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Chapter 10
Virus-Like Particles-Based Mucosal
Nanovaccines

Introduction

Vaccination is a key, highly cost-effective intervention to fight against infectious
diseases that has led to eradication of smallpox. Other diseases are expected to be
eradicated in the short term, including poliomyelitis. Despite these outstanding ben-
efits derived from vaccination, many obstacles in the development and deployment
of novel or improved vaccines remain (Sheerin et al. 2017). Most of the currently
used vaccines are based on whole microorganisms or viruses in attenuated or killed
forms. Although these vaccines possess high immunogenicity and efficacy, some
aspects could be improved such as better reactogenicity and reduction of the risk of
developing the disease in some population groups (e.g., immunocompromised indi-
viduals). The development of safer vaccines can be achieved by generating subunit
vaccines, which are formulated with a few antigenic components from the patho-
gen. One of the challenges to address in this regard is the poor immunogenicity of
the individual antigens, which is a frequent issue due to their low molecular com-
plexity and absence of PAMPs in the formulation to stimulate innate immunity
mechanisms that subsequently trigger the induction of adaptive immune responses.
Therefore, the inclusion of adjuvants in the subunit vaccine formulations is needed
to achieve induction of strong and protective immune responses (Bastola et al. 2017).

Molecular tools and knowledge on viral structure have allowed generating novel
biomedical applications such as gene therapy vectors. However, the most high-
lighted application in this sense is the production of virus-like particles (VLPs),
which are multimeric protein complexes that resemble a virus lacking genetic mate-
rial. Thus, they are unable to replicate or cause the disease, but retain the immuno-
genic activity since they mimic the virus in shape, size, and surface antigenic
determinants. The high immunogenicity of VLPs could avoid the need of accessory
adjuvants (Charlton Hume et al. 2019). In fact, some VLPs have been used as immu-
nostimulants able to mediate protection against some diseases without the use of
specific antigens, which is attributed to the activation of innate immune system
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mechanisms (Wiley et al. 2009). The interaction of VLPs with the innate immune
system is of major importance for the induction of adaptive immune responses. The
innate immune cells recognize and interact with VLPs on the basis of two major
characteristics: size and surface geometry (Mohsen et al. 2018).

Therefore, VLPs are highly attractive targets for vaccine development in terms of
safety and efficacy when compared to vaccines based on attenuated or inactivated
viruses. VLPs structure comprises one or more structural proteins that can be
arranged in one or several layers and in some cases the particle is enveloped by a
lipid membrane (Zhao et al. 2013). In many cases, the target antigen conforms the
VLPs structure, thus the vaccine can be easily produced and purified. In other cases,
VLPs are adopted to carry unrelated antigens from the vaccine target pathogen.

For decades, the development of VLPs-based vaccines against several patholo-
gies has led to great advances in biomedicine, resulting in the commercialization of
vaccines to fight human diseases such as those against the hepatitis B and E viruses
and the human papillomavirus (Donaldson et al. 2018; Park 2012). Moreover, sev-
eral VLPs-based vaccines candidates are currently under clinical evaluation in
schemes comprising parenteral administration; these include vaccines against
Norovirus (Leroux-Roels et al. 2018), malaria (Chichester et al. 2018), and influ-
enza (Pillet et al. 2018). The present chapter is rather focused on the vaccines evalu-
ated in mucosal immunization schemes since these are simple and safe immunization
modes that could also lead to substantial savings in the cost of vaccination cam-
paigns since no trained personnel or sterile devices are required. In fact, the formu-
lation of oral or nasal vaccines based on dried formulations may avoid the use of
cold chain distribution, which is the most practical way to expand vaccination cov-
erage in developing countries at low cost. Moreover, nasal and oral immunization
allows inducing attractive immune responses. For instance, the nasal route has been
shown to be superior to parenteral administration for VLPs-based vaccines at elicit-
ing IgA at distal mucosal sites, which is critical to protect the port of entry of most
of the pathogens. The oral route, under optimal schemes, induces IgA intestinal
responses that protect against intestinal pathogens and also provides systemic
humoral responses (Nardelli-Haefliger et al. 1999; Buonaguro et al. 2005).

There are currently only few vaccines approved for human use based on mucosal
immunization schemes. An intranasal influenza vaccine has been approved for clini-
cal use by the FDA, which is based on live attenuated viruses (Treanor et al. 1999;
Nichol et al. 1999; Belshe et al. 1998). This formulation deserves improvement, for
instance, replacing attenuated virus by inactivated virus or VLPs could reduce the
risk for immunocompromised individuals to develop the disease (Tamura et al.
2016). In the case of oral vaccines, the oral polio vaccine based on attenuated virus
has been used for decades contributing to the decline of poliomyelitis cases; none-
theless the emergence of poliomyelitis cases caused by vaccine-derived strains has
been reported (Bandyopadhyay et al. 2015). The oral vaccine against cholera is
another example of the few mucosal vaccines approved for human use. It is based
on the whole killed bacterium plus the recombinant cholera toxin B subunit (Bi
et al. 2017).
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Design and Production of VLPs

The generation of vaccines based on VLPs first comprises the expression of the
structural protein(s) that serves as scaffold to assemble the VLP. This process can
occur in vivo or in vitro. Expression of VLP-forming proteins is performed in a
genetically engineered host that includes bacteria, yeast, insect cells, plant cells, and
mammalian cells. The choice of the host basically depends on the cost and require-
ments in terms of post-translational modifications (Fuenmayor et al. 2017). For
instance, glycosylation may impact the VLPs immunogenicity; it has been reported
that mannosylation enhances the uptake of VLPs by antigen presenting cells
(Al-Barwani et al. 2014). The case of VLPs resembling enveloped virus typically
requires the use of mammalian cell lines as these possess the cellular machinery to
properly produce such particles. VLPs resembling phages are naturally and effi-
ciently expressed in recombinant E. coli, which is a low-cost system when com-
pared to insect or mammalian cells. Plants have also been used as low-cost expression
platforms to efficiently produce not only VLPs derived from plant viruses, but VLPs
resembling mammalian viruses and even enveloped viruses (Pillet et al. 2018).
VLPs can be exploited for vaccination in several ways, which are represented in
Fig. 10.1. VLPs can be assembled in vivo resembling the viral assembly, but can also
be assembled in vitro (either spontaneously or induced by changes in pH and salinity)
after purification of the VLP-forming protein. In many cases, the VLP-forming protein
is the vaccine antigen itself; thus the VLPs-based vaccine is obtained in a straightfor-
ward manner. In other cases, the VLP from a specific virus is used as scaffold to display
unrelated antigens from the target pathogen. In this case, there are basically two meth-
odologies to address this objective: genetic fusion and chemical coupling. The former
consists in designing chimeric VLPs comprising the VLP-forming protein and the
unrelated antigen. The site for the insertion of the foreign protein sequence should be
selected properly to avoid alterations in the assembly properties of the scaffold protein
and allow displaying the foreign antigen. In some cases, limitations in the length of the
foreign protein exist and this should be considered during VLP design. The fusion gene
is generated and expressed in the proper host and the resulting VLPs generally display
the unrelated antigen on the surface. In this way, the chimeric VLP serves as a carrier
of unrelated epitopes, which offers the possibility of producing multivalent vaccines by
including several epitopes in the chimeric protein (Wu et al. 2019; Kingston et al. 2019).
Another strategy consists in the chemical coupling of peptides to the surface of
VLPs. This methodology has been widely applied in the case of phage-derived
VLPs. Phages and their proteins can be efficiently produced in recombinant bacteria
at low and rapid processes. For instance, VLPs derived from the bacteriophage Qf
have been used as carriers of unrelated antigens (synthetic peptides) that are dis-
played in a repetitive fashion on their surface. Coupling of peptides and VLPs is
typically based on using heterobifunctional linkers using a two-step conjugation
scheme. Another reported approach consisted in substituting methionine residues in
VLPs with analogues containing terminal azide (azidohomoalanine: AHA) and
alkyne (homoproparglyglycine: HPG) groups. Azide and alkyne functionalized
small molecules and proteins are subsequently coupled to VLPs using click chem-
istry (Strable et al. 2008). The obtained Qf VLPs are highly immunogenic in mice
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Fig. 10.1 Representation of the strategies to produce VLPs useful in vaccine development. The
VLP-forming protein is obtained by heterologous expression in an appropriate host (e.g., bacteria,
yeasts, plant cells, and insect cells). VLPs can be assembled in vivo or in vitro after purifying the
VLP-forming protein in its monomeric form. Genetic modification allows producing chimeric
VLP that display unrelated antigens, making possible the production of bi or multivalent vaccines
(I). Conjugation approaches allow the covalent attachment of unrelated epitopes (synthetic pep-
tides) onto the VLP surface (II)

(Lechner et al. 2002) and humans (Maurer et al. 2005). Interestingly, since RNA
from the host (E. coli) is captured inside VLPs during assembly, it serves as adju-
vant acting as Toll-like receptor ligand, enhancing the vaccine efficacy especially
for the induction of IgG2a/c-dominated antibody responses (Forsbach et al. 2007).
Besides antigenic peptides, Qf VLPs have been used also as carriers of carbohy-
drate epitopes and nicotine for the development of vaccines against Leishmania
infection and tobacco dependence, respectively (Moura et al. 2017; Maurer and
Bachmann 2007). Interestingly, Bessa et al. (2008) demonstrated no differences in
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the efficacy of Qp-specific systemic IgG and IgA responses following subcutaneous
versus intranasal immunization, which augurs an interesting potential for the devel-
opment of mucosal nanovaccines.

Another example of a phage used as scaffold to generate VLPs is the Salmonella
typhimurium bacteriophage P22, which is a short-tailed phage with a dsDNA
genome. The viral capsid is composed of 415 copies of a 46 kDa coat protein (CP)
and up to 300 copies of a 34 kDa scaffold protein (SP), which are encapsidated
within the immature procapsid. Non-infectious VLPs can be assembled by co-
expressing CP and SP resulting in a ~60 nm diameter cage. A heterologous protein
can be included in the VLPs by fusing it to the scaffolding domain of the SP and
co-expressing it with the CP (O’Neil et al. 2011). Thus, modularity avoids possible
alterations of the CP and VLP assembly.

Plant viruses can also serve as a source of VLPs-forming proteins applied in vac-
cine development. This is the case of the following viruses: AIMV, CMV, CPMYV,
PapMV, PVX, and TMV (reviewed by Balke and Zeltins 2018). Importantly, two
plant virus-derived vaccines are currently under evaluation in clinical trials: a
malaria vaccine based on AIMV and the Pfs25 antigen under a Phase I clinical trial
(https://clinicaltrials.gov/ct2/show/NCT02013687) and PapMV VLPs under evalu-
ation as adjuvant for the seasonal flu trivalent vaccine (https://clinicaltrials.gov/ct2/
show/record/NCT02188810).

Interestingly, VLPs can be functionalized or loaded with accessory molecules
to improve vaccine efficacy. For instance, VLPs can be loaded with adjuvants
such as CpGs, which are TLR9 ligands that favor antigen processing by the innate
immune system. In fact, it has been proven that co-administration of VLPs loaded
with CpGs plus VLPs displaying a target antigen results in the delivery of both the
adjuvant and the antigen into the same APC, which simplify vaccine production
(Mohsen et al. 2017). Another approach consists in genetically fusing immunos-
timulatory signals to VLPs. For instance, HIV VLPs containing CD40L (an induc-
tor of costimulatory molecules in APCs) showed high immunogenicity against
Gag (Franco et al. 2011), SIV VLPs containing glycosylphosphatidylinositol
(GPI)-anchored GM-CSF (cytokine acting as adjuvant) induced higher levels of
neutralizing antibodies than plain SIV VLPs (Skountzou et al. 2007), and chime-
ric rabies virus-like particles (cCRVLPs) displaying either membrane-anchored fla-
gellin or LTB induced enhanced immunogenicity and immunoprotective capacity
in mice and dogs (Qi et al. 2015; Fig. 10.2).

Although VLPs-based vaccines have become a reality in the clinical realm, these
are parenteral vaccines and the development of mucosal formulations has pro-
gressed at a lower degree. This chapter provides a general outlook on the ongoing
research looking to develop mucosal vaccine formulations against relevant human
and animal diseases (Table 10.1).


https://clinicaltrials.gov/ct2/show/NCT02013687
https://clinicaltrials.gov/ct2/show/record/NCT02188810
https://clinicaltrials.gov/ct2/show/record/NCT02188810
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Fig. 10.2 Configurations for genetically modified VLPs useful in vaccine production. Virus-like
particles can be genetically modified to incorporate peptide and protein antigens (in red) by genetic
fusion to the C/N-termini or in the flexible loop regions of the VLP-forming protein (blue).
Accessory adjuvant protein sequences, such as LTB and Flic, can be also attached (yellow) to
enhance the immunogenicity of the particle. These strategies allow obtaining VLPs with an exact
placement of the target antigen within the final particle, having a defined number of target antigen
molecules per particle

Current Status of Human Mucosal VLPs-Based Vaccines
Influenza

The influenza virus is a serious threat to global health leading to a high economic
burden. Since this pathogen mutates continuously, the new variants evade preexist-
ing immunity and thus new vaccines are required that in addition must be produced
in a short time. The 2009 HIN1 pandemic and human cases of HSN1 and H7N9
indicate the great need for platforms able to result in effective vaccines in a short
time (Chen et al. 2014). Lee et al. (2018) explored the potential of using VLPs based
on the M1 matrix protein and a tandem repeat of M2 ectodomains (M2e5x) derived
from the human, swine, Avian 1, and Avian 2 influenza viruses as an approach to
induce broad cross-protection against influenza virus strains variants. The insect
cell-made VLPs were administered to mice i.n. (dose: 15 pg of M2e5x VLP total
proteins, 0.9 pg M2e5x proteins) and boosting was performed at week 4. Animals
were challenged with either the A/Phil (H3N2) or A/Viet (rgH5N1) virus. M2e5x
VLPs reduced weight loss, attenuated inflammatory cytokines and cellular infil-
trates, decreased viral loads, and induced germinal center phenotypic B and plasma
cells. The vaccine induced M2-specific antibodies in sera and mucosal tissues, con-
ferring effective cross-protection against heterosubtypic influenza viruses. A bal-
anced Th2/Thl response was evident according to measurements of IgG2a and
IgG1. Both CD4+ and CD8+ T-cells had a role in the observed protective effects.
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Patterson et al. (2013) reported a vaccine based on P22 VLPs obtained by co-
expressing in E. coli the P22 coat protein with either a truncated version of the NP
antigen (NP,¢;) or the full length NP, which was fused to the truncated scaffold (SP).
VLPs carrying either NP versions were i.n. administered to mice daily for 5 days
(dose: 100 pg of P22 VLPs). Both vaccine versions were able to induce strong pro-
tective immune responses in mice against a challenge with either the HIN1 or H3N2
influenza viruses. The protective response was in part attributed to an NP-specific
CDS8+ T lymphocyte response. In terms of humoral responses, the full length
NP-based vaccine induced anti-NP antibodies, whereas the truncated NP did not.
These data correlated with a lower protection rate in mice immunized with the trun-
cated NP-based vaccine. According to the results, the reported vaccine is a potential
candidate not requiring accessory adjuvants to achieve protection.

Another VLPs-based influenza vaccine candidate has been proposed by Nerome
et al. (2017), which was produced by expressing the H7 influenza virus hemagglu-
tinin (HA) in silkworm pupae. Mice were orally immunized with HA VLPs in dif-
ferent schemes comprising two (with 1 month or l-week interval) or three
immunizations (with a I-week interval). A two-dose i.p. scheme was also employed.
Chickens were immunized three times orally with 16,384 HA titers of H7 VLP or
H5-Fukushima VLP. HA VLPs showed positive immunoreactivity with the authen-
tic anti-H7 antibodies. H5 and H7 VLPs triggered humoral responses in chickens
and mice upon oral immunization. The antibodies elicited upon oral immunization
were confirmed by fluorescent antibody analysis and Western blotting in Korea
H5-BmNPV and H7 HA-BmNPV recombinant infected BmN cells. No challenge
experiments were reported. This platform is advantageous as it would allow for
large-scale production of the vaccine at relatively low costs since the use of expen-
sive culture media, required for insect cells in culture, is avoided.

Ren et al. (2018) explored the idea of producing influenza VLPs decorated with
membrane-anchored forms of the E. coli heat-labile enterotoxin B subunit protein
(LTB) or the Toll-like receptor 5 ligand flagellin (Flic) as accessory mucosal adju-
vants. For this purpose, HSN1 VLPs (composed of the viral HA, NA, and M1 pro-
teins) were produced in insect cells (Fig. 10.3). Mice were subjected to three weekly
doses of VLPs (100 pg) administered by i.m. or oral routes. VLPs containing LTB
or Flic generated higher humoral and cellular immune responses than plain influ-
enza VLPs. Intramuscular immunization with plant VLPs, VLPs-CTB, or VLPs-
Flic protected mice from a lethal challenge with homologous or heterologous H5N 1
viruses. In contrast, in orally immunized mice only VLPs-LTB and VLPs-Flic con-
ferred substantial protection against a lethal challenge with both homologous and
heterologous H5N1 influenza viruses (40% of survival rate), whereas mice immu-
nized with plain VLPs succumbed to infection (Fig. 10.4). Mice immunized orally
with LTB- or Flic-VLPs showed tenfold higher virus-specific IgG titers than mice
immunized with plain VLPs. Thus, these accessory adjuvants are promising tools
that can be applied in the development of vaccines against other pathogens.

Wang et al. (2010) used insect cell-made VLPs consisting of the HA and M1
proteins plus Flic (HA/Flic/M1 cVLPs) or M1 plus flagellin (Flic/M1 cVLPs). The
authors previously proved that Flic inclusion in the VLPs allowed protecting mice,
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A
Signal
: sequence 103 aa ™ CT
ChimericLTB gy |
Signal
sequence 495 aa T™ CT
ChimericfliC [l |
B

fHA §NA § LTB or Flic oM1

Fig. 10.3 VLPs-based influenza vaccine design based on decoration with LTB or Flic as adju-
vants. Schematic representation of the membrane-anchored LTB and Flic constructs, along with
the chimeric VLPs. (a) The coding sequences of the LTB and Flic genes were appended to the HA
signal sequence, transmembrane (TM) sequence, and cytoplasmic tail (CT) sequence as indicated.
(b) LTB-VLPs or Flic-VLPs: chimeric influenza VLPs containing HA, HA, M1, and LTB (Flic)
proteins (Taken from Ren et al. 2018. Permit number 4595380429329)

i.m. immunized, from a challenge with a heterosubtypic strain. In this study, mice
were i.n. immunized twice with 10 pg of VLPs at 4-week interval. HA/Flic/M1
c¢VLPs induced robust cellular responses and enhanced systemic and mucosal anti-
body responses when compared to plain influenza VLPs; moreover, the vaccine
provided full protection against a challenge with either homologous or heterosub-
typic viruses. Plain VLPs did not induce protection upon heterosubtypic challenge.
Upon co-administration with plain VLPs, soluble flagellin exhibited a moderate
adjuvant effect evidenced by an enhancement of systemic and mucosal responses
and partial heterosubtypic protection.

Another VLPs-based influenza vaccine was reported by Mohsen et al. (2017).
Chimeric influenza VLPs were generated by expressing M1 or HA/M1 and glyco-
sylphosphatidylinositol (GPI)-anchored CCL28MI1. The latter is a mucosae-
associated epithelial chemokine, which binds to CCR3 and CCR10 chemokine
receptors and is involved in the migration of antibody secreting cells (ASCs) into
mucosal tissues, thus exerting adjuvant effects. The vaccine was evaluated in mice,
which were i.n. immunized twice at a 2-week interval with 1 pg of HA and 0.5 pg
of CCL28 (membrane-bound or soluble). ¢VLPs induced enhanced humoral
responses when compared to influenza VLPs without CCL28 or influenza VLPs co-
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Fig. 10.4 Protective potential of the VLPs-based influenza vaccines containing LTB or Flic. Mice
were subjected to a lethal SH-1 virus (clade 2.3.2.1) and JL-SIV virus (clade 2.3.4) challenge.
Mice (n = 5) were i.m. or orally immunized with HSN1-VLPs, LTB-VLPs, or Flic-VLPs. Mock-
immunized mice were used as control group. Five weeks after the first immunization, mice were
i.n. infected with a 10xLDjs, dose of the SH-1 (A-D) or JL-SIV virus (D-H). Mice were examined
daily for 14 days for changes in body weight (a, c, e, g) and survival (b, d, f, h). Changes in body
weight changes are calculated using the body weight on the day of viral challenge. Data are pre-
sented as the mean + SD (n = 5) (Taken from Ren et al. 2018. Permit number 4595380429329)

administered with soluble CCL28. Upon a challenge with H3N2, the cVLP-treated
group showed strong recall responses and reduced viral load and inflammatory
responses. cVLP resulted in 20% cross-protection against drifted (Philippines) and
60% protection against homologous (Aichi) H3N2 viruses (Fig. 10.5).

A vaccine based on chimeric VLPs derived from the hepatitis B virus core anti-
gen gene (HBc) was reported by Zheng et al. (2016). aa 75-85 from HBc were
replaced by the long alpha-helix (LAH) gene fragment (coding for aa 76—130 of
HAZ2), which is conserved among different influenza A strains and thus offers the
opportunity for developing broad-spectrum influenza vaccines. E. coli-made VLPs
were obtained (Fig. 10.6) and tested in mice at 1, 5, or 25 pg doses. Mice were i.n.
immunized thrice at 2-week intervals with VLPs alone or co-administered with chi-
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Fig. 10.5 Protective efficacy of a VLPs-based influenza vaccine decorated with a chemokine as
adjuvant. Eight months post-vaccination, animals were challenged with 10xLD50 of mouse
adapted A/Aichi/2/1968 or A/Philippines/2/1982 H3N2 viruses. All groups, vaccinated and con-
trol, were monitored up to 14 days for changes in body weight, fever, hunched posture, illness
features, and mortality. (a) Changes in body weight and (b) survival rates of mice challenged with
Aichi or Philippines. A weight loss higher than 25% was used as endpoint at which mice were
euthanized according to IACUC guidelines. Changes in body weight are displayed as the mean,
representative of one experiment. The survival differences were evaluated by the log-rank Mantel-
Cox test (n = 5) (Taken from Mohsen et al. 2017)

tosan or 1 pg of CTB. Another group received VLPs i.p. plus alum. The test VLPs
induced, at the 25 pg dose, effective humoral and cellular immune responses and
provided complete protection against a lethal challenge using the homologous
H7N9 virus or the heterologous H3N2 virus, while i.m. administration provided
weak protection. Either of the test adjuvants provided full protection, whereas unad-
juvanted vaccines led to lower protection rate. The i.n. vaccine resulted in partial
protection against a lethal challenge with a heterologous HINT1 virus (Fig. 10.7).
An immunization approach against influenza based on VLPs was described by
Bessa et al. (2008). The authors produced VLPs derived from the Qp phage (E. coli-
produced); plain or functionalized with the influenza virus derived ectodomain of
the M2 protein (VLPs-M2, for humoral responses induction) or the p33 peptide
(VLPs-p33), which is the major CTL epitope of the lymphocytic choriomeningitis
virus (as a model CTL epitope). The latter conjugate contained CpG as an accessory
adjuvant. Mice were i.n. or s.c. immunized with plain VLPs or VLPs-M2, with the
latter inducing strong IgG responses in serum and lung and IgA in serum. Only mice
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A 1 74 86 149
HBc ;

75 85

76 130

Fig. 10.6 Characterization of the VLPs-based influenza vaccine based on the HBc scaffold. (a)
Schematic representation of the LAH-HBc structure. The LAH region (76—130 aa of HA2) from
the H7NO virus was inserted into the HBc fragment (1-149 aa of HBc) by replacement of aa
75-85. (b) Expression of the LAH-HBc protein by SDS-PAGE analysis. (¢) Western blot analysis
of the LAH-HBc protein using an anti-his tag monoclonal antibody. (d) Electron microscopy of
VLPs composed of LAH-HBc with a diameter around 30 nm (Taken from Zheng et al. 2016.
Permit number 4595381026220)

immunized i.n. induced IgA production in the lung and a large numbers of germinal
centers (GC), as well as memory B-cells in the spleen and plasma cells in the bone
marrow. i.n. immunization with VLPs-M2 also provided significant protection
against an i.n. challenge with a lethal dose (4 x LD50) of the influenza virus strain
PR8. In contrast, i.n. immunization with VLP-p33 induced relatively inefficient
cytotoxic T-cell responses, resulting in low numbers of specific T-cells and poor
effector cell differentiation. This report supports the use of Qp phage for nasal vac-
cine production. Surprisingly since the publication of this report no additional
efforts have been reported to apply Qp phage in the development of vaccines against
relevant pathogens, especially those for which humoral responses are critical for
protection.

An outstanding approach for oral vaccination has been recently reported by
Serradell et al. (2019), which consists in producing VLPs based on the murine leu-
kemia virus (MLV) capsid protein Gag, variant specific surface proteins (VSPs)
from Giardia lamblia, and surface antigens such as the influenza virus hemaggluti-
nin (HA) and neuraminidase (NA) proteins fused to the transmembrane domain and
the cytoplasmic tail of the G protein from the vesicular stomatitis virus (VSV-G).
The VLPs produced in HEK293 cells were orally or s.c. administered to mice four
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Fig. 10.7 Protective potential of the VLPs-based influenza vaccine based on the HBc scaffold.
Changes in bodyweight (a, ¢) and mice survival rates (b, d) after a challenge (applied 2 weeks after
the last immunization) with the Sh2/H7NO virus (5XLD50) in mice previously immunized three
times at 2-week intervals using LAHHBc VLPs alone or in combination with chitosan, CTB, or
Al(OH); (Taken from Zheng et al. 2016. Permit number 4595381026220)

times at a I-week interval (100 pg dose for oral and 10 pg for s.c. immunization).
This strategy allowed displaying on the VLP surface both HA and VSP. The latter
was shown to protect VLPs from degradation and activate APC using in vitro assays.
Orally administered VLPs—VSPs, but not plain VLPs (expressing HA only), gener-
ated robust immune responses in terms of serum IgG1 and IgG2a and IgA in feces
and bronchoalveolar lavage. When VLPs-VSPs were administered parenterally;
they showed superior immunogenicity with respect to plain VLPs, but did not
induce mucosal humoral responses. Interestingly, VLPs—VSPs induced full protec-
tion against an influenza virus challenge, whereas plain VLPs did not. The authors
also challenged mice with murine AB1 malignant mesothelioma cells expressing
HA, observing that VLPs—VSPs controlled tumor growth almost completely.
Further analysis confirmed that VLPs—VSPs induced robust IFN-y T-cell responses
and in vitro cytotoxicity against the tumor cells (Fig. 10.8). This is an outstanding
approach offering a promising path for the development of oral vaccines not requir-
ing adjuvants.
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Fig. 10.8 Protective efficacy of oral vaccines based on VLPs decorated with variant specific sur-
face proteins (VSPs) from Giardia lamblia. The vaccine carries HA as antigen and immunoprotec-
tion was evaluated in mice challenged with influenza virus or tumor cells expressing HA. (a, b)
Ten days after immunization with HSN1 VLPs, mice were i.n. challenged with a mouse-adapted
influenza virus, n = 5. A Kaplan—Meier life survival curve analysis was performed using the log-
rank Mantel-Cox method for curve comparison analysis (a). Body weight is presented as percent-
age of the initial average weight registered at day 0. Changes in body weight were evaluated for
2 weeks (b). (¢, d) Ten days after the last immunization, mice immunized with HIN1 VLPs were
injected with AB1-HA tumor cells. The tumor volume growth is reported from two independent
experiments, n = 8 (¢). After tumors harvesting and weighing (31 days after tumor inoculation),
representative tumor photographs are shown from two independent experiments, n = 8 (d). (e) Ten
days after immunization with HIN1 VLPs, the titer of neutralizing antibodies was measured in
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Respiratory Syncytial Virus

The human respiratory syncytial virus (RSV) is the commonest causative agent of
acute low respiratory illness in infants and immunocompromised adults (Collins
and Crowe 2007). No licensed vaccine against RSV is available since the develop-
ment of safe and effective candidates has been challenging (Hall 2001). A vaccine
candidate against the respiratory syncytial virus (RSV) reported by Schwarz et al.
(2016) consisted of E. coli-made VLPs assembled with the matrix (M) and matrix
2 (M2) proteins, which were coencapsidated within the P22 phage VLP by fusing
the C-terminal 162 residues of SP to the C-terminus of the M/M2 protein chimera.
The vaccine (after i.n. administration to mice using two doses of 100 pg at 3-week
intervals) stimulated both CD4+T-cell and CD8+T-cell memory responses in the
lung against M and M2. Importantly, challenged animals showed reduced lung
viral titers. This is a promising approach since no accessory adjuvants were
required.

A study by Jiao et al. (2017) consisted in the evaluation of VLPs carrying the
matrix protein (M) and the fusion glycoprotein (F) as vaccine candidate against the
respiratory syncytial virus (RSV), which was produced in Vero cells. Mice were i.n.
or i.m. immunized with VLPs (single dose: 10 pg or 30 pg) or inactivated RSV
(2 x 10° pfu/mouse for i.n. and FI-RSV at a dose of 1.875 mg/mouse for i.m.). VLPs
presented a positive immunoreactivity and function when compared to the RSV
virion in vitro. The i.n. administered vaccine induced Thl polarized response and
effective mucosal virus-neutralizing antibody and CD8+ T-cell responses at both
mucosal and systemic levels, whereas i.m. immunization only induced effective
response at the systemic level. Upon a challenge with RSV, i.n. immunized mice
showed increased viral clearance, but decreased signs of enhanced lung pathology
and fewer eosinophils when compared to mice immunized with formalin-inactivated
RSV (FI-RSV). in. administered VLPs induced a response that lasted up to
15 months. Therefore, this approach is promising for developing an effective and
safe mucosal vaccine against RSV infection, although production in mammalian
cells is costly when compared to other systems (e.g., bacteria, yeast, or plant cells).

<
<

Fig. 10.8 (continued) sera using a standard microneutralization assay (n = 8 from two independent
experiments). (f, g) Ten days after immunization with HIN1 VLPs, mice were injected with
ABI-HA cells; 31 days afterwards they were sacrificed. IFN-y was measured in HA re-stimulated
splenocyte supernatants, n = 8 from two independent experiments (f). An in vitro cytotoxicity
assay using, as target cells, splenocytes and CFSE-labeled AB1-HA was performed. The quantifi-
cation of dead cells using CFSE +cells from two independent experiments, n = 6, is shown (g). (h)
ABI-HA or 4T1-HA tumor cells were inoculated (at day 0; n = 10) and upon tumor detection, half
of the mice were vaccinated (arrows). Data were analyzed by one-way ANOVA and Tukey’s mul-
tiple comparison test (d—g) or by two-way ANOVA and Bonferroni post-tests (c¢). Values represent
meanzs.e.m. %xp < 0.01, s#xp < 0.001. (Taken from Serradell et al. 2019)
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Severe Acute Respiratory Syndrome Coronavirus

The severe acute respiratory syndrome coronavirus (SARS-CoV) first emerged as
an infectious agent in 2003, causing severe and sometimes fatal respiratory disease
in humans, with a fatality rate of 10% and a remarkable negative economic and
social impact (Peiris et al. 2004). Chimeric VLPs were obtained by using insect
cells expressing the SARS spike (S) protein and the influenza M1 protein. Mice
were immunized i.m. (dose: 0.8 pg or 4 pg of SARS S or VLP vaccine, with or
without aluminum hydroxide) or i.n. (doses: 0.8 pg or 4 pg of SARS S or VLP vac-
cine). Boosting was performed at day 21. The SARS VLP vaccine at the 0.8 pg dose
completely protected mice when i.m. or i.n. administered. The SARS VLP vaccine
(4 pg dose) without adjuvant reduced lung virus titer below detectable levels, pro-
tected mice from weight loss, and elicited a high level of neutralizing antibodies
against SARS-CoV. Soluble SARS S protein was also protective but only when i.m.
administered along with aluminum hydroxide. Since this vaccine was produced
under the same procedures followed for the production of an influenza VLP vaccine
successfully evaluated in phase I and phase II clinical studies, the authors propose
this as a platform of facile implementation allowing a rapid vaccine production in
case of a SARS pandemic.

Group A Streptococcus

Group A Streptococcus (GAS) causes more than 517,000 annual deaths derived from
rheumatic fever, rheumatic heart disease, poststreptococcal glomerulonephritis, and
invasive infections (Carapetis et al. 2005). Rivera-Hernandez et al. (2013) designed
chimeric VLPs based on the murine polyomavirus (MuPyV) VP1 protein, displaying
the J81 antigen peptide from Group A Streptococcus (GAS). The J81 epitope was
inserted at the 293 amino acid position of VP1 in a single (VP1-GCN4-J8i-GCN4)
or repeated (VP1-GCN4-J8i-J8i-GCN4) element, including Gly-Ser linkers as
flanks. These chimeric proteins were expressed in E. coli and assembled in vitro into
VLPs (Fig. 10.9), which were administered to mice i.n. thrice on days 0, 21, and 42
(dose: 92 pg). The studied VLPs induced significant anti-J8i IgG and IgA responses,
thus generating systemic and mucosal responses, respectively. Interestingly, upon a
challenge with GAS, bacterial colonization in the throats was significantly lower in
VLP-immunized mice that also showed mild protection against a lethal challenge
(35% vs. 10% survival for the negative controls; Fig. 10.10). Improvements of this
vaccine could comprise the use of accessory adjuvant and dose adjustment.

»
>

Fig. 10.9 (continued) flow field flow fractionation (AF4) analysis of (a) VP1-GCN4-J8i-GCN4
VLPs, (b) VP1-GCN4-J8i-J8i-GCN4 VLPs, and (¢) wt-VP1 VLPs. Transmission electron micro-
graph analysis of (I) VP1-GCN4-J8i-GCN4 VLPs, (II) VP1-GCN4-J8i-J8i-GCN4 VLPs, and (III)
wt-VP1 VLPs (100 nm scale bars) (Taken from Rivera-Hernandez et al. 2013. Permit number
4595390043559)
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Fig. 10.9 Characterization of chimeric VLPs based on the murine polyomavirus (MuPyV) VP1
protein, displaying the J81 antigen peptide from Group A Streptococcus (GAS). Asymmetrical
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Fig. 10.10 Protective potential of the VLPs-based vaccine against Group A Streptococcus. Mice
were challenged intranasally with GAS. (a) Survival percentage following an intranasal challenge
with the M1 GAS reference strain. (b) Percentage of mice dead or alive with positive swabs fol-
lowing the challenge with GAS. Data for VP1-GCN4-J8i-GCN4 VLPs and VP1-GCN4-J8i-J8i-
GCN4 VLPs were collected into one group, while data for the PBS and wt-VLPs groups were
collected as a negative control group. Statistical comparison of the two immunized groups vs. the
collected control group was performed using a standard log-rank test. (Taken from Rivera-
Hernandez et al. 2013. Permit number 4595390043559)

Norwalk Virus

Norovirus (NoV) is an important etiologic agent of acute gastroenteritis that infects
individuals of all ages, children especially (Paula et al. 2018). Plant-made VLPs for
use in immunization against Norwalk virus are highly cost-attractive, but have
shown low immunogenic potential. Looking to enhance the efficacy of this vaccine,
some approaches have been explored. VLPs based on the NV ORF2 (without ORF3)
expressed in plants (N. benthamiana) have been applied by Jackson and Herbst-
Kralovetz (2012) using i.n. immunization schemes to determine the effect of vari-
ous adjuvants (Murabutide, MB, an adjuvant that targets the nucleotide-binding
oligomerization domain-containing protein 2 (NOD?2) receptor; gardiquimod,
GARD, which is a TLR7 agonist; and the cholera toxin, CT, a well-known mucosal
adjuvant). Mice were i.n. immunized twice at 3-week intervals with VLPs (25 pg)
alone or supplemented with one of the following: MB (levels: 25, 100, or 250 pg),
GARD (25 pg), or CT (1 pg). MB showed the optimal adjuvant effect when co-
administered at a 100 pg dose, based on the magnitude of VLP-specific 1gG, 1gGl1,
IgG2a, and IgA production in serum and VLP-specific IgA production at distal
mucosal sites. i.n. vaccination using VLPs with MB induced humoral responses in
similar magnitudes to those achieved by i.n. co-administration of VLPs and CT or
GARD and i.m. immunization with VLP plus alum. Interestingly in terms of the
induction of mucosal immune responses, the MB groups were equivalent to CT and
GARD and induced comparable systemic responses to those achieved by the paren-
teral vaccine plus alum.
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A dry powder formulation (GelVac) based on an inert in situ gelling polysaccha-
ride (GelSite), obtained from Aloe vera, has been assessed in a pig nasal immuniza-
tion model by Velasquez et al. (2011). The authors compared immunogenicity of the
dry powder VLP formulation vs. equivalent antigen/adjuvant liquid formulations.
For this purpose test animals were immunized twice at 3-week intervals with one of
the following: 10—12 mg/naris of GelVac alone, GelVac containing VLPs (10 pg),
or GelVac VLPs (10 pg) + 10 pg of gardiquimod (GARD, a TLR7 agonist used as
accessory adjuvant). In parallel, liquid formulations lacking GelVac and containing
the same amount of NV VLPs were tested. Powder formulations, with or without
VLPs, were similar in structure in dry form or when rehydrated in simulated nasal
fluids. The GelVac powder induced higher antibody responses at systemic and
mucosal (aerodigestive and reproductive tracts) levels when compared to liquid for-
mulations. Inclusion of GARD did not increase immunogenicity of the dry formula-
tion, while a positive effect was recorded for the liquid formulations. The authors
hypothesized that the test formulation, upon in situ gelation, allows VLPs stabiliza-
tion that ends up prolonging their presence on the mucosal surfaces overcoming
mucociliary clearance and thus extending antigen uptake by APCs in the NALT. The
same research group subsequently evaluated VLPs resembling GI or GII.4 norovi-
rus to identify the optimal dose in guinea pigs. Pigs were i.n. immunized twice at
3-week intervals (Springer et al. 2016). Test doses ranged 0.1-100 pg of VLPs. The
humoral response magnitude followed a dose-dependent pattern in both serum and
vaginal washes. The 15 pg dose allowed reaching maximum antibody responses.
The neutralizing potential was assessed in an assay based on estimating the capacity
of VLPs to bind porcine gastric mucin after incubation with sera from immunized
animals. The neutralizing activity for both GI and GIL.4 VLPs was proven, neverthe-
less no challenge assays were reported. These are interesting outcomes as no acces-
sory adjuvants were used and suggest that bivalent vaccines targeting both GI/GIIL.4
noroviruses could be produced. Dry powder vaccines offer high stability such that
cold-chain free vaccines could become a reality. Bahamondez-Canas and Cui (2018)
have reviewed this specific topic recently.

Interestingly, a clinical trial for the Norwalk VLP vaccine GI.1 genotype has
been performed by El-Kamary et al. (2010). The vaccine was produced in insect
cells and adjuvanted with monophosphoryl lipid A (MPL, which is a TLR-4 ago-
nist) derived from the detoxified Salmonella minnesota lipopolysaccharide and the
mucoadherent agent chitosan. Healthy subjects, 18—49 years old, were i.n. immu-
nized twice at 3-week intervals. Study 1 evaluated 5, 15, and 50 pg of VLPs and
study 2 evaluated 50 and 100 pg dosages. The vaccine induced no serious adverse
events with nasal stuffiness, discharge, and sneezing as the most frequent side
effects. Anti-VLPs IgG and IgA levels increased 4.8- and 9.1-fold, respectively, for
the 100-pg dosage level (Fig. 10.11). All subjects that received either 50 or 100 pg
doses presented IgA antibody secreting cells (ASCs) measured in peripheral blood
mononuclear cells. ASCs expressed molecules associated with homing to mucosal
and peripheral lymphoid tissues (CD19+CD27 +CD62L+, integrin a4/B7+). A sub-
set expressing exclusively mucosal homing molecules was also detected
(CD19+CD27+ CD62L-integrin a4/p7+). Therefore, this vaccine is considered safe
and highly immunogenic that could progress into phase II clinical trials.
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Polio Virus

The polio virus (PV) multiplies in the intestine and can invade the central nervous
system causing irreversible paralysis in 1/200 infected people. At present, there is a
need for subunit vaccines able to confer mucosal protection without the use of
attenuated strains given the risk of reversion to pathogenic forms (Bandyopadhyay
et al. 2015). Daniell et al. (2018) have developed a plant-made vaccine against PV
by expressing, in lettuce, VLPs based on a chimeric protein comprising the VP1
protein from PV and the cholera toxin B subunit (CTB-VP1). The assembly of
VP1-VLPs of 22.3 nm in size was evidenced. Mice were primed s.c. with IPV and
boosted three times with 20 mg of lyophilized tissue and squalene and/or saponin
plus Protegrin-1 (PG-1) and/or human antimicrobial peptide (LL37) as adjuvants
and additives, respectively. Enhanced anti-PV IgG1 and IgA, as well as neutralizing
activity (80-100% seropositivity of Sabin 1, 2, and 3), were induced upon boosting
with the plant-made VLPs when compared to the treatment based on an IPV single
dose or boosting with CTB-VP1 VLPs without IPV priming. These are considered
very promising results since population worldwide is receiving IPV at a single
dose, thus a booster cold-chain free vaccine might be used to aid in polio eradication.

Hepatitis

The hepatitis B virus infection is a major public health problem worldwide. It is
estimated that 30% of the population show serological evidence of current or past
infection. Although vaccines are available and have led to an important decrease in
infections, new vaccines are still required to fight this pathogen. The group headed
by Pniewski et al. (2018) has been working on the development of a plant-made
vaccine against hepatitis B, which is formulated with lettuce tissues expressing the
hepatitis B virus small surface protein (S-HBsAg) assembled into VLPs within the
plant cell. A recent study was focused on assessing several schemes to determine the
potential of this low-cost vaccine to serve as boosting agent when combined with
the i.m. administration of the conventional vaccine produced in yeast (Engerix_B).
i.m. priming with the commercial vaccine followed by double oral boosting with
plant-made VLPs is comparably efficient as standard i.m. vaccination, with boost-
ing doses of 2 or 200 ng being efficacious to enhance systemic responses (Fig. 10.12).
None of the tested adjuvants improved the response to vaccination and the efficacy
of plant lysate was lower than intact plant cells, which suggests that bioencapsula-
tion of S-HBsAg into the plant cell favors vaccine activity not requiring accessory
adjuvants (Fig. 10.13). This is a relevant study since plant-based platforms offer low
production cost and the freeze-dried plant material is stable at room temperature,
thus the formulation of this booster vaccine can be easily performed by preparing
capsules or tablets containing plant powder.
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Fig. 10.12 Immune response of serum anti-HBs antibodies. Mice were i.m. immunized at day O
with 500 ng of S-HBsAg (Engerix_B) followed by two oral boosts on days 42 and 84 using tissue
extract containing 0, 5, 50, or 200 ng of S-HBsAg. Significant results are marked by asterisks for
pre-immune (day 3), while hashes are used for pre-boost (day 39). (1) Anti-HBs serum antibodies
in control groups (i.m. primed with PBS and 2 p.o. boosts with tissue extract having no S-HBsAg)
and (2) anti-HBs S-IgA in any group. No results are shown for antibodies <2 mIU/mL (Taken from
Pniewski et al. 2018. Permit number 4595391037784)

Hepatitis E is generally a self-limiting, acute, and rarely fatal disease that is
treated with anti-virals; these are often insufficient and unsafe, thus the develop-
ment of vaccines for HEV is an important goal (Nishiyama et al. 2019). Niikura
et al. (2002) reported the production in insect cells of chimeric VLPs comprised of
the truncated hepatitis E virus ORF2 (aa 112-660), fused to a B-cell epitope of
glycoprotein D from the herpes simplex virus. The chimeric VLPs showed mor-
phology similar to that of the mature HEV virion and displayed the target epitope
according to an immunoassay. Mice were orally immunized four times with 50 pg
of VLPs at 2-week intervals. The chimeric VLPs induced specific intestinal IgG and
IgA to both the inserted epitope and HEV-VLP in intestinal secretions. The authors
proposed optimizing the dose of VLPs to enhance significant humoral responses.
No immunoprotection assays were reported.

Li et al. (2004) produced VLPs resembling the hepatitis E virus (HEV) by
expressing, in insect cells, the HEV capsid protein gene lacking 111 amino acids at
the N-terminal. The vaccine was administered orally to cynomolgus monkeys
(Macaca fascicularis) in a scheme based on 10 mg VLPs doses administered on
days 0, 7, 21, 36, and 80, with a subsequent i.v. HEV challenge. The test vaccine
induced specific serum IgM, IgG, and IgA responses without adjuvants. Upon chal-
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PBS and 2 p.o. boosts with control lyophilizate) and anti-HBs S-IgA in any group. (Taken from
Pniewski et al. 2018. Permit number 4595391037784)

lenge one monkey was fully protected and in another one infection occurred, but it
did not develop the disease. Fecal IgA was not detected in any of the orally immu-
nized monkeys.

Human Papillomavirus

The human papillomavirus (HPV) is a sexually transmitted virus responsible for the
development of cervical cancer, anal cancer, head and throat cancers, and genital
area warts (Aksoy et al. 2017). An insect cell-made vaccine against HPV was evalu-
ated by Gerber et al. (2001), the vaccine was based on VLPs assembled with the L1
protein from HPV-16 or HPV-18. Mice were immunized i.m. (dose: 0.3 pg of VLPs)
or orally (doses: 1, 3, or 9 pg of VLPs alone or co-administered with 10 pg of
LTR192G or 10 pg of CpG DNA). Boosting doses at weeks 2 and 6 were adminis-
tered. The VLPs co-administered with LT R192G induced higher serum IgG titers
than VLPs alone. Immunization with HPV-16 VLPs plus LT R192G induced higher
vaginal anti-VLP IgG and IgA antibodies than VLPs alone or plus CpG DNA. Similar
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results were obtained with HPV-18 VLPs, with both adjuvants enhancing IgA
responses. Only VLPs plus LT R192G induced positive mesenteric lymphoprolif-
erative responses. Properties characteristically associated with virus-neutralizing
antibody specificities appeared to be unaltered by the tested adjuvants.

Immunodeficiency Viruses

The human immunodeficiency virus (HIV) is a pathogen to which no licensed vac-
cines are available, being its genetic variability and mechanisms for immune eva-
sion the factors hampered vaccine development (Rahman and Robert-Guroff
2019). Poteet et al. (2016) have reported HIV VLPs composed of HIVIIIB Gag and
HIVBaL gp120/gp41 envelope, which were produced in HEK cells. VLPs were
coupled to VesiVax conjugatable adjuvant lipid vesicles (CALV) containing one
the following Toll-like-receptor (TLR) ligands: PAM3CAG for TLR2, dsRNA for
TLR3, MPLA for TLR4, and resiquimod for TLR7/8. Mice were immunized thrice
at 2-week intervals with 200 pg VLPs dose. Priming was i.n. and boostings were
performed by sub-cheek boosts. VLPs coupled with the TLR3 ligand, dsRNA,
complexed to CALV and in combination with VLPs (CALV(dsRNA) + VLPs)
induced the strongest humoral response against the target HIV antigens.
Importantly, antibodies against clade ¢ 96ZM651 gpl120 were induced. A Thl
response was evidenced by IgG subclass analysis. The most potent neutralizing
antibodies against HIV strain MN.3 were also generated by CALV(dsRNA) +
VLPs, as well as a significant increase in germinal center B-cells and T follicular
cells. This type of immunization schemes exemplifies how mucosal vaccination
can be combined with boosts administered by injection in order to optimize the
induced immune profile.

Kang et al. (2003) generated VLPs from the Simian immunodeficiency virus
(SIV) comprising Gag and Env proteins, expressed in insect cells. These VLPs were
conjugated to the cholera toxin B subunit to determine if immunogenicity is
enhanced by a subtransmucosal carrier. Mice were immunized i.n. on weeks 0, 2, 4,
and 6 with 40 pg of VLPs, VLPs (40 pg) plus CTB (10 pg) or CT (10 pg), or VLPs
(40 pg) conjugated with 10 pg of CTB. The major results were: co-administration
of VLPs and CTB induced higher levels of anti-SIV gp160 IgG and IgA in mucosae
(saliva, vaginal-wash, lung, and intestine) and higher neutralization activity when
compared to VLPs alone. Conjugation of CTB to VLPs also enhanced SIV VLP-
specific antibodies in sera and mucosae to similar levels. CTB-conjugated VLPs
induced superior cellular responses (IFN-y-producing splenocytes and cytotoxic-T-
lymphocyte activities) with respect to the VLPs/CTB mixture, along with enhanced
IgG1 and IgG2a serum levels, indicating enhanced Thl- and Th2-type cellular
immune responses.
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Alkadah et al. (2013) reported a rotavirus vaccine, produced in insect cells, based on
VLPs composed of VP2 and VP6 from bovine rotavirus. The authors tested the
effect of including LT-R192G, which is a mutant version of the heat labile entero-
toxin from E. coli in immunization schemes based on either i.n. or i.r. routes. A
single dose of the i.n. administered vaccine alone induced antigen-specific IL-10
and IL-17 secreting T-cells. IL-10-, in contrast to IL-17-, secreting T-cells did not
migrate to the mesenteric lymph nodes (MLN), while they were detected in cervical
lymph nodes (CLN) and spleen. The inclusion of LT-R192G improved immunoge-
nicity in terms of activating the production of IL-2 and IL-4, increasing IL-17 secre-
tion and inducing antigen-specific CD4+CD25+Foxp3+ and Foxp3—T-cells in
CLN, spleen, and MLN, while IL-10 secreting T-cells were unmodified. When i.r.
administered, the vaccine plus LT-R192G induced IL-2 and IL-17 production; none-
theless, unlike the i.n. scheme, it did not trigger IL.-4 production. No neutralization
studies were performed to determine and compare the protective potential of these
vaccination approaches.

Binjawadagi et al. (2016) evaluated a vaccine against the porcine reproductive
and respiratory syndrome (PRRS) using insect cell-made VLPs containing the GP5-
GP4-GP3-GP2a-M or GP5-M proteins. A whole cell lysate from Mycobacterium
tuberculosis (M. tbWCL) was co-administered as adjuvant. VLPs were adminis-
tered alone or entrapped in PLGA nanoparticles (average size of 300 nm).
Immunoassays confirmed the presence of all proteins in the VLPs, suggesting the
retention of antigenic determinants. Pigs i.n. immunized with VLPs (two doses of
650 pg at 2-week intervals) entrapped in PLGA nanoparticles induced an anamnes-
tic immune response since elevation of IgG and IFN-y production was observed
after a challenge. The vaccinated group showed a two-log reduction in lung viral
load. The authors suggested that efficacy should be improved, e.g., by including
other viral structural proteins or producing VLPs carrying heterodimer (GP5-M)
and heterotetramer (GP2a-E-GP3-GP4) interacting complexes, which are expected
to resemble the native virion.

A VLPs-based vaccine candidate against infection by the nervous necrosis virus
(NNV) was produced by expressing recombinant orange-spotted grouper NNV
(OSGNNYV) capsid protein in E. coli. The test vaccine was evaluated in orange-
spotted grouper, which were immunized twice at 2-week intervals by immersion
(250 pg/g fish body weight, 1 mg of VLPs in 10 L-seawater, 30 min of immersion),
intramuscular injection (dose: 2 pg/g FBW, 0.1 pg VLPs per fish), or orally (dose:
20 pg/g FBW, feeding for 4 days with food containing 200 pg/g VLPs, consumption
of 5% of body weight). OSGNNYV VLPs elicited strong humoral responses, with the
immersion and i.m. routes inducing higher humoral responses than the oral scheme.
Upon challenge, the relative percent of survival values for immersion, injection, and
oral immunizations were: 81.9, 61.4, and 52.3, respectively. This type of vaccine is
highly promising as no accessory adjuvants are required and immunization by
immersion or feeding is practical for implementation in aquaculture. In addition,
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E. coli-expressed proteins are cheaper to produce when compared to insect and
mammalian cell-based production.

Crisci et al. (2012) reported a VLPs-based vaccine candidate against the foot-
and-mouth disease virus (FMDV). The vaccine consisted of chimeric insect cell-
made VLPs based on the rabbit hemorrhagic disease virus (RHDV) carrying a T-cell
epitope of the 3A protein from FMDV. The vaccine was evaluated in pigs immu-
nized either i.n. or i.m. (doses: 20, 60, and 180 pg/pig; administered twice at 2-week
intervals), having MontanideTM ISA 206 as adjuvant for i.m. immunization.
Chimeric VLPs activated immature porcine bone marrow-derived dendritic cells
(poBMDCs) in vitro. IgG and IgA antibodies against RHDV-VLPs were induced.
The adjuvanted i.m. immunized groups showed the highest humoral response. The
adjuvanted group exhibited the highest IFN-y secreting cell numbers and lymphop-
roliferative specific T-cell responses against the 3A epitope and RHDV-VLP. No
neutralization or challenge experiments were conducted.

Citarasu et al. (2019) produced a vaccine against the Macrobrachium rosenbergii
nodavirus (MrNV), which is the causative agent of the white tail disease (WTD) in
freshwater giant prawn (Macrobrachium rosenbergii). The vaccine comprised insect
cell-made VLPs assembled with the MrNV capsid protein. The obtained VLPs were
used to orally immunize larvae. For this purpose, animals were fed with VLP-
supplemented feed during 60 days (10 pg of MrNV was added to 30 g of feed, lead-
ing to a daily intake of about 50-100 ng of VLPs during the test period). After either
30 or 60 days of vaccination period, prawns were orally challenged with virulent
MrNV. Survival rates of 65 and 80% were achieved at 30 and 60 days post-
vaccination, respectively, whereas the non-vaccinated group had a 90% mortality.
Pathogen load estimated by PCR decreased to 32 and 17% at 30 and 60 days post-
vaccination, respectively. The vaccine induced the expression of Mramp, which is
believed to be involved in innate immune response against MrNV infection. No data
on the induction of adaptive immune responses was presented.

Conclusive Remarks

VLPs stand as the most promising agents in the development of subunit vaccines,
thanks to their high immunogenicity, stability, versatility, and safety. In terms of
toxicity, it is clear that VLPs constitute one of the safest nanoparticulate systems as
these are conformed by proteins, which contrast with metallic and polymeric
nanoparticles that depending on the size, shape, and doses could lead to toxic
effects. Overcoming the challenge of developing mucosal vaccines is with no doubt
being driven by VLPs-based approaches, with substantial advances over the last
years. Despite that the majority of the VLPs-based vaccines developed thus far have
been evaluated in parenteral immunization schemes, the reports summarized in the
present chapter indicate that there is a substantial potential to achieve the develop-
ment of mucosal VLPs with a real possibility of becoming agents for the fight
against relevant diseases in both humans and animals. The case of the influenza
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vaccines indicates that there is a remarkable niche for mucosal VLPs vaccines as
some candidates are effective and in some cases they possess higher efficacy than
the parenteral vaccination scheme. It is clear that the use of chimeric VLPs carrying
accessory adjuvants to target TLRs is an effective approach to enhance vaccine
efficacy.

The key perspectives identified for this topic comprise: (1) developing VLPs-
based vaccines targeting specific receptors at the mucosal tissues to increase vac-
cine efficacy. As transport through M-cell is a critical step in the induction of
immunity by mucosal routes, targeting these cells by specific ligands can increase
the uptake of the antigen and increase the access for uptake by antigen presenting
cells, which is the first step for the induction of robust adaptive immune responses.
For this purpose, an M-cell-targeting peptide ligand Col has been described (Kim
et al. 2010). This concept has been proven with a vaccine against the porcine epi-
demic diarrhea virus in which the COE antigen fused to Col exhibited higher
immunogenicity in terms of inducing systemic and mucosal immune responses
(Huy et al. 2012). To the best of our knowledge, this approach has not been applied
for VLPs-based vaccines. Another goal could expand the use of the nontoxic subunit
of the cholera toxin (CTB) or the B subunit of the E. coli heat labile enterotoxin
(LTB), both subunits bind to the GM1 ganglioside present in the membrane of the
epithelial cells and allow the antigen to be transported into the submucosa. (2)
Although several promising VLPs-based vaccine candidates are found in the litera-
ture, most of the vaccines are produced in insect or mammalian cells, which are
expensive production platforms. Expanding the use of low-cost platforms such as
plants is a relevant perspective. This technology has led to influenza vaccine candi-
dates that are currently under clinical trials, but administered by a parenteral route
(Pillet et al. 2018). (3) Another attractive approach is the one recently reported by
Serradell et al. (2019), which is expected to lead to oral vaccine candidates against
several infectious diseases. In addition, the fact that this vaccination approach
resulted effective in a cancer model makes this vaccine highly attractive for the field
of cancer immunotherapies given that most of the promising vaccines against can-
cer are administered by parenteral routes. Therefore, innovative oral cancer vac-
cines using this approach are envisaged. (4) A detailed exploration of the innovative
immunization routes is a point that deserves consideration for VLPs-based vaccines.
Sublingual immunization has been recently highlighted as very attractive as this
allows inducing robust immune responses (Bahceciler et al. 2014). Therefore,
expanding the evaluation of VPLs-based vaccines by the s.1. route will open new
possibilities to address vaccinology challenges. For instance, the group headed by
Kweon is working on the evaluation of a s.. vaccine against the Group A
Streptococcus based on VLPs assembled with the VP1 structural protein from the
murine polyomavirus (MuPyV) produced in E. coli (Seth et al. 2016).

VLPs are advantageous agents for vaccine development that will lead, with no
doubt, to more advances in the clinic for the fight against infectious and non-
communicable diseases. It is of interest that VLPs-based vaccine candidates against
emerging pathogens such as the Zika virus (Yang et al. 2017), Nipah virus (Walpita
et al. 2018), Chikungunya virus (Salazar-Gonzdlez et al. 2015), and Ebola virus
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(Rosales-Mendoza et al. 2017) are under development. However, the vaccine candi-
dates have been mainly evaluated in parenteral immunization schemes; their evalu-
ation in schemes based on mucosal immunization remains a relevant pending goal
knowing that mucosal vaccination could lead to higher efficacy than the schemes
based on parenteral administration. The use of prime-boosting schemes should be
also studied in a more systematic way to achieve better immune profiles, i.e., opti-
mal immune responses at both the systemic and mucosal levels. Another innovation
expected in the following years is related to applying computer-based modeling
methods to ensure proper antigen spatial conformation, especially in chimeric VLPs
where conformational epitopes are critical for vaccine efficacy (Liljeroos et al.
2015). The generation of more sophisticated VLPs containing antigens arranged in
multimeric arrays on carrier surfaces, as well as different immunostimulating com-
ponents, is envisaged.
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