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Abstract: Under microwave irradiation, eighteen new aroylhydrazone diorganotin complexes
(1a–9b) were produced through the reaction of aroylhydrazine, 2-ketobutyric acid, and the corre-
sponding diorganotin. Fourier transform infrared spectroscopy, 1H, 13C, and 119Sn nuclear magnetic
resonance spectroscopies, high-resolution mass spectroscopy, X-ray crystallography, and thermo-
gravimetric analysis (TGA) were performed to characterize the complexes. The in vitro anticancer
activity for complexes were assessed using a CCK-8 assay on human cancer cells of HepG2, NCI-
H460, and MCF-7. Complex 4b revealed more intensive anticancer activity against MCF-7 cells than
the other complexes and cisplatin. Flow cytometry analysis and transmission electron microscope
observation demonstrated that complex 4b mediated cell apoptosis of MCF-7 cells and arrested cell
cycle in S phase. Western blotting analysis showed that 4b induced DNA damage in MCF-7 cells and
led to apoptosis by the ATM-CHK2-p53 pathway. The single cell gel electrophoreses assay results
showed that 4b induced DNA damage. The DNA binding activity of 4b was studied by UV–Visible
absorption spectrometry, fluorescence competitive, viscosity measurements, gel electrophoresis,
and molecular docking, and the results show that 4b can be well embedded in the groove and
cleave DNA.

Keywords: diorganotin; synthesis; crystal structure; apoptosis; DNA

1. Introduction

As standards of living have increased, the incidence and mortality of cancer have
also increased gradually. Currently, the three major treatments for cancer are surgery,
radiotherapy, and chemotherapy. Since the discovery of the first efficacious anticancer met-
allodrug cisplatin in 1965 by Rosenberg [1], several platinum chemotherapy compounds viz.
carboplatin, oxaliplatin, nedaplatin, lobaplatin, and heptaplatin have been studied and ap-
proved as anticancer drugs [2]. Nevertheless, the side-effects of platinum chemotherapeutic
metallopharmaceuticals [3–7] have led development toward non-platinum chemothera-
peutics [8–14].

During the last few years, it has been noticeable that organotin compounds occupy an
important place in cancer chemotherapy reports [15–17] because of their cytotoxic effects,
ability to bind with DNA, anti-proliferating nature, and apoptotic-inducing nature. Thus,
organotins have emerged as impending biologically active metallopharmaceuticals [18,19].
During the research and development of anticancer drugs, the growth inhibition experi-
ment of drugs in vitro cancer cells is the first step in verifying the drug anticancer effects.
It is significant in clarifying drug anticancer spectrums and screening efficient anticancer

Int. J. Mol. Sci. 2021, 22, 13525. https://doi.org/10.3390/ijms222413525 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms222413525
https://doi.org/10.3390/ijms222413525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222413525
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222413525?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 13525 2 of 23

drugs. In 2021, S.K. Hadjikakou et al. reported that the organotin derivatives of cholic acid
could induce apoptosis in breast cancer cells (MCF-7) [20]. In 2020, Goran N. Kalud̄erović
and co-workers studied the cytotoxic potential of the newly synthesized organotin against
four malignant cell lines: PC-3, HT-29, MCF-7, and HepG2 [21]. In 2019, Isabel Rozas’
group studied the structure–activity relationships of new organotin (IV) anticancer agents
and their cytotoxicity profile on HL-60, MCF-7, and HeLa human cancer cell lines [22]. The
different structures of organotin compounds have a better inhibitory effect on cancer cells.
Therefore, it is necessary to design a synthesis of more organotin compounds and screen
their anticancer activity.

Due to its good biological properties, and electron-donating atoms such as carbonyl
oxygen and imino nitrogen, aroylhydrazone ligands have received extensive attention in
the design of organotin anticancer drugs [23–26]. α-Ketobutyric acid is a critical interme-
diate required of threonine metabolism, which is deaminated by threonine deaminase.
Although α-ketobutyric exhibits favorable biocompatibility, it is a thermally unstable
compound. The amination of α-carbonyl to form the ONO multidentate ligand can not
only improve its thermal stability, but also enhance its coordination ability. Therefore,
α-ketobutyric aroylhydrazone was introduced as a ligand into diorganotin to increase the
biocompatibility of diorganotin complexes and decrease the large lipid–water partition
coefficient of diorganotin.

Thus, we designed a series of substituted aroylhydrazones based on 2-butyric acid
as ligands, which have a peptide bond structure and multiple sites, that play a strong
regulatory role on the coordination of metal ions. In this paper, we synthesized eighteen
substituted aroylhydrazones diorganotin complexes by one-pot microwave-assisted (see
Scheme 1), the advantages of which are short reaction times, operational simplicity, and
good reproducibility. The complex structures were characterized by 1H, 13C, and 119Sn
NMR spectroscopy; FTIR spectroscopy; HRMS; and X-ray crystallography. The in vitro
anticancer activity of the complex was investigated by CCK8 assay. Most importantly, the
anticancer mechanism of the complex 4b toward MCF-7 cells was explored by the cell
apoptosis assay, cell cycle analysis, TEM observations, western blot analysis, comet assay,
and DNA binding test.Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 24 

 

 

 
Scheme 1. The reactions of 1a–9b. 

2. Results 
2.1. Synthesis 

The syntheses procedures are shown in Scheme 1. Complexes 1a–9b were synthe-
sized by the microwave-assisted method. Compared with conventional reflux ap-
proaches, microwave reactions require shorter reaction time, exhibit relatively superior 
operational simplicity, and are highly reproducible [27–29]. There are two main reasons 
for microwave radiation to promote chemical reactions. First, the strong transmission ef-
fect of microwave considerably increased the heating rate and improved uniformity. Sec-
ond, the growing pressure and rising temperature for a sealed microwave container could 
facilitate the reaction. The products were obtained in a 67–86% yield. These were found to 
be stable toward air and moisture at room temperature. All compounds are transparent 
crystals that are soluble in common organic solvents such as methanol, chloroform, ace-
tone, and dimethyl sulfoxide, but insoluble in water and in saturated aliphatic hydrocar-
bons. 

2.2. Spectroscopic Data Discussion 
The synthesized complexes were characterized using IR, 1H NMR, 13C NMR, 119Sn 

NMR, and HRMS. The spectral data matched the predicted structure of the complex. In 
the 1H NMR, all protons were in their predictable regions. The integral area ratios per 
group conformed to the predicted number of protons per group. In the 13C NMR, the 
peaks of each group were consistent with the theoretical prediction of the number of car-
bon atoms in the structure. The carboxyl carbon, hydrazide carbon, and imino carbon of 
the complexes can be clearly identified and were located at the low field position. In the 

Scheme 1. The reactions of 1a–9b.



Int. J. Mol. Sci. 2021, 22, 13525 3 of 23

2. Results
2.1. Synthesis

The syntheses procedures are shown in Scheme 1. Complexes 1a–9b were synthesized
by the microwave-assisted method. Compared with conventional reflux approaches,
microwave reactions require shorter reaction time, exhibit relatively superior operational
simplicity, and are highly reproducible [27–29]. There are two main reasons for microwave
radiation to promote chemical reactions. First, the strong transmission effect of microwave
considerably increased the heating rate and improved uniformity. Second, the growing
pressure and rising temperature for a sealed microwave container could facilitate the
reaction. The products were obtained in a 67–86% yield. These were found to be stable
toward air and moisture at room temperature. All compounds are transparent crystals
that are soluble in common organic solvents such as methanol, chloroform, acetone, and
dimethyl sulfoxide, but insoluble in water and in saturated aliphatic hydrocarbons.

2.2. Spectroscopic Data Discussion

The synthesized complexes were characterized using IR, 1H NMR, 13C NMR, 119Sn
NMR, and HRMS. The spectral data matched the predicted structure of the complex. In
the 1H NMR, all protons were in their predictable regions. The integral area ratios per
group conformed to the predicted number of protons per group. In the 13C NMR, the
peaks of each group were consistent with the theoretical prediction of the number of carbon
atoms in the structure. The carboxyl carbon, hydrazide carbon, and imino carbon of the
complexes can be clearly identified and were located at the low field position. In the 119Sn
NMR, a sharp single peak was observed in the spectrum for each complex, which indicates
that the complexes were very pure. For some complexes containing the Sn2O2 binuclear
structure (1b, 3b, 4b, 5b, 6b, 7a, 7b, 8b, and 9b), only one single peak was observed in the
119Sn NMR spectrum, indicating that the chemical environment of the two tin atoms in this
structure was the same.

2.3. Crystal Structure

The molecular structures of 1a–9b are shown in Figure 1. The selected bond lengths
and angles for the complexes are listed in Table S5 (Supplementary Materials). The struc-
tures of complexes 1a–9b can be divided into four different coordinate types. First, in
complexes 1a, 2a, 2b, 3a, 4a, 5a, 8a, and 9a, one-dimensional infinite chain structure was
formed by a Sn–O bond between two adjacent asymmetric units (one-dimensional chain
structure of complex 1a is shown in Figure 2a, the other in the Supplementary Materials), it
was found that the length of the Sn–O bond in each complex was different, but which were
much less than the sum of the Van der Waals radii for Sn and O (0.36 nm), which proves
that there is a strong interaction between Sn1 and O3i [30]. The central tin atoms were all
six coordinations of the distorted octahedral configuration. Second, in complexes 1b, 4b,
5b, 6b, 7a, 7b, 8b, and 9b, they are centrosymmetric dimer distannoxanes, that is, they are a
dinuclear molecule containing a central Sn2O2 four-membered ring, each carboxyl oxygen
atom bridges the two tin atoms in an antisymmetric unit. The Sn1–O2–Sn1i–O2i system
exhibits a 0.0◦ torsional angle in every complex, indicating that the four-membered Sn2O2
ring is a planar structure. The central tin atoms are a seven-coordinate structure exhibiting
distorted pentagonal pyramidal geometry. These structures are similar to those reported
in the literature [31–33]. Third, for complex 3b, a two-dimensional network structure is
formed by a Sn–O bond between two adjacent asymmetric units (in Figure 2b). Unlike
1b, participating in the Sn–O bond is the hydroxy oxygen atom on the phenyl. Moreover,
this complex molecule contains rich hydrogen bonding, d(O1–H1 . . . O4) = 0.1830 nm, angle
O1–H1 . . . O4 = 168.22◦; d(C3–H3 . . . O4) = 0.2712 nm, angle O1–H1 . . . O4 = 126.76◦. Fi-
nally, 6a is a monomer structure. The structure showed a distorted trigonal bipyramidal
configuration with five-coordinations to a central tin atom.
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Figure 1. Molecular structure of 1a–9b. Figure 1. Molecular structure of 1a–9b.

2.4. Anticancer Studies

The anticancer activities in complexes 1a–9b and cisplatin were assessed in vitro
through the CCK8 assay on cells of human breast adenocarcinoma (MCF-7), human hepato-
cellular carcinoma (HepG2), and human lung carcinoma (NCI-H460). IC50 values are listed
in Table 1. For NCI-H460, IC50 values in complexes 1a–9b ranged from 3.50 to 9.93 µM,
which resembled cisplatin activity (IC50 = 5.63± 0.43 µM), whereas all complexes exhibited
stronger activities than cisplatin against MCF-7 and HepG2. For the same ligand, dibutyltin
complexes (1b, 2b, 3b, 4b, 5b, 6b, 7b, 8b, and 9b) were generally stronger than diphenyltin
complexes (1a, 2a, 3a, 4a, 5a, 6a, 7a, 8a, and 9a). In diorganotin complexes, the discrep-
ancy of cytotoxicity was possibly caused by minor steric hindrance or minor molecular
weight. For diphenyl tin complexes, different substituents on the ligand aromatic ring
have a certain effect on the activity of the complex. The ranges of IC50 values for MCF-7,
HepG2, and NCI-H460 were 2.61–5.65, 5.34–8.99, 5.48–9.93 µM, respectively. However, the
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ranges of IC50 values against MCF-7, HepG2, and NCI-H460 were 0.47–1.50, 2.94–3.78, and
3.50–5.40 µM for dibutyltin complexes, respectively. Its variation range was small. This
explains that the ligand is only a synergistic effect under this condition.
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groups on the tin atom have been omitted for clarity). (b) Two-dimensional network structure of
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Table 1. Inhibition action of the complexes to cancer cells in vitro.

Complex
IC50/µM

MCF-7 HepG2 NCI-H460 HL-7702

1a 3.85 ± 0.29 8.19 ± 0.21 9.47 ± 0.31
1b 1.39 ± 0.04 3.18 ± 0.23 4.38 ± 0.29
2a 3.97 ± 0.20 8.99 ± 0.35 7.84 ± 0.26
2b 1.29 ± 0.05 3.02 ± 0.12 4.19 ± 0.16
3a 3.77 ± 0.16 7.25 ± 0.17 7.47 ± 0.24
3b 1.18 ± 0.07 3.07 ± 0.10 5.15 ± 0.28
4a 3.00 ± 0.09 5.34 ± 0.11 5.48 ± 0.16
4b 0.47 ± 0.04 3.00 ± 0.25 3.50 ± 0.28 7.31 ± 0.61 (15.6) a

5a 4.36 ± 0.20 7.22 ± 0.12 6.88 ± 0.20
5b 0.66 ± 0.05 3.78 ± 0.24 4.38 ± 0.13
6a 4.91 ± 0.07 6.27 ± 0.16 6.08 ± 0.42
6b 1.50 ± 0.21 3.06 ± 0.11 4.24 ± 0.26
7a 2.61 ± 0.33 5.91 ± 0.17 8.30 ± 0.32
7b 1.06 ± 0.09 3.57 ± 0.19 5.25 ± 0.31
8a 5.65 ± 0.17 8.38 ± 0.15 9.93 ± 0.28
8b 1.11 ± 0.07 2.94 ± 0.09 5.26 ± 0.13
9a 5.38 ± 0.22 8.42 ± 0.36 7.00 ± 0.24
9b 1.32 ± 0.05 3.09 ± 0.16 5.40 ± 0.38

Cisplatin 16.47 ± 1.45 17.56 ± 1.84 5.63 ± 0.43
a The selectivity index factor, defined as IC50 (normal HL-7702 cells)/IC50 MCF-7 cancer cells), is given in
parentheses.

Therefore, the structure–activity analysis of the anticancer activity of the complex
shows that: (i) for most complexes, the drug sensitivity of MCF-7 cells is greater than that
of HepG2 and NCI-H460 cells, the dependence of anticancer activity (IC50 value) both on
the type of alkyl as well as the type of aromatic ring on the ligand; (ii) when the alkyl is
stronger, the substituent in the ligand aromatic ring has less effect on the activity, and the
inhibitory activity of the butyl group is greater than that of the phenyl group, which proves
that the alkyl group attached to the tin atom is the main pharmacophore; (iii) analyzing
the same type of alkyl substitution of the central tin atom, with the butyl substituent, the
order of influence of the aromatic ring in the ligand is as follows: p-Me-Ph > p-MeO-Ph >
p-NO2-Ph > 2-furyl > p-OH-Ph > o-OH-Ph > 2-thienyl > Ph > p-t-Bu-Ph, when the phenyl
group is the substituent, the order is as follows: p-NO2-Ph > p-Me-Ph > p-OH-Ph > Ph
> o-OH-Ph > p-MeO-Ph > p-t-Bu-Ph > 2-thienyl > 2-furyl; (iv) the anticancer activity of
aroylhydrazone diorganotin complexes may be related to the synergistic effect of alkyl
group and ligand; (v) comparing the toxicity of 4b to normal cells HL-7702, 4b shows lower
cytotoxic activity in the normal human liver cell line (IC50 = 7.31 ± 0.61 µM) than in the
MCF-7 cell line (IC50 = 0.47 ± 0.04 µM), which indicated the obvious specificity for this
type of tumour cell and high selectivity index factors of more than 3.0. In order to further
clarify the anticancer mechanism of aroylhydrazone diorganotin complexes, we selected
complex 4b, which had the best inhibitory activity on MCF-7, for subsequent experiments.

2.5. Cell Apoptosis Analysis

Because of the superior inhibitory activity of 4b for MCF-7 cells, a flow cytometry
test was conducted to detect the apoptosis level when MCF-7 cells were exposed to 4b.
Treatment of MCF-7 cells with 4b for 24 h led to the concentration-dependent apoptosis
in Figure 3a,c. The apoptosis percentage is expressed as regions Q2 (early apoptotic
cells) and Q3 (late apoptotic cells) and total percentages of apoptosis. The 4b exhibited a
negligible apoptosis induction effect on MCF-7 cells at low concentrations (0.2 µM). The
4b concentration increased with induction of apoptosis. Total apoptosis percentages were
7.32% and 27.25 % when the concentrations were 0.4 and 0.8 µM, respectively, which were
higher than those of the control. As indicated by the data, 4b can mediate MCF-7 cancer
cell apoptosis, which is consistent with the strong anticancer activity in 4b.
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Figure 3. Effects of complex 4b on cell cycle and apoptosis of MCF-7 cells. (a) Apoptotic effect of 4b on MCF-7 cell line
after treatment for 24 h. Q1, Q2, Q3, and Q4 respectively represent live cells, the earlier apoptotic cells, the late apoptotic
cells, and cells damaged during the procedure. (b) Flow cytometric analysis indicated that 4b changed MCF-7 cell cycle
distribution at 24 h. (c) The 4b increased apoptotic cell numbers. (d) 4b arrested cell cycle S phase of MCF-7 cells. Error bar
show the SD, “*” p < 0.05, “**” p < 0.01, compared with the control cells at 24 h.

2.6. Cell Cycle Distribution Analysis

Cell cycle analysis was performed to investigate the anti-proliferative effects of 4b.
Difference between phases of the cell cycle is based on the content of genetic material. The S
phase of the cell cycle is the DNA replication phase, during which a large amount of genetic
material is synthesized, so this phase contains more DNA than quiescent cells. As shown
from the cell cycle detection (Figure 3b,d), after treatment with 4b, there was significant
upregulation in the S phase and significant downregulation in the G2/M phase, blocking
the progression of cancer cells from the S phase to the G2/M phase, thus blocking the
mitosis of the cells. 4b induces apoptosis by inhibiting DNA replication and transcription,
and achieves an anti-tumor effect. These results indicated that 4b can induce cell cycle
arrest. Significantly, the cell cycle arrest at S phase of 4b is similar to the reported metal
complexes [34–36] and is different from cisplatin.
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2.7. TEM Observation of Cell Morphology

In order to further clarify the cell death mode induced by 4b, we used transmis-
sion electron microscopy to observe the effect of 4b on cell ultrastructure. As shown in
Figure 4a,b, the cell membrane, nucleus, and other organelles of MCF-7 cells in the control
group did not show abnormal changes. After 4b treatment, the ultrastructure of MCF-7
cancer cells were obviously destroyed. According to Figure 4c,d, we observed that the
cytoplasm was concentrated and the cell volume shrank, so the microvillus on the cell
membrane surface disappeared, and the structure of the other organelles were blurred. The
nuclear envelope still existed, but its shape was irregular. The chromatin in the nucleus
condensed and fragmented into several pieces, which were scattered in the nucleus. It is
very obvious that the above appearance belonged to the specific characteristics of apoptosis.
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with 0.4 µM of the 4b for 24 h.

2.8. Western Blotting

After the MCF-7 cell line was treated with different concentrations of 4b, compared
with the control group, ATM and Chk2 protein had no obvious change trend, and the dif-
ference was not statistically significant. With the increase in 4b concentration, Bax, cleaved
caspase-3, Cytochrome c, p53, p-ATM, and p-Chk2 had a significant upward-regulation
trend, Bcl-2 expression was significantly reduced, and the difference was statistically
significant (Figure 5).
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of 4b for 24 h. Whole-cell lysate was analyzed for Bcl-2, Bax, cleaved caspase-3, Cytochrome c, ATM, p-ATM, Chk2, p-Chk2,
and p53 by immunoblotting. A representative anti-β-actin immune blot was shown as the loading control. Error bars show
the SD, “**” p < 0.01, compared with the control.

ATM is the direct receptor of DNA double-strand breaks (DSBs). After damage oc-
curs, ATM automatically undergoes phosphorylation and is activated. Among them, the
autophosphorylation of p-ATM (Ser1981) is a recognized marker of ATM activation. ATM
is very sensitive to DNA damage, and only a small amount of DSBs can cause rapid
phosphorylation of most molecules at the Ser1981 site. The results of western blotting
showed that the protein level of total ATM did not change, while the phosphorylated
ATM was significantly upregulated with the increase in drug concentration, indicating
that phosphorylated ATM was its activated form. Among the many downstream effectors,
Chk2 plays a very important role. Chk2 is a serine/threonine kinase that interferes with
cell damage repair mechanisms. When there is no DNA damage, Chk2 is mostly uniformly
dispersed in the cell nucleus in the state of inactive monomers. Once the external environ-
mental conditions cause DSBs, they will gather at the damaged DNA site. The activated
ATM interacts with Chk2 to phosphorylate a series of sites. The DNA damage repair
pathway is to complete the repair of damaged DNA through a series of phosphorylated
target proteins that bind to the DNA damage site together. If the DNA damage cannot be
effectively repaired, the damaged cell will initiate the apoptosis mechanism. One pathway,
the DNA damage activates ATM kinase, and ATM directly activates the p53ser15 site to
mediate MCF-7 cell apoptosis. Another pathway is that when DNA damage occurs, it is
detected by ATM and other related kinases, and then the damage signal is transmitted to
downstream Chk2 and p53. The increase in p53 expression leads to the downregulation of
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the apoptosis inhibitor Bcl-2 expression, activates the expression of pro-apoptotic factor
Bax, and opens the mitochondrial membrane channel [37]. The Cytochrome c is released
into the cytoplasm, and finally activates the apoptosis executive protein caspase-3 to trigger
cell apoptosis.

2.9. Comet Assay

Slight DNA damage usually leads to cell cycle arrest, while severe DNA damage can
lead to cell apoptosis and necrosis. Comet assay is a versatile and sensitive method for
measuring DNA damage based on DNA single and double-strand breaks. The comet assay
was performed using MCF-7 cells to research the effect of complex 4b on the DNA of the
cells. As shown in Figure 6, in the control (a), no DNA damage was seen. However, MCF-7
cells incubated with the 0.4 µM 4b for 24 h showed a well-shaped comet (b), and the length
of the comet’s tail represents the extent of DNA damage. The results confirm that 4b can
induce DNA damage, which is further evidence of apoptosis.
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complex 4b (b) after 24 h incubation.

2.10. DNA-Binding Studies
2.10.1. UV–Visible Absorption Spectrometry

Figure 7a illustrates the absorption spectra of complex 4b in the presence of increasing
amounts of CT-DNA. A strong absorption peak around 380 nm was observed. After inter-
action with the increasing concentration of CT-DNA, it could be seen that hypochromism
was observed along with a red shift of 18 nm. The reason for hypochromism is that the
interaction between the complex and the DNA causes the change in the molecule confor-
mation. The change in the spectrum is related to the binding force, where the stronger the
effect, the more obvious the hypochromism. From the absorption spectroscopy tests, Kb
was calculated as 0.82 × 104 L·mol−1 (r2 = 0.998), and the observed values of Kb were in
good agreement with the reported values (the order of 104 L·mol−1) of similar intercalated
metal-complexes [38–40]. The relatively large amount of Kb and red shift suggested that
there was strong interaction between these complexes and the CT-DNA double helix.
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2.10.2. Fluorescence Competitive Study

Figure 7b illustrates the fluorescence quenching curve of complex 4b at varying
concentrations in the EB-DNA system. Fluorescence in the system reduced when 4b was
added, which revealed that 4b could quench the fluorescence in the EB-DNA system. The
complex could compete with EB for binding to the site on CT-DNA. The more 4b is added,
the more EB originally bound to CT-DNA will be replaced by the 4b, which will reduce
the fluorescence intensity of the EB-DNA system. Relevant illustrations are displayed to
confirm that the EB-DNA fluorescence quenching by 4b can be attributed to 4b rivalry
against EB. By using the Stern–Volmer correction formula: I0/I = 1 + KSVccomplex, the KSV

was measured as 2.3 × 104 L·mol−1, which was similar to the reported value [41–43]. This
result implies that 4b can intercalate into DNA. In case the tin atom in 4b interacts with
the base pairs of DNA, the insertion of terminal ligands into such pairs can be achieved
to realize EB competition. Thus, squeezing of EB from the double helix of DNA can be
achieved through 4b.

2.10.3. Viscosity Measurements

The viscosity experiments clearly showed that the relative viscosity of CT-DNA
steadily increased with a concentration of 4b, however, this trend was not obvious for
Bu2SnO and the ligand. As can be seen from Figure 7c, the order of increase in viscosity was
4b > Ligand > Bu2SnO. This can be explained that the 4b and DNA employed a classical
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intercalation model, which demanded that the DNA helix must be extended, causing an
increase in DNA viscosity [44,45]. The results further suggest an intercalating binding
mode of the complex with DNA and is also consistent with the spectroscopic results and
molecular docking.

2.10.4. Gel Electrophoresis Studies

As can be seen from Figure 7d, complex 4b can effectively cut the pBR322, and its
cutting activity is related to the concentration of the complex. As the concentration of
the complex is gradually increased, Form II was also observed. However, when the
concentration reached 80 µmol·L−1, there was still no Form III. Thus, complex 4b can
effectively cut pBR322 from Form I to Form II.

2.10.5. Molecular Docking

Docking results of Figure 8 prove that the binding of 4b to DNA relies on intercalation.
The ligand part of 4b was completely inserted into the double helix of DNA. The atoms
are substantially planar on the ligand, and the steric hindrance is relatively small. The
deoxyribonucleotide ring formed a coordinate bond with the central tin atom, with a bond
length of 2.605 Å (see Figure S119). The results indicate that 4b can bind to DNA via
intercalation, which was determined through spectroscopic investigations.
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3. Experimental
3.1. Materials and Methods

Calf thymus DNA (Type XV, Activated, lyophilized powder), anti-β-actin antibody,
anti-β-actin antibody was obtained from Proteintech Group, Inc (Chicago, IL, USA); anti-
cleaved caspase-3, anti-Bcl-2, anti-Chk2, anti-p-Chk2 (phospho T68), and anti-p53 anti-
bodies were obtained from Abcam plc (Waltham, MA, USA); Cytochrome c antibody was
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obtained from Cell Signaling Technology, Inc (Danvers, MA, USA); anti-ATM and anti-p-
ATM (phospho S1981) antibodies were obtained from Santa Cruz Biotechnology, Inc (Dallas,
TX, USA); and pBR322 DNA used in this study was synthesized by Sangon Biotech Co. Ltd.
(Shanghai, China). α-Ketobutyric acid and 4-nitrobenzhydrazide were from Sigma-Aldrich
LLC. (City of Saint Louis, MO, USA); and benzhydrazid,
2-hydroxybenzhydrazide, 4-hydroxybenzhydrazide, and 4-tert-hutylbenzhydrazide were
from J&K Scientific Ltd (Guangzhou, China). Dibutyltin oxide, 4-methylbenzohydrazide,
4-methoxybenzohydrazide, 2-furoic hydrazide, and 2-thiophenecarboxylic acid hydrazide
were from TCI (Shanghai, China) Development Co. Ltd. (Shanghai, China). Diphenyltin
dichloride was from Alfa Aesar (China) Chemical Co. Ltd. (Shanghai, China). Other chem-
icals were from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). All reagents
were of analytical grade obtained from commercial sources and used without further purifi-
cation. Ultrapure water (18.2 MΩ·cm) obtained from a Milli-Q water purification system
(Millipore Co., Billerica, MA, USA) was used in all experiments. Tris-HCl (0.01 mol·L−1)
buffer solution was prepared by a certain amount of Tris dissolved in super pure water
before use, and the pH of the solution was adjusted to 7.40 with hydrochloric acid solution
(0.1 mol·L−1). The purity of CT-DNA was determined by comparing the absorbance at
260 and 280 nm (A260/A280 = 1.8–1.9/1). The concentration of CT-DNA was calculated
by measuring the absorbance at 260 nm (ε260 = 6600 L·mol−1·cm−1). The reserve solution
was stored at 4 ◦C. The ethidium bromide solution was prepared by a certain amount of
ethidium bromide solid dissolved in Tris–HCl (0.01 mol·L−1) buffer solution.

The microwave synthesis reaction was completed using the Sineo Microwave MDS-10
High-throughput Microwave Sample Preparation Workstation (Shanghai, China). Ele-
mental analyses for C, H, and N were determined on a PE-2400(II) analyzer (Waltham,
MA, USA). The IR spectrum was obtained for KBr pellets on a Shimadzu Prestige-21 spec-
trophotometer in the 4000–400 cm−1 (Kyoto, Japan). 1H, 13C, and 119Sn NMR analysis were
performed on a Bruker AVANCE NMR spectrometer (Karlsruhe, Germany). HRMS was
obtained by Thermo Scientific LTQ Orbitrap XL (Waltham, MA, USA) or Waters UPLC
I-Class Xevo G2 XS-Q Tof (Milford, MA, USA) with ESI. Crystal structure was determined
on a Bruker SMART APEX II X-ray diffractometer (Karlsruhe, Germany). Thermogravimet-
ric analyses (TGA) were recorded on a NETZSCH TG 209 F3 instrument at a heating rate
of 20 ◦C/min from room temperature to 900 ◦C under air (Selb, Germany). Melting point
measurement was executed on an X-4 binocular micromelting point apparatus with the
temperature unadjusted (Beijing, China). UV–Vis absorption spectra was measured by a
Shimadzu UV-2550 spectrometer (Kyoto, Japan). Fluorescence spectra were obtained with a
Hitachi F-7000 spectrophotometer (Tokyo, Japan) with a quartz cuvette (path length = 1 cm).
Viscosity experiments were conducted on an Ubbelodhe viscometer (Shanghai, China). Gel
electrophoresis was measured by DYY-6C electrophoresis power supply (Beijing, China).
Cell apoptosis was measured by the BD FACSCalibur CellSorting System (Franklin Lakes,
NJ, USA).

3.2. Synthesis

The mixture comprising substituted hydrazide (1 mmol), α-ketobutyric acid (1 mmol),
and relevant diorganotin (1 mmol) in 30 mL of methanol was positioned inside a microwave
reactor vessel, followed by 30 min microwave irradiation at 100 ◦C. When the reaction
kettle had cooled to room temperature, the solution in the kettle was filtered. The complex
crystals were obtained by controlling solvent evaporation.

3.2.1. Diphenyltin-2-(2-benzoylhydrazono) Butyrate (1a)

Colorless crystals, Yield 78%, m.p.: 258–260 ◦C. Anal. Calcd. (C23H20N2O3Sn): C,
56.25; H, 4.10; N, 5.70%. Found: C, 56.11; H, 4.08; N, 5.81%. FTIR (KBr, cm−1): 3048, 2978,
2936, 2878, 1636, 1599, 1585, 1503, 1481, 1460, 1433, 1393, 1342, 1298, 1265, 1202, 1175, 1096,
1065, 1043, 1026, 997, 972, 924, 845, 808, 733, 716, 694, 604, 588, 482, 453, 420. UV–Vis
(DMSO + H2O, λ/nm): 326. 1H NMR (500 MHz, CDCl3, δ/ppm): 8.33–8.35 (m, 2H, Ar–H),
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7.81–7.83 (m, 4H, Ar–H), 7.60 (tt, J1 = 7.4 Hz, J2 = 1.6 Hz, 1H, Ar–H), 7.53 (dt, J1 = 7.8 Hz,
J2 = 1.3 Hz, 2H, Ar–H), 7.44–7.51 (m, 6H, Ar–H), 3.12 (q, J = 7.6 Hz, 2H, –CH2CH3), 1.31
(t, J = 7.6 Hz, 3H, –CH2CH3). 13C NMR (126 MHz, CDCl3, δ/ppm): 174.80 (–COO),
163.30 (–C(O)=N), 160.27 (–C=N), 136.15, 135.69, 132.85, 132.28, 131.44, 129.42, 128.76,
128.50 (Ar–C), 21.23 (–CH2CH3), 10.72 (–CH2CH3). 119Sn NMR (187 MHz, CDCl3, δ/ppm):
−294.40. HRMS (ESI) m/z calcd for C23H21N2O3Sn+ [M + H]+ 493.0569, found 493.0569.

3.2.2. Dibutyltin-2-(2-benzoylhydrazono) Butyrate (1b)

Colorless crystals, Yield 76%, m.p.: 88–90 ◦C. Anal. Calcd. (C20H31N2O4Sn): C,
49.81; H, 6.48; N, 5.81%. Found: C, 49.77; H, 6.58; N, 5.77%. FTIR (KBr, cm−1): 3234,
3054, 2959, 2923, 2857, 1632, 1610, 1587, 1495, 1461, 1438, 1388, 1333, 1301, 1261, 1195,
1173, 1156, 1086, 1057, 1025, 966, 934, 883, 874, 841, 799, 713, 685, 602, 579, 537, 489, 463,
412. UV–Vis (DMSO + H2O, λ/nm): 326. 1H NMR (500 MHz, CDCl3, δ/ppm): 8.22 (d,
J = 7.2 Hz, 4H, Ar–H), 7.55 (t, J = 7.4 Hz, 2H, Ar–H), 7.47 (t, J = 7.6 Hz, 4H, Ar–H), 3.49(s, 6H,
CH3OH), 3.13 (q, J = 7.6 Hz, 4H, –CH2CH3), 1.54–1.67 (m, 16H, –CH2CH2CH2CH3), 1.36–
1.28 (m, 14H, –CH2CH2CH2CH3, –CH2CH3), 0.86 (t, J = 7.3 Hz, 12H, –CH2CH2CH2CH3).
13C NMR (126 MHz, CDCl3, δ/ppm): 174.88 (–COO), 164.49 (–C(O)=N), 159.76 (–C=N),
132.67, 132.39, 128.63, 128.34 (Ar–C), 50.78 (CH3OH), 26.73 (–CH2CH2CH2CH3), 26.37
(–CH2CH2CH2CH3), 21.99 (–CH2CH3), 21.05 (–CH2CH2CH2CH3), 13.46 (–CH2CH2CH2CH3),
10.63 (–CH2CH3). 119Sn NMR (187 MHz, CDCl3, δ/ppm): −176.94. HRMS (ESI) m/z calcd
for C20H32N2O4Sn+ [M–CH3OH + H]+ 453.1195, found 453.1150.

3.2.3. Diphenyltin-2-(2-(2-hydroxylbenzoyl)hydrazono)butyrate (2a)

Pale yellow crystals, Yield 71%, m.p.: 230–231 ◦C. Anal. Calcd. (C23H20N2O4Sn):
C, 54.47; H, 3.98; N, 5.52%. Found: C, 54.51; H, 4.02; N, 5.53%. FTIR (KBr, cm−1): 3312,
3040, 2985, 2952, 2916, 1703, 1662, 1606, 1584, 1540, 1502, 1437, 1260, 1232, 1188, 1146,
1105, 1058, 993, 907, 857, 764, 750, 688, 654, 636, 612, 517, 492, 451, 438, 408. UV–Vis
(DMSO + H2O, λ/nm): 332. 1H NMR (500 MHz, d6-DMSO, δ/ppm): 12.93 (s, 1H, Ar–OH),
7.96 (dd, J1 = 7.8, J2 = 1.4 Hz, 1H, Ar–H), 7.49–7.77 (m, 4H, Ar-H), 7.37–7.42 (m, 1H, Ar–H),
7.21–7.35 (m, 6H, Ar–H), 6.96–6.86 (m, 2H, Ar–H), 2.65 (q, J = 7.5 Hz, 2H, –CH2CH3), 0.99
(t, J = 7.5 Hz, 3H, –CH2CH3). 13C NMR (126 MHz, d6–DMSO, δ/ppm): 172.89 (–COO),
164.39 (–C(O)=N), 160.02 (–C=N), 154.68, 150.45, 133.81, 133.44, 129.18, 128.09, 127.90,
118.59, 116.95, 116.74 (Ar–C), 19.85 (–CH2CH3), 9.34 (–CH2CH3). 119Sn NMR (187 MHz, d6–
DMSO, δ/ppm): −595.39. HRMS (ESI) m/z calcd for C23H20N2O4Sn+ [M + H]+ 509.0518,
found 509.0509.

3.2.4. Dibutyltin-2-(2-(2-hydroxylbenzoyl)hydrazono)butyrate (2b)

Pale yellow crystals, Yield 76%, m.p.: 197–199 ◦C. Anal. Calcd. (C19H28N2O4Sn):
C, 48.85; H, 6.04; N, 6.00%. Found: C, 48.77; H, 6.01; N, 5.97%. FTIR (KBr, cm−1): 3057,
3021, 2957, 2924, 2872, 2857, 2731, 1616, 1597, 1578, 1560, 1522, 1489, 1456, 1414, 1387, 1331,
1256, 1229, 1206, 1169, 1117, 1090, 1070, 1034, 968, 853, 831, 795, 772, 754, 714, 702, 683,
671, 604, 590, 534, 519, 446, 424. UV–Vis (DMSO + H2O, λ/nm): 330. 1H NMR (500 MHz,
CDCl3, δ/ppm): 11.94 (s, 1H, Ar–OH), 8.08 (dd, J1 = 7.9 Hz, J2 = 1.3 Hz, 1H, Ar–H), 7.46
(dt, J1 = 8.5 Hz, J2 = 1.5 Hz, 1H, Ar–H), 7.02 (d, J = 8.3 Hz, 1H, Ar–H), 6.96 (t, J = 7.5 Hz,
1H, Ar–H), 3.03 (q, J = 7.6 Hz, 2H, –CH2CH3), 1.63–1.66 (m, 4H, –CH2CH2CH2CH3),
1.46–1.48(m, 4H, –CH2CH2CH2CH3), 1.27–1.31 (m, 7H, –CH2CH2CH2CH3, –CH2CH3),
0.84(d, J = 7.3 Hz, 6H, –CH2CH2CH2CH3). 13C NMR (126 MHz, CDCl3, δ/ppm): 175.75
(–COO), 165.72 (–C(O)=N), 160.71 (–C=N), 157.59, 134.85, 130.29, 119.2, 117.52, 115.32
(Ar–C), 26.81 (–CH2CH2CH2CH3), 26.30 (–CH2CH2CH2CH3), 25.04 (–CH2CH2CH2CH3),
21.19 (–CH2CH3), 13.47 (–CH2CH2CH2CH3), 9.88 (–CH2CH3). 119Sn NMR (187 MHz,
CDCl3, δ/ppm): –233.15. HRMS (ESI) m/z calcd for C19H29N2O4Sn+ [M + H]+ 469.1144,
found 469.1139.
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3.2.5. Diphenyltin-2-(2-(4-hydroxylbenzoyl)hydrazono)butyrate (3a)

Pale yellow crystals, Yield 67%, m.p.: 233–235 ◦C. Anal. Calcd. (C23H20N2O4Sn):
C, 54.47; H, 3.98; N, 5.52%. Found: C, 54.45; H, 4.04; N, 5.61%. FTIR (KBr, cm−1): 3693,
3069, 3053, 2978, 2935, 2877, 1615, 1598, 1586, 1514, 1488, 1480, 1454, 1431, 1415, 1388, 1329,
1252, 1231, 1207, 1172, 1159, 1090, 1073, 1041, 997, 967, 919, 853, 831, 804, 780, 763, 732, 693,
671, 602, 552, 537, 518, 454, 414. UV–Vis (DMSO + H2O, λ/nm): 330. 1H NMR (500 MHz,
d4–MeOH, δ/ppm): 13.65 (s, 1H, Ar–OH), 7.85 (d, J = 7.0 Hz, 4H, Ar–H), 7.76–7.78 (m, 2H,
Ar–H), 7.41–7.46 (m, 4H, Ar–H), 6.88–6.95 (m, 4H, Ar–H), 2.75 (q, J = 7.5 Hz, 2H, –CH2CH3),
1.03 (t, J = 7.5 Hz, 3H, –CH2CH3). 13C NMR (126 MHz, d4–MeOH, δ/ppm): 176.75 (–COO),
166.85 (–C(O)=N), 163.31 (–C=N), 145.93, 135.99, 132.40, 131.02, 129.78, 124.02, 116.63, 116.55
(Ar–C), 28.31 (–CH2CH3), 10.38 (–CH2CH3). 119Sn NMR (187 MHz, d4–MeOH, δ/ppm):
−236.30. HRMS (ESI) m/z calcd for C23H20N2O4Sn+ [M + H]+ 509.0518, found 509.0509.

3.2.6. Dibutyltin-2-(2-(4-hydroxylbenzoyl)hydrazono)butyrate (3b)

Light yellow crystals, Yield 76%, m.p.: 231–233 ◦C. Anal. Calcd. (C19H28N2O4Sn):
C, 48.85; H, 6.04; N, 6.00%. Found: C, 48.81; H, 6.11; N, 6.05%. FTIR (KBr, cm−1): 3121,
3071, 2965, 2930, 2870, 2805, 1653, 1636, 1589, 1489, 1456, 1387, 1331, 1317, 1292, 1250, 1200,
1167, 1092, 1065, 968, 935, 849, 802, 768, 702, 637, 606, 584, 540, 513, 478, 444, 419. UV–Vis
(DMSO + H2O, λ/nm): 340. 1H NMR (500 MHz, (CD3)2CO, δ/ppm): 9.18 (s, 2H, Ar–OH),
8.09–8.12 (m, 4H, Ar–H), 6.92–6.95 (m, 4H, Ar–H), 3.01 (q, J = 7.6 Hz, 4H, –CH2CH3),
1.60–1.66 (m, 8H, –CH2CH2CH2CH3), 1.52–1.59 (m, 8H, –CH2CH2CH2CH3), 1.27–1.35
(m, 8H, –CH2CH2CH2CH3), 1.21 (t, J = 7.6 Hz, 6H, –CH2CH3), 0.83 (t, J = 7.3 Hz, 12H,
–CH2CH2CH2CH3). 13C NMR (126 MHz, CDCl3, δ/ppm): 174.4 (–COO), 164.01 (–C(O)=N),
159.44 (–C=N), 130.85, 125.17, 115.24, 99.97 (Ar–C), 50.93 (CH3OH), 29.70 (–CH2CH3),
26.68 (–CH2CH2CH2CH3), 26.42 (–CH2CH2CH2CH3), 20.67 (–CH2CH2CH2CH3), 13.46
(–CH2CH2CH2CH3), 10.61 (–CH2CH3). 119Sn NMR (187 MHz, (CD3)2CO, δ/ppm): −521.81.
HRMS (ESI) m/z calcd for C19H29N2O4Sn+ [M + H]+ 469.1144, found 469.1138.

3.2.7. Diphenyltin-2-(2-(4-methylbenzoyl)hydrazono)butyrate (4a)

Light yellow crystals, Yield 71%, m.p.: 208–210 ◦C. Anal. Calcd. (C24H22N2O3Sn):
C, 57.06; H, 4.39; N, 5.54%. Found: C, 57.01; H, 4.41; N, 5.55%. FTIR (KBr, cm−1): 3059,
2980, 2938, 2880, 1634, 1597, 1582, 1491, 1479, 1460, 1433, 1396, 1341, 1327, 1296, 1267,
1206, 1175, 1157, 1094, 1063, 1043, 1022, 972, 845, 814, 750, 733, 716, 694, 606, 586, 544, 488,
451. UV–Vis (DMSO + H2O, λ/nm): 326. 1H NMR (500 MHz, CDCl3, δ/ppm): 8.23 (d,
J = 8.2 Hz, 2H, Ar–H), 7.81–7.83 (m, 4H, Ar–H), 7.44–7.49 (m, 6H, Ar–H), 7.32 (d, J = 8.0 Hz,
2H, Ar–H), 3.10 (q, J = 7.6 Hz, 2H, –CH2CH3), 2.46 (s, 3H, CH3–Ph), 1.30 (t, J = 7.6 Hz,
3H, –CH2CH3).13C NMR (126 MHz, CDCl3, δ/ppm): 174.84 (–COO), 163.45 (–C(O)=N),
159.51 (–C=N), 143.66, 136.14, 135.73, 131.38, 129.44, 129.37, 129.24, 128.78 (Ar–C), 21.81
(CH3–Ph), 21.15 (–CH2CH3), 10.71 (–CH2CH3). 119Sn NMR (187 MHz, CDCl3, δ/ppm):
–294.44. HRMS (ESI) m/z calcd for C24H23N2O3Sn+ [M + H]+ 507.0725, found 507.0718.

3.2.8. Dibutyltin-2-(2-(4-methylbenzoyl)hydrazono)butyrate (4b)

Colorless crystals, Yield 77%, m.p.: 158–160 ◦C. Anal. Calcd. (C21H34N2O4Sn): C,
50.73; H, 6.89; N, 5.63%. Found: C, 50.77; H, 6.84; N, 5.67%. FTIR (KBr, cm−1): 3231,
3065, 2961, 2922, 2870, 1611, 1582, 1489, 1458, 1393, 1335, 1300, 1261, 1194, 1177, 1155,
1088, 1059, 1020, 966, 934, 837, 802, 750, 685, 629, 579, 534, 484, 465, 444, 420. UV–Vis
(DMSO + H2O, λ/nm): 342. 1H NMR (500 MHz, CDCl3, δ/ppm): 8.10 (d, J = 8.2 Hz, 4H,
Ar–H), 7.27 (d, J = 2.9 Hz, 4H, Ar–H), 3.49(s, 6H, CH3OH), 3.12 (q, J = 7.6 Hz, 4H, –CH2CH3),
2.43 (s, 6H, CH3–Ph), 1.60–1.65 (m, 14H, –CH2CH2CH2CH3, –CH2CH3), 1.29–1.35 (m, 16H,
–CH2CH2CH2CH3), 0.87 (t, J = 7.3 Hz, 12H, –CH2CH2CH2CH3).13C NMR (126 MHz,
CDCl3, δ/ppm): 174.91 (–COO), 164.14 (–C(O)=N), 159.54 (–C=N), 143.14, 129.81, 129.10,
128.62 (Ar–C), 50.84 (CH3OH), 26.70 (–CH2CH2CH2CH3), 26.39 (–CH2CH2CH2CH3), 21.74
(–CH2CH2CH2CH3), 21.13 (–CH2CH3), 13.46 (–CH2CH2CH2CH3), 10.63 (–CH2CH3). 119Sn
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NMR (187 MHz, CDCl3, δ/ppm): −158.60. HRMS (ESI) m/z calcd for C20H31N2O3Sn+

[M + H]+ 467.1351, found 467.1343.

3.2.9. Diphenyltin-2-(2-(4-methoxybenzoyl)hydrazono)butyrate (5a)

Pale yellow, Yield 79%, m.p.: 234–236 ◦C. Anal. Calcd. (C24H22N2O4Sn): C, 55.31;
H, 4.25; N, 5.38%. Found: C, 55.40; H, 4.24; N, 5.37%. FTIR (KBr, cm−1): 3449, 3071,
3048, 2965, 2930, 2872, 1634, 1601, 1582, 1495, 1477, 1458, 1431, 1393, 1337, 1323, 1302,
1254, 1204, 1177, 1096, 1067, 1024, 847, 731, 694, 640, 604, 588, 544, 513, 446, 422. UV–Vis
(DMSO + H2O, λ/nm): 332. 1H NMR (500 MHz, CDCl3, δ/ppm): 8.31 (d, J = 8.7Hz, 2H,
Ar–H), 7.80–7.82 (m, 4H, Ar–H), 7.43–7.46(m, 6H, Ar–H), 7.01 (d, J =8.6 Hz, 2H, Ar–H), 3.90
(s, 3H, CH3O–Ph), 3.08 (q, J = 7.6 Hz, 2H, –CH2CH3), 1.30 (t, J = 7.6 Hz, 3H, –CH2CH3). 13C
NMR (126 MHz, CDCl3, δ/ppm): 174.48 (–COO), 163.53 (–C(O)=N), 158.75 (–C=N), 136.15,
135.84, 131.36, 130.78, 129.36, 124.59, 113.87 (Ar–C), 55.51 (CH3O–Ph), 21.09 (–CH2CH3),
10.66 (–CH2CH3). 119Sn NMR (187 MHz, CDCl3, δ/ppm): −294.15. HRMS (ESI) m/z calcd
for C24H23N2O4Sn + [M + H]+ 523.0674, found 523.0669.

3.2.10. Dibutyltin-2-(2-(4-methoxybenzoyl)hydrazono)butyrate (5b)

Yellow, Yield 81%, m.p.: 155–157 ◦C. Anal. Calcd. (C21H34N2O5Sn): C, 49.15; H, 6.68;
N, 5.49%. Found: C, 49.20; H, 6.62; N, 5.44%. FTIR (KBr, cm−1): 3485, 3076, 2959, 2928,
2872, 2857, 2837, 1603, 1585, 1512, 1489, 1460, 1412, 1389, 1339, 1304, 1254, 1198, 1171,
1088, 1061, 1032, 966, 847, 808, 764, 702, 685, 638, 625, 604, 583, 534, 515, 451, 415. UV–Vis
(DMSO + H2O, λ/nm): 328. 1H NMR (500 MHz, CDCl3, δ/ppm): 8.17 (d, J = 8.4 Hz,
4H, Ar–H), 6.96 (d, J = 8.5 Hz, 4H, Ar–H), 3.88 (s, 6H, CH3O–Ph), 3.48 (s, 6H, CH3OH),
3.11 (q, J = 7.6 Hz, 4H, –CH2CH3), 1.60–1.64 (m, 14H, –CH2CH2CH2CH3, –CH2CH3),
1.24–1.37 (m,16H, –CH2CH2CH2CH3), 0.88 (t, J = 7.3 Hz, 12H, –CH2CH2CH2CH3).13C
NMR (126 MHz, CDCl3, δ/ppm): 174.56 (–COO), 164.20 (–C(O)=N), 163.18 (–C=N), 158.86,
130.59, 125.00, 113.71 (Ar–C), 55.47 (CH3O–Ph), 50.83 (CH3OH), 26.71 (–CH2CH2CH2CH3),
26.39 (–CH2CH2CH2CH3), 21.07 (–CH2CH2CH2CH3), 21.03 (–CH2CH3), 13.45
(–CH2CH2CH2CH3), 10.59 (–CH2CH3). 119Sn NMR (187 MHz, CDCl3, δ/ppm): −157.87.
HRMS (ESI) m/z calcd for C20H31N2O4Sn+ [M-CH3OH + H]+ 483.1300, found 483.1297.

3.2.11. Diphenyltin-2-(2-(4-tert-butylbenzoyl)hydrazono)butyrate (6a)

Yellow, Yield 86%, m.p.: 267–268 ◦C. Anal. Calcd. (C27H28N2O3Sn): C, 59.26; H, 5.16;
N, 5.12%. Found: C, 59.21; H, 5.11; N, 5.07%. FTIR (KBr, cm−1): 3055, 2961, 2903, 2868, 1686,
1659, 1628, 1607, 1576, 1476, 1462, 1435, 1396, 1325, 1292, 1246, 1192, 1159, 1084, 1061, 1020,
964, 853, 833, 808, 770, 739, 729, 714, 696, 594, 548, 496, 444, 420. UV–Vis (DMSO + H2O,
λ/nm): 328. 1H NMR (500 MHz, CDCl3, δ/ppm): 8.28 (d, J = 8.5 Hz, 2H, Ar-H), 7.81–7.83
(m, 4H, Ar–H), 7.54 (d, J = 8.5 Hz, 2H, Ar–H), 7.43–7.49 (m, 6H, Ar–H), 3.11 (q, J = 7.6 Hz, 2H,
–CH2CH3), 1.38 (s, 9H, –C(CH3)3), 1.30 (t, J = 7.6 Hz, 3H, –CH2CH3).13C NMR (126 MHz,
CDCl3, δ/ppm): 174.78 (–COO), 163.47 (–C(O)=N), 159.52 (–C=N), 156.69, 136.15, 135.71,
131.38, 129.39, 129.36, 128.62, 125.50 (Ar–C), 35.17 (–C(CH3)3), 31.15 (–C(CH3)3), 21.16
(–CH2CH3), 10.69 (–CH2CH3). 119Sn NMR (187 MHz, CDCl3 δ/ppm): −249.57. HRMS
(ESI) m/z calcd for C27H29N2O3Sn+ [M + H]+ 549.1195, found 549.1190.

3.2.12. Dibutyltin-2-(2-(4-tert-butylbenzoyl)hydrazono)butyrate (6b)

Colorless, Yield 77%, m.p.: 154–156 ◦C. Anal. Calcd. (C24H40N2O4Sn): C, 53.45; H,
7.48; N, 5.20%. Found: C, 53.35; H, 7.39; N, 5.14%. FTIR (KBr, cm−1): 3431, 3067, 2959,
2926, 2870, 2859, 1605, 1582, 1572, 1489, 1458, 1391, 1364, 1341, 1304, 1292, 1267, 1190, 1159,
1086, 1061, 1016, 968, 935, 851, 837, 806, 772, 706, 685, 594, 550, 492, 465, 419. UV–Vis
(DMSO + H2O, λ/nm): 330. 1H NMR (500 MHz, CDCl3, δ/ppm): 8.13 (dt, J1 = 8.6 Hz,
J2 = 1.8 Hz, 4H, Ar–H), 7.49 (dt, J1 = 8.5 Hz, J2 = 1.8 Hz, 4H, Ar–H), 3.49 (s, 6H, CH3OH),
3.12 (q, J =7.6 Hz, 4H, –CH2CH3), 1.58–1.65 (m, 14H, –CH2CH2CH2CH3, –CH2CH3),
1.36 (s, 18H, –C(CH3)3), 1.28–1.34 (m, 16H, –CH2CH2CH2CH3), 0.88 (t, J = 7.3 Hz, 12H,
–CH2CH2CH2CH3).13C NMR (126 MHz, CDCl3, δ/ppm): 174.87 (–COO), 164.11 (–C(O)=N),
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159.60 (–C=N), 156.19, 129.80, 128.46, 125.36 (Ar–C), 50.84 (CH3OH), 35.10 (–C(CH3)3), 31.16
(–C(CH3)3), 26.68 (–CH2CH2CH2CH3), 26.39 (–CH2CH2CH2CH3), 21.07 (–CH2CH3), 21.01
(–CH2CH2CH2CH3), 13.45 (–CH2CH2CH2CH3), 10.59 (–CH2CH3). 119Sn NMR (187 MHz,
CDCl3, δ/ppm): −157.43. HRMS (ESI) m/z calcd for C23H37N2O3Sn+ [M–CH3OH + H]+

509.1821, found 509.1816.

3.2.13. Diphenyltin-2-(2-(4-nitrobenzoyl)hydrazono)butyrate (7a)

Yellow, Yield 83%, m.p.: 213–214 ◦C. Anal. Calcd. (C48H46N6O12Sn2): C, 50.73; H, 4.08;
N, 7.40%. Found: C, 50.77; H, 4.10; N, 7.37%. FTIR (KBr, cm−1): 3464, 3057, 2972, 2938, 1690,
1597, 1564, 1528, 1508, 1485, 1458, 1431, 1387, 1339, 1317, 1292, 1263, 1192, 1169, 1155, 1105,
1086, 1055, 1018, 999, 966, 868, 854, 804, 779, 718, 698, 689, 588, 550, 521, 453, 417. UV–Vis
(DMSO + H2O, λ/nm): 348. 1H NMR (500 MHz, CDCl3, δ/ppm): 8.49 (d, J = 8.8 Hz, 4H,
Ar–H), 8.35 (d, J = 8.8 Hz, 4H, Ar–H), 7.79–7.81 (m, 8H, Ar–H), 7.45–7.52 (m, 12H, Ar–H),
3.14 (q, J = 7.6Hz, 4H, –CH2CH3), 1.33 (t, J = 7.6 Hz, 6H, –CH2CH3). 13C NMR (126 MHz,
CDCl3, δ/ppm): 172.73 (–COO), 162.82 (–C(O)=N), 162.67 (–C=N), 150.33, 138.03, 136.04,
135.34, 131.66, 129.67, 129.57, 123.61 (Ar–C), 21.48 (–CH2CH3), 10.83 (–CH2CH3). 119Sn
NMR (187 MHz, CDCl3, δ/ppm): −294.33. HRMS (ESI) m/z calcd for C23H20N3O5Sn+

[M-CH3OH + H]+ 538.0419, found 538.0415.

3.2.14. Dibutyltin-2-(2-(4-nitrobenzoyl)hydrazono)butyrate (7b)

Yellow, Yield 80%, m.p.: 151–153 ◦C. Anal. Calcd. (C40H62N6O12Sn2): C, 45.48; H,
5.92; N, 7.96%. Found: C, 45.52; H, 5.99; N, 8.03%. FTIR (KBr, cm−1): 3422, 3113, 3055,
2957, 2926, 2857, 1636, 1612, 1597, 1533, 1503, 1458, 1387, 1335, 1321, 1292, 1261, 1194,
1169, 1155, 1105, 1084, 1057, 1015, 966, 870, 854, 806, 719, 702, 602, 581, 548, 521, 480, 463,
444. UV–Vis (DMSO + H2O, λ/nm): 346. 1H NMR (500 MHz, CDCl3, δ/ppm): 8.39 (dt,
J1 = 8.9 Hz, J2 = 1.9 Hz, 4H, Ar–H), 8.31 (dt, J1 = 8.9 Hz, J2 = 1.9 Hz, 4H, Ar–H), 3.50 (s, 6H,
CH3OH), 3.15 (q, J = 7.6 Hz, 4H, –CH2CH3), 1.64–1.71 (m, 8H, –CH2CH2CH2CH3), 1.52–
1.57 (m, 8H, –CH2CH2CH2CH3), 1.31–1.35 (m, 14H, –CH2CH2CH2CH3, –CH2CH3), 0.87 (t,
J = 7.3 Hz, 12H, –CH2CH2CH2CH3). 13C NMR (126 MHz, CDCl3, δ/ppm): 172.83 (–COO),
164.41 (–C(O)=N), 161.81 (–C=N), 150.04, 138.54, 129.62, 123.45 (Ar–C), 50.85 (CH3OH),
26.77 (–CH2CH2CH2CH3), 26.36 (–CH2CH2CH2CH3), 22.94 (–CH2CH2CH2CH3), 21.25
(–CH2CH3), 13.45 (–CH2CH2CH2CH3), 10.75 (–CH2CH3). 119Sn NMR (187 MHz, CDCl3,
δ/ppm): −183.68. HRMS (ESI) m/z calcd for C19H28N3O5Sn+ [M-CH3OH + H]+ 498.1045,
found 498.1040.

3.2.15. Diphenyltin-2-(2-furoylhydrazono)butyrate (8a)

Yellow, Yield 72%, m.p.: 270–272 ◦C. Anal. Calcd. (C21H18N2O4Sn): C, 52.43; H, 3.77;
N, 5.82%. Found: C, 52.51; H, 3.89; N, 5.88%. FTIR (KBr, cm−1): 3464, 3144, 3053, 2980, 2936,
2874, 1628, 1595, 1580, 1504, 1481, 1470, 1431, 1408, 1368, 1327, 1263, 1225, 1198, 1144, 1105,
1061, 1009, 972, 899, 883, 835, 802, 764, 735, 694, 669, 600, 581, 544, 507, 453, 424. UV–Vis
(DMSO + H2O, λ/nm): 332. 1H NMR (500 MHz, CDCl3, δ/ppm): 7.79–7.81 (m, 4H, Ar–H),
7.69–7.70 (m, 1H, Ar–H), 7.45–7.50 (m, 6H, Ar–H), 7.42 (dd, J1 = 3.5 Hz, J2 = 0.7 Hz, 1H,
Ar–H), 6.62 (q, J = 1.7 Hz, 1H, Ar–H), 3.09 (q, J = 7.6 Hz, 2H, –CH2CH3), 1.29 (t, J = 7.6 Hz,
3H, –CH2CH3). 13C NMR (126 MHz, CDCl3, δ/ppm): 167.24 (–COO), 163.10 (–C(O)=N),
160.19 (–C=N), 147.15, 146.58, 136.13, 135.47, 131.50, 129.43, 117.58, 112.30 (Ar–C), 21.25
(–CH2CH3), 10.81 (–CH2CH3). 119Sn NMR (187 MHz, CDCl3 δ/ppm): −296.62. HRMS
(ESI) m/z calcd for C21H19N2O4Sn+ [M + H]+ 483.0361, found 483.0355.

3.2.16. Dibutyltin-2-(2-furoylhydrazono)butyrate (8b)

Yellow, Yield 77%, m.p.: 132–134 ◦C. Anal. Calcd. (C18H30N2O5Sn): C, 45.69; H, 6.39;
N, 5.92%. Found: C, 45.55; H, 6.43; N, 5.93%. FTIR (KBr, cm−1): 3462, 3140, 3119, 2963, 2926,
2870, 2859, 1628, 1609, 1578, 1503, 1474, 1460, 1427, 1406, 1364, 1331, 1263, 1227, 1198, 1140,
1076, 1057, 1009, 970, 897, 885, 872, 837, 800, 764, 754, 702, 683, 596, 575, 536, 515, 444. UV–Vis
(DMSO + H2O, λ/nm): 334. 1H NMR (500 MHz, CDCl3, δ/ppm): 7.65–7.65 (m, 2H, Ar–H),
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7.89 (dd, J1 = 3.5 Hz, J2 = 0.7 Hz, 2H, Ar–H), 6.58–6.59 (m, 2H, Ar–H), 3.49 (d, J = 5.2 Hz, 6H,
CH3OH), 3.09 (q, J = 7.5 Hz, 4H, –CH2CH3), 1.63–1.67 (m, 8H, –CH2CH2CH2CH3), 1.51–
1.58 (m, 8H, –CH2CH2CH2CH3), 1.27–1.35 (m, 14H, –CH2CH2CH2CH3, –CH2CH3), 0.86 (t,
J = 7.3 Hz, 12H, –CH2CH2CH2CH3).13C NMR (126 MHz, CDCl3, δ/ppm): 167.41 (–COO),
164.55 (–C(O)=N), 158.58 (–C=N), 147.45, 146.10, 116.71, 112.15 (Ar–C), 50.83 (CH3OH),
26.68 (–CH2CH2CH2CH3), 26.38 (–CH2CH2CH2CH3), 22.00 (–CH2CH2CH2CH3), 21.06
(–CH2CH3), 13.45 (–CH2CH2CH2CH3), 10.74 (–CH2CH3). 119Sn NMR (187 MHz, CDCl3,
δ/ppm): −176.68. HRMS (ESI) m/z calcd for C17H27N2O4Sn+ [M–CH3OH + H]+ 443.0987,
found 443.0980.

3.2.17. Diphenyltin-2-(2-thienoylhydrazono)butyrate (9a)

Yellow, Yield 70%, m.p.: 161–162 ◦C. Anal. Calcd. (C21H18N2O3SSn): C, 50.73; H,
3.65; N, 5.63; S, 6.45%. Found: C, 50.80; H, 3.71; N, 5.72; S, 6.55%. FTIR (KBr, cm−1): 3441,
3094, 3049, 2974, 2936, 2876, 1630, 1618, 1593, 1578, 1560, 1530, 1497, 1477, 1458, 1431, 1387,
1358, 1317, 1308, 1265, 1202, 1148, 1094, 1065, 1024, 997, 966, 922, 854, 839, 802, 733, 710,
694, 604, 573, 563, 536, 453, 419. UV–Vis (DMSO + H2O, λ/nm): 338. 1H NMR (500 MHz,
CDCl3, δ/ppm): 8.05 (dd, J1 = 2.5 Hz, J2 = 1.2 Hz, 1H, Ar–H), 7.80–7.82 (m, 4H, Ar–H),
7.63 (dd, J1 = 3.8 Hz, J2 = 1.2 Hz, 1H, Ar–H), 7.45–7.50 (m, 6H, Ar–H), 7.20–7.19 (m, 1H,
Ar–H), 3.07 (q, J = 7.6 Hz, 2H, –CH2CH3), 1.28 (t, J = 7.6 Hz, 3H, –CH2CH3). 13C NMR
(126 MHz, CDCl3, δ/ppm): 170.99 (–COO), 163.32 (–C(O)=N), 159.19 (–C=N), 136.38, 136.14,
135.61, 132.38, 132.21, 131.47, 129.42, 128.02 (Ar–C), 21.18 (–CH2CH3), 10.69 (–CH2CH3).
119Sn NMR (187 MHz, CDCl3 δ/ppm): –294.76. HRMS (ESI) m/z calcd for C21H19N2O3SSn+

[M + H]+ 499.0133, found 499.0128.

3.2.18. Dibutyltin-2-(2-thienoylhydrazono)butyrate (9b)

Yellow, Yield 79%, m.p.: 90–92 ◦C. Anal. Calcd. (C18H30N2O4SSn): C, 44.19; H, 6.18;
N, 5.73; S, 6.55%. Found: C, 44.22; H, 6.23; N, 5.77; S, 6.62%. FTIR (KBr, cm−1): 3431, 3102,
2957, 2924, 2870, 2857, 1578, 1530, 1489, 1458, 1431, 1387, 1360, 1346, 1325, 1267, 1225, 1198,
1144, 1080, 1059, 1032, 962, 856, 837, 800, 745, 710, 685, 662, 602, 557, 525, 492, 461. UV–Vis
(DMSO + H2O, λ/nm): 354. 1H NMR (500 MHz, CDCl3, δ/ppm): 7.89 (dd, J1 = 3.7 Hz,
J2 = 1.2 Hz, 4H, Ar–H), 7.57 (dt, J1 = 5.0 Hz, J2 = 1.2 Hz, 4H, Ar–H), 7.14–7.15 (m, 2H,
Ar–H), 3.08 (q, J = 7.6 Hz, 4H, –CH2CH3), 1.62–1.69 (m, 8H, –CH2CH2CH2CH3), 1.54–1.60
(m, 8H, –CH2CH2CH2CH3), 1.27–1.37 (m, 14H, –CH2CH2CH2CH3, –CH2CH3), 0.87 (t,
J = 7.3 Hz, 12H, –CH2CH2CH2CH3).13C NMR (126 MHz, CDCl3, δ/ppm): 171.06 (–COO),
164.50 (–C(O)=N), 158.50 (–C=N), 136.85, 131.73, 131.67, 127.85 (Ar–C), 50.84 (CH3OH),
26.70 (–CH2CH2CH2CH3), 26.30 (–CH2CH2CH2CH3), 22.21 (–CH2CH2CH2CH3), 21.03
(–CH2CH3), 13.47 (–CH2CH2CH2CH3), 10.63 (–CH2CH3). 119Sn NMR (187 MHz, CDCl3,
δ/ppm): −509.34. HRMS (ESI) m/z calcd for C17H27N2O3SSn+ [M–CH3OH + H]+ 459.0759,
found 459.0750.

3.3. Single Crystal Structure Determination

X-ray diffraction spectral collection for crystals was achieved using a Smart Apex II
CCD diffractometer from Bruker through Mo–Kα (λ = 0.71073 Å) radiation using a graphite
monochromator. The ϕ–ω scan technique was used for diffraction spectral gathering at an
ambient temperature. The acquired data were subjected to multiscan correction of absorp-
tion. The crystal structures were determined through direct manipulation, and full-matrix
least-squares was performed to refine the crystal structures on F2. Before anisotropical
refinement, successive difference Fourier syntheses yielded all the remaining atoms (non-
hydrogen). The hydrogen atoms were positioned in measured locations or placed onto the
Fourier maps, followed by isotropical refinement using the atom (nonhydrogen)-associated
variables of isotropic vibration they were bound to. Measurements were performed using
SHELXL [46] on WINGX [47]. Complex-related crystal information and structure refine-
ment parameters are presented in Table S4 (Supplementary Materials). Crystallographic
data for the structures of complexes reported in this paper have been deposited with
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the Cambridge Crystallographic Data Center as supplementary publication nos. CCDC
2112812-2112828 (1a, 1b, 2a, 2b, 3b, 4a, 4b, 5a, 5b, 6a, 6b, 7a, 7b, 8a, 8b, 9a, and 9b).

3.4. In Vitro Anticancer Activity

NCI-H460(ATCC No: HTB-177), HepG2(ATCC No: HB-8065), and MCF-7(ATCC No:
HTB-22) cells were obtained from American Tissue Culture Collection (ATCC). HL-7702
cell was obtained from the Chinese Academy of Sciences. The cells were maintained at
37 ◦C in a 5% CO2 incubator in RPMI 1640 (GIBICO, Invitrogen) containing 10% fetal
bovine serum (GIBICO, Invitrogen). The 5 mM stock solutions of complexes were prepared
in DMSO and diluted in fresh medium for use. The final concentration of DMSO never
exceeded 0.1% (v/v). Cell proliferation was assessed by the CCK8 assay. A total of 100 µL
of cells (40 cells·µL−1) incubated at 37 ◦C, 5% CO2 was seeded into 96-well plates. Then,
the medium was replaced with the respective medium containing complexes at different
concentrations and incubated for 24 h. Ten µL CCK8 solution was added to each well and
incubated at 37 ◦C for an additional 4 h. The optical density was detected with a microplate
reader at 450 nm. Eleven concentrations (0.03 µM–32 µM) were set for the compounds and
at least three parallels of every concentration were used. All experiments were repeated at
least three times. The data were calculated using Graph Pad Prism version 7.0. The IC50
was fitted using a non-linear regression model with a sigmoidal dose response.

3.5. Cell Apoptosis Assay

Approximately 1 × 105 cells were inoculated on each well of a six-well plate and
subjected to 24 h cultivation. Next, cells were processed using candidate complexes at
varying concentrations for 24 h, and were then subjected to two rounds of cold PBS rinsing,
followed by assaying with an Annexin-V-FITC/PI Apoptosis Kit (MultiSciences Biotech,
China) according to the manufacturer’s instructions. Cell apoptosis was tested using a flow
cytometer (BDTM FACS Calibur, Franklin Lakes, NJ, USA).

3.6. Cell Cycle Analysis

Approximately 1 × 105 cells were inoculated on each well of a six-well plate and
subjected to 24 h cultivation. The cell cycle progression after treatment with 4b was
performed by using the Cell Cycle and Apoptosis Analysis Kit (Beyotime Biotechnology,
China), according to the manufacturer’s instructions and reference methods. MCF-7 cells
were treated with indicated concentration of 4b in 2 mL total medium for 24 h before harvest.
The cells were fixed with ice-cold 70% ethanol overnight at 4 ◦C. After centrifugation, the
cell pellets were washed with cold PBS once, and RNaseA (10 µL) and PI (10 µL) were
added to the cells. Cells were then incubated for 15 min at room temperature in the dark
and then detected by flow cytometry. Parallel determination was conducted three times.

3.7. Transmission Electron Microscope (TEM)

MCF-7 cell aggregates were fixed with 2.5% glutaraldehyde-PBS buffer for 2 h at 4 ◦C.
After rinsing three times with PBS buffer for 30 min, the samples were post-fixed with 1%
OsO4 for another 2 h at 4 ◦C. Then, the samples were dehydrated in a graded series of
ethanol–acetone with gradient ascent (50–70–90–100%), and embedded in epoxy resins.
The sample was sliced through with an ultramicrotome, stained with uranyl acetate, and
examined under electron microscope (Talos F200C, FEI, Hillsboro, OR, USA).

3.8. Western Blot Analysis

Inoculate logarithmic growth phase was recorded for MCF-7 cells in a 25 cm2 cell
culture flask (2 × 106 cells per flask) and cultured for 24 h. They were then exposed to the
specified concentration of complex 4b in an incubator at 37 ◦C and 5% CO2 for 24 h. The
cell lysates were prepared using RIPA lysis buffer; the cytoplasmic extracts were prepared
using a Cytoplasmic Protein Extraction Kit following the manufacturer’s instructions.
Equal amounts of protein were separated by 10% SDS−PAGE and transferred onto PVDF
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membranes. After blocking with 5% skimmed milk, the membranes were incubated
for 120 min at 37 ◦C with the specific rabbit or mouse anti-human primary antibodies
including anti-β-actin (1:10000), anti-cleaved caspase-3 (1:1000), anti-Bax (1:2000), anti-Bcl-2
(1:1000), Cytochrome c (Cyt c; 1:1000), anti-ATM (1:1000), anti-p-ATM (phospho S1981)
(1:1000), anti-Chk2(1:1000), anti-p-Chk2 (phospho T68) (1:1000), and anti-p53 (1:1000)
antibodies, respectively. Next, HRP-conjugated affinipure goat anti-rabbit or anti-mouse
secondary antibody (1:5000) was added for 90 min at room temperature. Then, the wells
were washed with 0.05% PBST solution. Immunoreactive bands were visualized using
enhanced chemiluminescence reagent and autoradiography following the manufacturer’s
instructions. Optical density of each band was analyzed with ImageJ software (National
Institutes of Health, Bethesda, MD, USA) using β-actin as an internal control.

3.9. Comet Assay

MCF-7 cells (2× 105 cells/mL) were performed to plant in 6-well plates and incubated
for 24 h. Cells were dealt with 4b (0.4 uM) for 24 h. Moreover, cells were collected and
washed with PBS, then cell suspension and 1% low melting point agarose were mixed to
drop onto slides and placed with glass coverslips, which was allowed to settle for 10 min
at 4 ◦C. Coverslips were removed and cells were lysed for 1 h at 4 ◦C. The slides were then
placed in freshly prepared alkaline electrophoresis solution to unwind DNA for 20 min.
Electrophoresis was performed under alkaline conditions for 20 min at 25 V and 300 mA.
After electrophoresis the cells were stained with ethidium bromide (EB) solution for 20 min
in darkness at 4 ◦C. Comet images were obtained by fluorescence microscope (Nikon
ECLIPSE Ti, Japan).

3.10. DNA-Binding Studies
3.10.1. UV–Visible Absorption Spectrometry

The potential modes of the complex binding with DNA were assessed with a UV–
Vis spectroscope, which was also used for the determination of Kb, the relevant intrinsic
DNA-binding constants. The following Wolfe–Shimmer equation was used for Kb value
determination [48]:

cDNA/(εA − εF) = cDNA/(εB − εF) + 1/Kb (εB − εF) (1)

where cDNA refers to the CT-DNA concentration; εA represents the extinction coefficient
detected at a random concentration of DNA; εF denotes the free complex’s extinction
coefficient; and εB denotes the extinction coefficient during full complex–CT-DNA binding.
We recorded the UV–Vis data of DNA under a 25 ◦C condition over 0–80 µM concentrations
at a complex concentration of 50 µM. We collected the spectra in a 270–800 nm range.
Corresponding slit width was set to 5 nm. The Kb values were determined using the
Wolfe–Shimmer formula plus cDNA/(εA − εF) vs. cDNA plots.

3.10.2. Fluorescence Competitive Study

For the fluorescence investigation, a volumetric flask (5 mL) was used to prepare a
mixture comprising 30 µM CT-DNA, 3 µM EB, and 0–80 µM complex. Fluorescence data
collection was performed for 3 h under 25 ◦C. The results revealed emission wavelengths
ranging from 540 to 700 nm and an excitation wavelength of 258 nm. Slit width setting
was 5 nm for both emission and excitation. Finally, the Stern–Volmer equation was used to
determine the quenching constant (Ksv) of the complex.

3.10.3. Viscosity Measurements

Viscosity tests were performed using the DNA concentration of 0–50 µM. The test
was performed on the Ubbelohde viscometer. The obtained samples were stored at
25 (±0.02) ◦C in a water bath. For the determination of the flow time in samples, the
digital stopwatch was used. Viscosity values were computed based on the flow time of
DNA including solutions to correct the flow time in buffer (t0), η = (t− t0) [49]. The data are
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presented by (η/η0)1/3 vs. (ccomplex/cDNA), in which η indicates the DNA viscosity of the
complex; η0 represents the DNA viscosity; and ccomplex refers to the complex concentration.
Here, cDNA denotes the DNA concentration.

3.10.4. Gel Electrophoresis Studies

For the gel electrophoresis experiments, the gel electrophoresis experiments were
performed by fixed pBR322 plasmid DNA concentration and increasing the concentration
of 4b (0, 20, 40, 60, 80 µM), and the contents were incubated for 1 h at 25 ◦C and they were
electrophoresed for 1 h at 150 V on 1.0% agarose gel in TAE buffer (pH = 8.0). Goldview
was used for staining, the image was photographed by using a gel imaging documentation
system under UV light mode.

3.10.5. Molecular Docking

The molecular operating environment (MOE) program was used to perform dock-
ing between molecules. We obtained the crystal architecture information of the DNA
molecules from the Protein Data Bank (code: 453D) and eliminated water and embedded
small molecules through MOE. Hydrogen atoms were introduced into DNA according to
the electrostatic requirements. Next, point charges were computed, with minimal corre-
sponding energy. The CIF data for the complex were transformed into its PDB counterpart
by using Mercury 3.8 before it was imported into MOE. Next, symmetrical units and
coordinated solvent molecules were erased, along with minimization of corresponding
energies, thus obtaining the complex for subsequent docking. Discovery Studio 3.5 could
be used to derive the molecular docking outcomes.

4. Conclusions

Eighteen diorganotin (IV) complexes were synthesized through one-pot microwave
irradiation. NMR, HRMS, and X-ray single-crystal diffraction were performed to character-
ize complex structure. Biological assay results indicated that all the complexes exhibited
anticancer activity against test cancer cells (HepG2, NCI-H460, MCF-7), and 4b exhibited
superior inhibitory activity in MCF-7 cell lines to other complexes. More importantly, we
studied the anti-tumor mechanism of complex 4b, where the results demonstrated that 4b
causes cell apoptosis by damaging DNA. DNA binding studies have shown that complex
4b can interact with DNA through insertion mode.
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14. Kalud̄erović, M.R.; Gómez-Ruiz, S.; Gallego, B.; Hey-Hawkins, E.; Paschke, R.; Kalud̄erović, G.N. Anticancer activity of dinuclear
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