. Notably, all of the above-mentioned inflammatory mediators act
as danger signals. Consequently, they trigger the infiltration of patrolling inflammatory
cells and the induction of local immune responses (inflammation phase) and subsequent
proliferative induction of tissue-resident cells.

3. Wound Inflammation Orchestrates Healing and Regeneration

A strong inflammatory cascade, initiated during hemostasis, now commences to clean
the wound of debris, damaged cells, and microbes. The inflammatory phase is characterized
by (a) an influx of inflammatory cells including neutrophils, monocytes/macrophages,
mast cells, and T cells; (b) the accumulation of inflammatory mediators such as cytokines,
chemokines, and lipid mediators; and c) the release of extracellular matrix degradation
enzymes such as matrix metalloproteases (MMPs) and collagenases; causing swelling, heat,
and pain (Figure 1) [4].

It is widely recognized that localized, properly controlled inflammation acts as a
trigger for the proliferative and remodeling phases [10,11]. On the other hand, the un-
controlled or prolonged inflammatory responses frequently observed in diabetic wounds
lead to the impairment of subsequent phases of the wound healing process, or are impli-
cated as a contributor to ulceration [12,13]. Local inflammation is strictly associated with
neutrophil infiltration and activation. Interestingly, neutrophils are absent in unwounded
skin and their trafficking to the wound area is induced and controlled by tissue-resident
T cells, mast cells, and macrophages [14]. In fact, neutrophils represent an important
source of proteases (including elastase, cathepsin G, and urokinase-type plasminogen
activator—that support re-epithelialization) [15–17]; reactive oxygen and nitrogen species,
cytokines (including IL-1β, tumor necrosis factor (TNF), IL-6, IL-12p40, and transforming
growth factor β (TGF-β)), and chemokines (including CCL2, CCL3, CCL5, CXCL1, and
CXCL2) [18]. Moreover, generally high neutrophil counts within the wound, and the conse-
quently increased neutrophil-to-lymphocyte ratio is recognized as a hallmark of impaired
wound healing observed in T2DM-affected individuals [19]. Interestingly, T2DM is known
to induce neutrophil extracellular trap induction (NETosis), a phenomenon which may
be responsible for delayed wound healing, given that disruption of neutrophil ability to
undergo NETosis led to accelerated wound closure in previous studies (Figure 1) [12,20].
This continual activation of neutrophils and induction of NETosis results in the induction
of yet more inflammation by way of mitochondrial DNA and histone H4 [21] in contrast
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with the normal process of inflammatory resolution by way of neutrophilic apoptotic body
phagocytosis [11]. This uptake of neutrophil-derived apoptotic bodies’ by infiltrating mono-
cytes/macrophages helps resolve the inflammatory phase in a self-perpetuating manner by
limiting inflammatory cell infiltration and shifting the production of eicosanoids from pro-
inflammatory to anti-inflammatory mediators [22–24]. Unfortunately, however, in diabetic
wounds the inflammatory phase is significantly prolonged by the disruption of mecha-
nisms which both control the influx of neutrophils as well as regulate their inflammatory
processes [12,21,25]. Interestingly, it seems that the cause of many observed dysregulations
of the inflammatory phase is not directly associated with localized high glucose levels but
rather the epigenetic polarization of innate immune cell pro-inflammatory function prior to
wound infiltration, as in progenitor cell modification due to T2DM-related systemic com-
plications such as hyperglycemia [26]. This polarization of innate immune cells towards
pro-inflammatory phenotypes is additionally supported by systemic inflammatory effects
observed in diabetic patients and animal models [27]. However, to date, mechanisms con-
trolling the epigenetic regulation of neutrophils and monocytes/macrophages in diabetic
individuals remain elusive.

Monocyte migration to injured skin is controlled by chemokines derived by mast cells,
keratinocytes, and fibroblasts acting through CCR2, CCR5, and mainly monocyte chemo-
tactic protein 1 (MCP-1) [28]. Notably, due to pleiotropic biological activities, monocytes
and macrophages are recognized as central players in the resolution and regulation of the
inflammatory, proliferative, and remodeling phases of wound healing [29]. Unlike normal
wound-infiltrating macrophages differentiating into classically-activated (inflammatory)
M1 and alternatively-activated (reparative/regulatory) M2 macrophages, T2DM-affected
macrophages strongly polarize into the inflammatory M1 phenotype [26]. Classically acti-
vated macrophages possess high phagocytic properties and are efficient in their production
of pro-inflammatory cytokines—namely IL-1α, IL-1β, IL-6, TNF, and IL-12—contributing to
and extending the inflammation phase, increasing neutrophilic infiltration, and prolonging
low-grade inflammation which is characteristic of chronic DFUs [26,30]. Consequently, a
lower absolute number of M2 macrophages and a higher M1:M2 macrophage ratio within
the wound reduces secretory levels of growth factors PDGF, FGF, and VEGF, as well as
anti-inflammatory cytokines including IL-10, TGF-α and TGF-β—all of which are responsi-
ble for the induction of the proliferative phase and effective regulation of inflammation,
respectively [13,31]. Moreover, monocytes/macrophages act as antigen-presenting cells,
linking the innate and adaptive immune responses [29]. Despite this, to date, the role of
mutual interactions between macrophages and T cells in wound healing has yet to be fully
elucidated.

It is well established that skin resident T cells play an essential role in the maintenance
and regulation of local skin inflammation in the course of wound healing. In fact, Th17
cells were shown to promote neutrophilic infiltration, and high levels of IL-17A were
shown to reduce wound repair [32]. On the other hand, regulatory T cells (Tregs) are
considered essential regulators of inflammation and constitute a significant source of IL-
10 [33]. Importantly, depletion of Tregs significantly reduces wound closure [34]. It is
tempting to speculate that the systemic inflammation observed in diabetic patients limits
the migration of Tregs and increases the infiltration of Th17 cells in the diabetic wound
and thus represents one of the mechanisms of increased neutrophilic inflammation and a
prolonged inflammatory phase. Notably, the healing process of diabetic wounds may be
accelerated by topical retinoic acid, thereby inducing T cell plasticity and differentiation of
Th17 cells towards Tregs [35]. This confirms the crucial role of T cells in the regulation of
the inflammatory phase of diabetic wound healing.

Taken together, the prolonged inflammation phase observed in diabetic wounds that
impairs wound closure and remodeling originates not only from high levels of localized
pro-inflammatory mediators, but also from deficiencies in anti-inflammatory cytokines
derived by regulatory cells, including M2 macrophages and Tregs. Despite this observation,
the regulation of this process needs attention in future research.
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Figure 1. Overview of Normal vs. Impaired Wound Healing. (A): The first phase of wound healing is hemostasis. Platelets
form a clot at the site of injury, and chemoattractants are released, recruiting key inflammatory cells. Next, inflammation
takes charge, with infiltrating neutrophils and mast cells releasing pro-inflammatory cytokines and inducing strong
sanitizing effects. This is accompanied by neutrophil extracellular trap (NETosis) induction, which assists in capturing and
destroying invading pathogens. Tissue-resident macrophages react to pathogen- and damage-associated molecular patterns
(PAMPs & DAMPs), activating. Later a provisional matrix comprised of fibronectin and other provisional extracellular
matrix (ECM) components forms from the clot. (B): Impaired wounds see an upregulated influx of neutrophils and mast
cells, leading to an overactive inflammatory response, causing collateral damage and extending the inflammatory phase
to the detriment of subsequent phases. (C): Following resolution of strong inflammation, the proliferative phase begins.
Crucially, endothelial progenitor cells are stimulated by growth factors to induce angiogenesis. This angiogenesis allows
for wound-resident cells to be supplied with oxygen and nutrients, facilitating their function. Infiltrating monocytes
differentiate into M1 and M2 macrophage subsets. M1 macrophages maintain a strong inflammatory profile, but are
counterbalanced by pro-regenerative M2 macrophages which release anti-inflammatory cytokines, growth factors, and
proteases which replace the provisional ECM with collagens, assisted by properly functioning fibroblasts. This process
results in thick granular tissue and full keratinocyte coverage. (D): Impaired wounds result in poor angiogenesis and,
in the case of T2DM, glycated proteins. This hypoxic environment induces oxidative stress, driving inflammatory M1
macrophage polarization and impairment of fibroblasts, resulting in poor ECM reorganization and a persistent inflammatory
environment. (E): Remodeling is carried out by macrophages, fibroblasts, and myofibroblasts re-organizing the provisional
ECM into a coherent scar structure primarily by means of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs),
resulting in tissue with strong tensile strength and functionality. (F): Impaired wound-resident cells remain ineffective and
pro-inflammatory. Collagen reorganization resolves poorly, resulting in weak, non-functional skin that is apt to re-injure
and potentially ulcerate, perpetually inflamed.
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4. Proliferation of Tissue Resident Cells Is Crucial for Wound Closure

Following the inflammatory phase of wound healing, the proliferative phase, charac-
terized by formation of granulation tissue, begins (Figure 1). Granulation tissue consists
of fibroblasts, immune cells, and newly formed blood capillaries which allow epithelial
cell migration towards the apical wound surface in the process of re-epithelization [36].
As mentioned, fibroblasts, keratinocytes, mast cells, and M2 macrophages display potent
regenerative activities, mainly through the secretion of cytokines (e.g., IL-10 and IL-35),
growth factors (e.g., TGF-α, TGF-β, FGF and EGF), chemotactic factors for stem and pro-
genitor cells (e.g., CXCL8 and SDF-1), and extracellular matrix reorganization through the
activities of MMPs and their inhibitors (TIMPs) [13,23,29–32,37–39]. As discussed above,
wounds with impaired healing kinetics and chronic wounds, including DFU, are known
to significantly reduce skin-resident cell proliferation as well as stem and progenitor cell
activation. Although this is partially the effect of the extended inflammatory phase, other
compounding factors such as T2DM-mediated glycation of proteins, reduced angiogenic
capability, and resultant oxidative stress contribute to the unnecessary extension of the
proliferative phase, with the wounds failing to achieve closure in the most severe cases [26].
Detrimentally, the observation of dysfunctional and reduced numbers of circulating stem
and progenitor cells, including endothelial progenitors, has been previously reported in
T2DM patients [40,41]. This is in contrast to normally-healing wounds where neovascu-
larization is the hallmark of the proliferation phase [4]. Contrastingly, the significantly
reduced ability of endothelial progenitors to form new vessels accompanied by limited
numbers of stem cells represents a significant contributor to disrupted re-epithelization
in diabetic wounds [42,43]. Recently, stem cell-based therapies, including those based on
mesenchymal stem cell (MSC) application, have become an attractive treatment strategy
for impaired wounds, including DFUs. Novel strategies and treatment options for diabetic
wounds will be discussed in the following paragraphs.

Wound closure requires reconstruction of the dermis before epithelial coverage by mi-
gratory basal keratinocytes can take place [38]. This stage requires the reconstruction of the
three-dimensional collagen structure of the dermis upon which subsequent cell populations
are located. Therefore, fibroblasts and myofibroblasts are considered central players in this
process [44]. Their function is also supported by wound-resident macrophages, mast cells,
and lymphocytes, in VEGF and TGF-β dependent mechanisms [29–31]. Importantly, this
process is also closely associated with neovascularization of the wound bed, providing crucial
nutrient and oxygen supplies to the healing site [45]. M2 macrophages additionally sup-
port wound angiogenesis by direct (macrophage-to-endothelial cell adhesion) and indirect
(paracrine effect) mechanisms [46]. Interestingly, these activities are similar to those observed
in tumor-associated macrophages, as recently discussed elsewhere [47–49]. Unfortunately,
as mentioned before, in diabetic wounds, monocyte polarization towards M2 macrophages
is inhibited, and pro-inflammatory polarization is promoted. Similarly, T2DM-impaired fi-
broblasts display a low activation level, decreased collagen deposition, and reduced paracrine
signaling ability, including downregulation of TGF-β pathway activation [50].

A well-regulated proliferative phase is arguably the most crucial indicator of a
successfully-healing wound, given the importance of both angiogenesis in tandem with
epidermal coverage of the wound. Furthermore, when dysregulated, this process slows
or even halts entirely, resulting in chronic ulcerative wounds. Although this mecha-
nism remains to be fully elucidated due to the high number of participating entities, key
cellular and molecular factors have been implicated in T2DM-induced or otherwise im-
paired wounds—namely fibroblasts, macrophages, key aforementioned growth factors,
and unresolved/self-renewing inflammatory bodies from a persistent inflammatory phase.

5. Wound Remodeling

In the fourth phase of the healing process—wound remodeling—granulation tissue is
strengthened by the accumulation of ECM proteins, which form scar tissue [44] (Figure 1).
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Moreover, the decrease of cellular and vascular components as well as an increase in the
concentration collagens is observed with the principal aim of recovering normal skin function.

As with their strong participation in the proliferative phase, wound-resident fibrob-
lasts, myofibroblasts, and M2 macrophages play an integral role in remodeling [38,44,51].
Collagens comprise 85% of the dermis and are consistently re-organized during wound
healing to determine terminal scar fate after the remodeling phase [52]. At this stage of nor-
mal wound healing, collagen III undergoes degradation, with the subsequent deposition
of type I collagen controlled by TGF-β and FGF signaling [53]. Similarly, secreted matrix
metalloproteinases (MMPs) and their inhibitors (TIMPs) are able to guide the deposition
and extraction of ECM components [54,55]. In this way, fibroblasts and macrophages
can shape the final structure of a healing wound, with collagen fibers becoming thicker,
denser, and intertwining—resulting in enhanced scar tissue strength in the normally-
healing wound [56].

Notably, the ECM is dynamically subjected to constant changes throughout the re-
modeling phase, which results in the maturation of its structure. Its composition plays an
essential role in skin repair via interactions of its protein structures, such as provisionally-
deposited fibronectin and vitronectin, with different cell types [38]. Importantly, the
delivery of ECM elements of decellularized skin structures during wound healing has
been demonstrated to improve the wound healing process, and consequently become an
attractive therapeutic approach by members of our and other groups (please see following
chapters of this manuscript) [57–61].

In contrast to normally healing wounds, T2DM-affected wounds possess many struc-
tural and functional differences by comparison. Namely, abrogated angiogenesis resulting
in a hypoxic wound environment and subsequent oxidative stress [26]. Recently, T2DM
was shown to drive M1 macrophage polarization in the healing wounds of mice as a
consequence of oxidative stress [26]. As previously mentioned, M1 macrophages promote
inflammation and, their persistently increased numbers result in the differential expression
of MMPs and TIMPs which are responsible for the reorganization of provisional ECM
components in the late proliferative and remodeling phases of wound healing [38,62].
Therefore, guidance of tissue-infiltrating and resident macrophages towards a non-classical
M2 phenotype, either by increased angiogenesis or elimination of oxidative stress, can
result in a return to normative wound healing [26].

Similarly, fibroblasts in impaired wounds have their ECM deposition abilities signifi-
cantly diminished. Using a 3D in-vitro culture, DFU-derived fibroblasts were observed to
produce ECMs twofold thinner than normal [63]. Additionally, these thinner matrices were
also shown to possess a greater composition of collagen type I and fibronectin content [63].
Additionally, topically-applied fibronectin has been previously shown to increase wound
healing ability in DFUs, increasing angiogenesis while reducing inflammatory cytokine
expression, apoptosis, and oxidative stress [64]. Taken together, these observations suggest
that enhanced and/or corrective fibroblast activity can be potentiated by treatment with
ECM components to compensate for the deficiency present in DFU fibroblasts.

6. Treatment Strategies for Diabetic Wounds and Ulcers

Our growing understanding of wound healing mechanisms has led to the develop-
ment of a variety of potentially effective treatment strategies for hard healing wounds. Cur-
rently, well-established treatments for DFUs (standard care) include pressure off-loading
from the wound site, debridement of necrotic tissue, pathogenic suppression, and topical
wound dressings of varying types to minimize patient non-compliance and subsequent
poor clinical outcome [65]. Frequently, these measures are used as control treatments in the
evaluation of novel experimental therapies, although the material, treatment period, and
other factors vary according to the type and severity of evaluated wounds [66,67].

Notably, experimental strategies (Table 1) include the (a) application of cell-based
therapies—aimed at the systemic or local application of cells with regenerative potential
(mainly stem and progenitor cells); (b) use of biologically-derived therapeutics; (c) appli-
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cation of physical methods such as hyperbaric pressure, electrical stimulation); (d) use of
dermal and epidermal skins substitutes; and (e) combination of these strategies in addition
to standard care [4]. In fact, skin substitutes and biological dressings are readily avail-
able and considered safe, promising options to treat large skin defects and hard-healing
wounds. Therefore, in the following section, we will discuss the use of dermal scaffolds
and dressings in the context of diabetic wound healing.

Table 1. Clinical trials involving biological materials including or with potential secondary application with skin substitutes
and acellular dermal matrices in diabetic foot ulcers and impaired wounds.

Name of
Clinical
TRIAL

Last Update Clinical Trial
ID Status Conclusions Publications

(PMID)

Acellular
Dermal
Matrices

Effect of Meso
Wound Matrix

in the
Treatment of

DFUs

22 October 2020 NCT04182451 Active, not
recruiting

No results
available

Comparative
Effectiveness of
Two Acellular

Matrices
(Dermacell vs.

Integra) for
Management of
Deep Diabetic

Foot Ulcers

2 September
2020 NCT03476876 Recruiting No results

available

DermACELL
AWM® in
Chronic

Wagner Grade
3/4 Diabetic
Foot Ulcers

6 September
2019 NCT03044132 Completed

DermACELL
healed complex

DFUs with
exposed bone.

Results suggest
wound closure
if given time.

[68]
31361269

DermACELL in
Subjects With

Chronic
Wounds of the

Lower
Extremities

14 March 2018 NCT01970163 Completed

DermACELL
increases in

healing rates in
DFUs

compared with
conventional
care options

[69]
26933467

DermACELL-
treated subjects

had higher
wound closure

than those
treated with

ADM
Graftjacket.

[70]
28544150

OASIS Wound
Matrix (Oasis)
Mechanism of

Action

9 June 2011 NCT00570141 Completed
7 of 13 wounds

closed fully
after 12 weeks.

Acellular
Porcine Dermal
Matrix Wound
Dressing in the
Management of

Diabetic Foot
Ulcers

7 June 2011 NCT01353495 Completed Submitted;
Pending
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Table 1. Cont.

Name of
Clinical
TRIAL

Last Update Clinical Trial
ID Status Conclusions Publications

(PMID)

Skin Substitutes

AMNIOEXCEL®

Plus vs. A
Marketed

Comparator vs.
SOC in the

Management of
Diabetic Foot

Ulcers

20 July 2020 NCT03547635 Completed

13,000
treatments: All

matrices
roughly

equivalent in
closure over 12
weeks. SIS &
UBM healed
more quickly
and cost less.

[71]
27681811

Half of patients
treated

achieved
wound closure
vs. none with

SOC

[72]
26978860

Multi Center
Site, Controlled

Trial
Comparing a

Bioengineered
Skin Substitute

to a Human
Skin Allograft

26 June 2019 NCT01676272 Completed No results
available

Clinical
Outcomes After
Treatment With

RestrataTM
Wound Matrix

in Diabetic Foot
Ulcers (DFU)

13 August 2018 NCT03312595 Completed No results
available

Pivotal Trial of
Dermagraft(R)

to Treat
Diabetic Foot

Ulcers

21 May 2018 NCT01181453 Completed

Benefit for
chronic DFUs

>6 weeks
duration

[73]
12766097

Dermagraft(R)
for the

Treatment of
Patients With
Diabetic Foot

Ulcers

21 May 2018 NCT01181440 Completed

Dermagraft-
treated patients

have better
healing than

SOC.

[73]
12766097
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Table 1. Cont.

Name of
Clinical
TRIAL

Last Update Clinical Trial
ID Status Conclusions Publications

(PMID)

Growth Factors

BB-101
(Recombinant

Human for
Treatment of

Diabetic Lower
Leg and Foot

Ulcers

14 September
2020 NCT03888053 Recruiting No results

available

A Randomized
Trial on Platelet

Rich Plasma
Versus Saline
Dressing of

Diabetic Foot
Ulcers

16 September
2019 NCT04090008 Completed No results

available

Efficacy and
Safety of

Heberprot-P®

in Patients With
Advanced

Diabetic Foot
Ulcer in
Dasman
Diabetes
Institute.

4 August 2017 NCT03239457 Completed No results
available

A Phase 3
Clinical Trial to

Assess the
Effectiveness of
BioChaperone

PDGF-BB In the
Treatment of

Chronic
Diabetic Foot

Ulcer

29 June 2017 NCT02236793 Completed No results
available
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Table 1. Cont.

Name of
Clinical
TRIAL

Last Update Clinical Trial
ID Status Conclusions Publications

(PMID)

A Study
Evaluating

Topical
Recombinant

Human
Vascular

Endothelial
Growth Factor
(Telbermin) for

Induction of
Healing of

Chronic,
Diabetic Foot

Ulcers

11 May 2017 NCT00069446 Completed No results
available

Comparative
Study of 3 Dose

Regimens of
BioChaperone
to Becaplermin

Gel for the
Treatment of
Diabetic Foot

Ulcer

15 December
2014 NCT01098357 Completed No results

available

Efficacy and
Safety of rhEGF
in Diabetic Foot
Ulcer Patients

With
Uncontrolled

Diabetic
Mellitus

4 August 2014 NCT01629199 Completed No results
available

Evaluation of
the Safety

Follow-up of
Becaplermin or

Placebo Gel
Following

Treatment of
Chronic, Full

Thickness
Diabetic Ulcers

8 June 2011 NCT00740922 Completed No results
available

Gene Therapy
to Improve

Wound Healing
in Patients With

Diabetes

20 November
2007 NCT00065663 Completed No results

available
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Table 1. Cont.

Name of
Clinical
TRIAL

Last Update Clinical Trial
ID Status Conclusions Publications

(PMID)

Misc.

Utilization of
Platelet Gel for
Treatment of
Diabetic Foot

Ulcers

4 December
2015 NCT02134132 Completed No results

available

Evaluation of
the Effect of

Vivostat
Platelet Rich

Fibrin (PRF) in
the Treatment

of Diabetic Foot
Ulcers

12 October 2011 NCT00770939 Completed No results
available

MMPs

Matrix
Metalloproteinase-

1/Tissue
Inhibitor of

Metalloproteinase-
1

(MMP-1/TIMP-
1) Ratio and
Diabetic Foot

Ulcers
(DIAB-MMP2)

18 December
2013 NCT00935051 Completed No results

available

Mixed

Phase 2b Study
of GAM501 in
the Treatment

of Diabetic
Ulcers of the

Lower
Extremities
(MATRIX)

10 February
2010 NCT00493051 Completed [74]

17199833
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Table 1. Cont.

Name of
Clinical
TRIAL

Last Update Clinical Trial
ID Status Conclusions Publications

(PMID)

Stem Cells

Phase 1,
Open-Label

Safety Study of
Umbilical Cord

Lining
Mesenchymal

Stem Cells
(Corlicyte®) to
Heal Chronic
Diabetic Foot

Ulcers

6 August 2020 NCT04104451 Recruiting No results
available

Clinical Study
of Adipose-

derived Stem
Cells in the

Treatment of
Diabetic Foot

16 April 2019 NCT03916211 Not yet
recruiting

No results
available

Comparison of
Autologous
MSCs and

Mononuclear
Cells on

Diabetic Critical
Limb Ischemia
and Foot Ulcer

1 December
2010 NCT00955669 Completed

BMMSCs led to
increased blood

flow and
wound healing

compared to
BMMNCs

[75]
30917698

Endothelial
Progenitor Cells

Cryopreserved
Human

Umbilical Cord
(TTAX01) for

Late Stage,
Complex

Non-healing
Diabetic Foot

Ulcers
(AMBULATE

DFU II)

24 November
2020 NCT04450693 Recruiting No results

available

Cryopreserved
Human

Umbilical Cord
(TTAX01) for

Late Stage,
Complex

Non-healing
Diabetic Foot

Ulcers
(AMBULATE

DFU)

5 November
2020 NCT04176120 Recruiting No results

available
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Table 1. Cont.

Name of
Clinical
TRIAL

Last Update Clinical Trial
ID Status Conclusions Publications

(PMID)

Antibodies

The Safety,
Tolerability,

Pharmacokinet-
ics, and

Pharmacody-
namics of

UTTR1147A in
Participants

With
Neuropathic
Non-Healing
Diabetic Foot

Ulcers

21 November
2018 NCT02833389 Completed No results

available

* Table data taken from clinicaltrials.gov, updated on 17 January 2021. Key search words included: “Diabetic Foot Ulcer” and “Impaired
Wound,” as well as associated subcategories.

7. The Use of Skin Substitutes in Diabetic Wound Healing

Skin substitutes can be divided into subcategories based upon their composition,
derivative source, and unique additives, if any exist (Table 2). Among implantable scaffolds,
these include those with a dermal and/or epidermal component. Further distinguishment
can be observed based on whether the biomaterials used are derived from a biologic source,
fully synthetic, or a mixture of both. Further disambiguation can occur as to whether
the materials are derived from the host of the transplant (autogenic), another human
donor (allogenic), or derivative of another animal species (xenogenic). Lastly, scaffolds
may be classified by whether they are completely acellular or not, with non-autologous
cellular matrices theoretically possessing the risk of an adverse reaction as a consequence
of host rejection. Notably, however, many successful skin substitutes are composed of a
variety of individually-sourced materials, obfuscating the full contributory mechanism
of individual components [76,77]. This is especially true given the complexity of chronic
wound environments and the clinical variability within an individual at the local and
systemic level. Hereafter we will focus on scaffolds which possess a dermal element—in
particular fully acellular dermal matrices—due to dermal element (1) prevalence in DFU
treatment, (2) ECM-related therapeutic mechanistic effects induced, (3) safety in regard to
tissue rejection, 4) history of beneficial clinical outcomes, and (5) their abundance in recent
clinical trials (Table 1).

Table 2. Categories of Skin Substitutes.

Composition Material Additives

Dermal Autogenic None—Fully Acellular

Epidermal Allogenic Acellular with Remnants

Full Skin Xenogenic Cellular (MSCs)

Synthetic Molecular
(MMPs/TIMPs/Growth

Factors/Cytokines)Mixed

8. Dermal Scaffolds

Dermal scaffolds are dermal tissue-derived or dermis-like matrices that retain the
ability to integrate into host ECM or are cleaved, thereby supporting re-epithelization and
maturation of the healing wound [78]. Given the extensive role that the ECM plays in
wound healing, the examination of wound substitutes that mimic native dermis has been
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implicated as an effective ameliorative therapy, often in conjunction with supplementary
cellular or molecular components [76,79,80]. Consequently, recent decades have seen
innovation in 3D cell cultures and other substitutes which model human skin in vitro,
allowing for the evaluation of skin substitutes more readily than with animal models
alone [81]. Despite this, some skin substitutes (including dermal scaffolds) do not possess
the ability to fully integrate with host fibroblast-derived ECM components, often leading
to future complications in their extraction or inability to undergo desirable ECM/collagen
deposition during the remodeling phase of wound healing. However, recent evidence has
demonstrated the association of dermal scaffolds with beneficial therapeutic outcomes—
particularly in impaired wound resolution [82,83].

Tissue engineering has become a valuable tool in the creation of scaffolds that can
integrate with a recipient’s tissue, due in large part to recent innovations in engineering
technology and the success of traditional biologically-sourced scaffolds. Therefore, the
creation of biomimetic engineered artificial, synthetic, or natural substitutes for bone,
skin, and/or blood vessels has shown a marked interest. In fact, ideal scaffolds and
tissue substitutes including skin matrices, be they bio-engineered or natural, should be
characterized as: low- or non-immunogenic, bio-compatible, regenerative, protective, non-
pathogenic, and durable (Table 3). In fact, acellular dermal matrices possess many of these
characteristics and are considered useful dressings in skin wounds, including hard healing
or non-healing wounds such as DFUs. Their therapeutic properties originate from and
depend on their source, method of preparation, and further modification. Therefore, in the
following part of this review, we will summarize current knowledge on the use of acellular
dermal matrices and cell-covered dermal matrices in wound healing.

Table 3. Ideal properties of skin substitutes.

Property Elaboration

Non-immunogenic • Components do not induce tissue rejection.

Bio-compatible
• Infiltrating cells can effectively adhere to scaffold material.
• Integrates readily into existing ECM; cells can deposit/extract ECM

Regenerative

• Does not inhibit or promotes angiogenic function
• Minimizes sub-optimal granulation of tissue & scarification
• Beneficially modulates regenerative cells such as

macrophages & fibroblasts
• Facilitates rapid epithelial cell coverage

Protective

• Provides coverage for underlying structures
• Minimizes disruptive “floating” in the wound bed
• Retains & maintains a moist environment, reducing oxidative stress

Non-pathogenic
• The low number of applications to minimize infection risk
• Sterile preparation method & donor source do not confer disease

Durable

• The substitute does not degrade before regenerative action.
• Complicating conditions (infection, T2DM-induced glycosylation,

etc.) do not compromise scaffold flexibility & function

9. Acellular Dermal Matrices

Acellular dermal matrices are perhaps the most biomimetic scaffolds, as they can retain
the primary functional structure of normal dermal tissue. This is particularly important
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because, as mentioned above, intact ECM components strongly affect the healing potential
of a wound and its subsequent reorganization during remodeling [52]. However, the
method of decellularization and tissue source must be addressed, given that this process
differentially affects the wound microenvironment [84] by way of retaining functional
matrix proteins and components, as well as its physical characteristics—as in the case of
collagen fiber cross-linkage [85,86].

Given that the most abundant dermal collagen is type I by a wide margin, followed
by type III, acellular dermal matrices (ADMs) are generally similar in composition. As
a consequence of their abundance and early research demonstrating the chemotactic at-
traction of human fibroblasts to collagens I, II, and III [87], they receive a great deal of
attention. Notably, monocyte adhesion to collagen types I and III have a demonstrable
effect on the secretion of the wound and ECM-affecting products including growth fac-
tors [88–90], cytokines [91], and enzymes [89] which play a crucial role in normative wound
healing [31,92–94]. Similarly, 3D environments dense with collagen I fibers were recently
shown to induce immunosuppressive effects in M2 macrophages [95], suggesting a ben-
eficial therapeutic effect in DFU-resident macrophages. This is further supported by the
observation that the overabundance of type III collagen, seen in hypertrophic wound scars
is by itself insufficient to induce immunomodulatory effects sufficient to resume normative
wound healing, as has been previously observed with collagen type I deposition [96].

Although the full contributory role of ADMs in DFUs has not yet been elucidated,
the mechanistic effects of specific proprietary ADMs has been witnessed. In one study,
application of a xenogenic ADM was able to return the M1:M2 macrophage polarization
ratio normally seen in DFUs to that of normally-healing wounds [97]. Furthermore, ADMs
have also been witnessed to induce increased levels of microvascular blood flow within
DFUs [98]. These promising results firmly establish ADMs as favorable candidates for
further research in the context of chronic wounds, especially given the crucial importance
of macrophage ratio and angiogenesis therein.

Due to their ubiquity and history of effective clinical outcomes, ADMs are frequently
utilized in a variety of pathologies besides DFU, including rare skin conditions, such as
epidermolysis bullosa, plastic surgery, and burn treatment, among others [59,60,99,100].
Recent studies and meta analyses have shown the effectiveness of ADMs in regard to their
ability to influence the immune response by differentially modulating key growth factors
and cytokines, resulting in enhanced wound closure and faster resolution [57,61,101].

By highly mimicking normal dermal tissue and subsequently eliminating potential
immunogenic antigens on the surface of donor cells, it is hoped that these scaffolds will
induce a return to normative wound healing in the recipient. This is further buttressed by
observable differences in cellular vs. non-cellular human dermal matrices—underpinning
the importance of cell-associated immunogenic component removal as a means to minimize
ADM rejection and associated complications [102,103].

Likely obfuscated by the inflammatory nature of DFUs, ADM-mediated immunogenic
responses go largely unnoticed. However, this phenomenon can occasionally be witnessed
in sterile, normally-healing wound environments such as breast reconstruction in the form
of red breast syndrome (RBS). Although the etiology of RBS is speculative, it is limited
in nature—resolving without treatment and theorized to clear as a consequence of ADM
neovascularization [104]. RBS and other ADM-related adverse effects, although very rare,
are likely related to the presence of endotoxin or wound contamination with microbes [105].
Despite the likelihood that ADM-treated DFUs face a similar sterile inflammatory response,
ADMs have been witnessed to be exceedingly safe, with high healing rates vs. standard
care and a lack of immunogenic, toxic, or carcinogenic complications [106].

Although the key elements regulating skin substitute-mediated wound healing mech-
anisms remain to be fully elucidated, recent evidence has shed light on essential modula-
tions in the wound microenvironment, which subsequently lead to beneficial therapeutic
outcomes. It seems that the induction of differing ADM physical characteristics and mech-
anistic effects within the wound micro-environment are based not only upon the source,
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but crucially on the method of preparation that proprietary ADMs undergo—namely in
relation to the decellularization and sterilization processes.

Notably, irradiation for sterilization purposes may fundamentally damage or change
the structural components of skin substitutes depending on dose [85,86]. This process
induces structural changes and can result in the damage and extraction of ECM components
which may directly affect the healing process supporting the epithelization process and
remodeling or inducing inflammation. In fact, it appears that modulation of scaffold
degradability, among other physical characteristics, can be cultivated via physical and
chemical modification in order to facilitate guided responses, including the infiltration,
adhesion, and proliferation of regenerative cells [107]. On the other hand, when adversely
affecting the therapeutic potential of biological dressing, the sterilization process may be
bypassed by appropriate aseptic production, assuming that proper precaution against and
screening for endotoxins is undertaken [106].

10. Cell-Supplemented Dermal Matrices

Having established the high customizability and effectiveness of keystone elements
of ADMs, on their own they hold a great deal of potential. Even so, skin substitutes’
therapeutic potential may be improved by the supplemental utilization of stem and pro-
genitor cells with well-characterized activities supporting the healing process, as in the
case of mesenchymal stem cells (MSCs) and fibroblasts [103,108,109]. Interestingly MSCs
co-cultured with skin substitutes in vitro were shown to release trophic factors important
for tissue regeneration [110] and to improve the healing of diabetic wounds when used in
tandem skin substitutes, including ADMs [76,79,110–112]. This strong regenerative effect
is associated primarily with MSC ability to improve neovascularization of the wound via
paracrine activity in addition to their well-characterized anti-inflammatory effects [113].
Furthermore, the lack of notable differences in clinical outcomes when comparing autolo-
gous and allogeneic MSCs, suggests their low immunogenicity [114], leading to speculation
as to entirely allogenic therapeutic possibilities without the risk of tissue rejection. In fact,
a recent systematic review of adipose-derived stem cells used in conjunction with ADMs
found them to be both safe and effective [115]. These promising results indicate the efficacy
and safety of MSC-mediated therapy for DFUs, with the number of active clinical trials
including MSCs in DFUs (Table 1).

Presently, acellular dermal matrices hold a great deal of promise for the treatment
of hard-healing wounds, including diabetic wounds [57,99–101]. Their continued usage
and examination in regard to source tissue, structural composition, and preparation are of
supreme importance, with these factors playing key roles in the degradation of specific
collagen fibers and their ability to integrate and provide the most beneficial immunomod-
ulatory effects. Further, given the beneficial effects associated with additive cellular and
molecular components such as growth factors, proteases, and easily-attainable MSCs,
combinations of these additives with ADMs have been evidenced as safe and effective
treatments leading to favorable therapeutic outcomes in DFUs, especially when compared
against current standards of care (Table 1).

11. Conclusions

Diabetic wounds remain a significant clinical problem. The understanding of complex
mechanisms of stem and progenitor cell dysfunctions and the dysregulation of systemic
and local immune responses will significantly contribute to the efficacy of currently used
therapies. However, the use of biological dressings, such as skin substitutes, additionally
supported by stem cells or stem cell derived-fragments may represent a readily accessible
and advantageous option for treating diabetic wounds. Notably, more studies focusing on
specific biomaterials and their contributory influence to specific elements of the wound
microenvironment are preferred. Effective guidance of skin substitute characteristics and
the mechanistic contribution therein will help to develop innovative and effective protocols
to treat chronic wounds in diabetic individuals well into the future.
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