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Structurally diverse, specialized lipids are crucial components of microbial membranes
and other organelles and play essential roles in ecological functioning. The detection of
such lipids in the environment can reveal not only the occurrence of specific microbes
but also the physicochemical conditions to which they are adapted to. Traditionally,
liquid chromatography coupled with mass spectrometry allowed for the detection of
lipids based on chromatographic separation and individual peak identification, resulting
in a limited data acquisition and targeting of certain lipid groups. Here, we explored a
comprehensive profiling of microbial lipids throughout the water column of a marine
euxinic basin (Black Sea) using ultra high-pressure liquid chromatography coupled
with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS). An information
theory framework combined with molecular networking based on the similarity of
the mass spectra of lipids enabled us to capture lipidomic diversity and specificity
in the environment, identify novel lipids, differentiate microbial sources within a lipid
group, and discover potential biomarkers for biogeochemical processes. The workflow
presented here allows microbial ecologists and biogeochemists to process quickly and
efficiently vast amounts of lipidome data to understand microbial lipids characteristics
in ecosystems.

Keywords: microbial membrane lipids, lipidome, Black Sea, molecular network, information theory, mass
spectometry, biomarker, intact polar lipids (IPLs)

INTRODUCTION

Microorganisms play a primary role in the biochemical cycles of ecosystems. Understanding what
microorganisms are doing, rather than simply assessing which microorganisms are present, is
essential for understanding their role within ecosystems (Vestal and White, 1989). The structural
diversity of lipids and their varied physicochemical properties reflect their wide ranging functions,
such as the building blocks of membranes, energy storage, signaling, and modulating protein
activity (Brügger, 2014). Microbial lipids are structurally very diverse and have proven to be of great
taxonomic value (Sohlenkamp and Geiger, 2016). Indeed, certain microbial lipid classes have been
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used as biomarkers of specific taxonomic groups: for instance,
isorenieratene for the photosynthetic green sulfur bacteria
Chlorobiaceae (Sinninghe Damsté et al., 2001; Brocks et al.,
2005), ladderane lipids for anammox bacteria (Sinninghe Damsté
et al., 2002; Kuypers et al., 2003; Rush et al., 2012), and
heterocyst glycolipids for filamentous N2 fixing cyanobacteria
(Wolk et al., 1994; Bauersachs et al., 2009; Kumar et al., 2010).
In addition, many microorganisms regulate their membrane lipid
composition in order to adapt to environmental stress, thus these
lipids have the potential to be used as biomarkers for specific
environmental conditions (e.g., Benning et al., 1995; Van Mooy
et al., 2009; Geiger et al., 2010; Martin et al., 2011; Popendorf et al.,
2011b; Elling et al., 2015).

With the development over recent decades of LC-MS methods
for intact polar lipid (IPL) analysis in the environment (Sturt
et al., 2004), their distributions have been reported in many
marine settings (e.g., Rossel et al., 2008; Schubotz et al., 2009,
2018; Van Mooy and Fredricks, 2010; Popendorf et al., 2011a,b;
Wakeham et al., 2012; Sollai et al., 2019), lakes (Ertefai et al., 2008;
Bale et al., 2016, 2019) and soils (Liu et al., 2010; Rethemeyer
et al., 2010; Peterse et al., 2011; Ding et al., 2020; Warren,
2020). Most of these studies either used a targeted MS/MS
approach, which focused on the dominant lipids or performed
MS/MS interpretation manually, based on knowledge of the
fragmentation patterns of specific lipid classes. This system of
data analysis is laborious, time consuming, and is restricted to
a few selected spectra that can be annotated among thousands of
collected spectra (Kang et al., 2020). The requirement of high-
level MS expertise makes this field difficult for non-chemists to
get involved in, which has been seen to preclude the scientific
maturation of the field (Wakeham and Lee, 2019).

Recent advances in the field of lipidomics, using non-targeted
approaches combing with computational methods, allows for
comprehensive lipidome profiling without a priori expert MS
fragmentation knowledge (Pluskal et al., 2010; Shevchenko and
Simons, 2010; Han et al., 2012; Wörmer et al., 2014; Yang and
Han, 2016; Collins et al., 2016; Law and Zhang, 2019; Steen
et al., 2020). The combination of analytical and computational
advances provides a holistic picture of the lipidome and makes
it more accessible, for example for studies of microbial ecology.
Information theory, a mathematical analysis of information that
has been used in a broad scope of microbiome diversity (Eren
et al., 2014) and transcriptome diversity (Martínez and Reyes-
Valdés, 2008), has been recently applied to the resolution of
UHPLC-MS/MS derived metabolomic data in plants (Li et al.,
2016, 2020). Application of information theory to lipidomic
data may also allow us to characterize lipidomic diversity and
specificity in the environment.

Another approach, molecular networking, is an excellent tool
for visualization and annotation of non-targeted mass spectra
without the need for cross referencing against known spectra
(Watrous et al., 2012; Wang et al., 2016; Nothias et al., 2020).
In this analysis, molecules related to each other based on the
similarity of their fragmentation patterns form a molecular
network, resulting in automated identification of analogs and
related compounds. In addition to this, molecular networking has
the advantage of further clustering lipids after chromatography

separation, in regard to both their headgroups and their core
moieties, as its principle is based on their MS/MS fragments
similarity but not on their polarity or hydrophobicity. The related
lipids in a cluster often differ only marginally structurally, by
simple transformations such as alkylation, unsaturation, and
glycosylation (Nothias et al., 2020). In addition, improved data
visualization using molecular networks allows for the discovery
of unknown molecules and reveal not only their molecular
diversity but also their potential biological relationships (Watrous
et al., 2012; Winnikoff et al., 2014; Hartmann et al., 2017).
Recently, a few studies have applied molecular networking to the
natural environment, based on lipidomic or metabolomic data
(Kharbush et al., 2016; Petras et al., 2017; Petras et al., 2021).
The methodology applied in such studies has the potential to be
applied to lipid biomarker research, and in particular to IPLs.

In our companion paper (Bale et al., 2021), we presented a
method that uses two-way hierarchical clustering to visualize
a large UHPLC-HRMS dataset, made up of MS1 spectra
which had been extracted using MZmine software. This data
analysis method provided an overview of the variability within
a complex environmental lipidome from an euxinic marine
basin (the Black Sea), without bias towards known or abundant
components. However, the approach of Bale et al. (2021)
does not include automated extraction of MS2 spectra, and
hence component identification was carried out using traditional
(manual) methods. Here, we use the same UHPLC-HRMS/MS
dataset, but after extraction of both MS1 and MS2 spectra a
combination of information theory and molecular networking
was applied to group components by similarity in their structure,
rather than by similarity in their depth profile (as per Bale et al.,
2021). In doing so, we allow for rapid component identification,
based on similarity to known lipids. This approach provides
a complementary information to previous work (Wakeham
et al., 2007; Schubotz et al., 2009; Sollai et al., 2019) and
extracts more detailed lipidomic information, valuable for a
better understanding of complex environmental lipidomes of
microbial communities.

MATERIALS AND METHODS

Sampling, Extraction, and
UHPLC-HRMS/MS Analysis
A detailed description of sample collection, extraction and
analysis is given in Bale et al. (2021). Briefly, suspended
particulate matter (SPM) at various water depth in the water
column [50–2,000 meter below sea level (mbsl)] was collected
in 2013 during the PHOXY cruise (June–July 2013) in the Black
Sea (Kraal et al., 2017; Sollai et al., 2019) from the PHOX2
sampling station located at 42◦53.8’N, 30◦40.7’E in the center
of the western gyre of the Black Sea. SPM was collected on pre-
ashed 142-mm-diameter 0.7-µm pore size glass fiber GF/F filters
(Pall Corporation, Port Washington, NY), mounted on McLane
WTS-LV in situ pumps (McLane Laboratories Inc., Falmouth).
The filters were immediately stored at –80◦C until extraction.

Freeze-dried filters were extracted using a modified Bligh-
Dyer procedure. After extraction, the extracts were analyzed
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using Agilent 1290 Infinity I UHPLC coupled to a Q Exactive
Orbitrap MS (Thermo Fisher Scientific, Waltham, MA). The
output data files (∗.raw files) generated by the UHPLC-HRMS
analyses were converted to ∗.mzXML files using MSconvert
software. In addition to the method described in our companion
paper (Bale et al., 2021), both MS1 and MS2 spectra were
extracted using MZmine software (Pluskal et al., 2010) for
subsequent data processing. Process steps included mass peak
detection, chromatogram building and deconvolution, isotope
grouping, feature alignment and gap filling (Wang et al., 2016).
The absolute abundance of components was obtained after
processing. Due to our extraction and analytical methods,
and based on annotation by the GNPS library (see later), we
expect most of the components from the molecular network we
generated to be lipids, thus we used the term “lipidome” for parts
of the discussion where the components are discussed.

Creation of Molecular Networks
The combined dataset of MS/MS spectra were analyzed through
The Global Natural Product Social Molecular Networking
(GNPS) platform (Wang et al., 2016) using the Feature Based
Molecular Networking tool (Nothias et al., 2020) to build
molecular networks of the detected components in the dataset.
Details can be found online at https://ccms-ucsd.github.io/
GNPSDocumentation. The MS/MS dataset was filtered to remove
[M+H]+ if the [M+NH4]+ was more abundant and vice versa,
by removing all MS/MS fragment ions within ± 17 Daltons (Da)
of the precursor mass-to-charge ratio (m/z). MS/MS spectra were
divided in 50 Da windows and only the top 6 fragment ions in
each 50 Da window were used. The precursor ion mass tolerance
was set to 0.02 Da and the MS/MS fragment ion tolerance of
0.02 Da. A molecular network was then created where edges
were filtered to have a cosine score above 0.6 (an edge with
a cosine score 1.0 means two nodes are identical). Each node
was connected to a maximum of 6 analogs in the network.
Meanwhile, consensus spectra were searched against the GNPS
spectral library with maximum analog mass difference of m/z
100. Precursor mass deviation and matching score (cosine) can be
found online https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
871685198b1949e2a46e0e471400cdce. Molecular networks were
visualized using Cytoscape 3.7.2 (Shannon et al., 2003; Smoot
et al., 2010). Peak area/intensity of each MS/MS spectra was
added as a metadata for the lipidome visualization across the
water column of the Black Sea sample set (50–2,000 mbsl).

Information Theory Framework
Lipids were characterized by their own unique MS/MS spectrum
and relative frequency of occurrence across the water column.
The Hj index, estimating lipid diversity in different samples
(depths), was calculated using Shannon entropy of MS/MS (lipid
species) frequency distribution derived from the abundance of
MS/MS precursors by the following equation as described by
Martínez and Reyes-Valdés (2008) and Li et al. (2016).

Hj = −

m∑
i=1

Pijlog2(Pij)

where Pij correspond to relative frequency of the ith MS/MS
(i = 1, 2, . . ., m) in the jth sample (j = 1, 2, . . ., t), to illustrate
how abundant a specific MS/MS spectrum is relative to all others.

The average frequency of the ith MS/MS among samples was
calculated as

Pi =
1
t

t∑
j=1

Pij

Individual ion components (lipid species) specificity, the Si
index, was defined as the identity of a given MS/MS regarding
frequencies among all the samples. The MS/MS specificity was
calculated as

Si =
1
t

 t∑
j=1

Pij

Pi
log2

Pij

Pi


Individual lipid species specificity of specific environmental
sample, was defined as Sij index.

Sij =

t∑
j=1

Pij

Pi
log2

Pij

Pi

The water depth lipid specificity δj index was measured for
each jth sample, the average of the MS/MS specificities using the
following formula

δj =

m∑
i=1

PijSi

RESULTS AND DISCUSSION

In the study of Bale et al. (2021) 14,648 UHPLC-HRMS1

components were extracted and quantified using Mzmine
(Pluskal et al., 2010) in the Black Sea water dataset (SPM of
15 depths collected from 50 to 2,000 mbsl in 2013 and 10
depths from 2017). In this study we only used the dataset
from 2013, from which 12,031 components with an associated
MS/MS spectrum were extracted by MZmine. We applied two
analytical and computational methodologies: (1) a molecular
network based on the MS/MS spectra similarities (Wang et al.,
2016; Nothias et al., 2020) and (2) information theory based
on Shannon entropy of the lipidome distribution (Martínez and
Reyes-Valdés, 2008; Li et al., 2020; Figure 1A). One of the
benefits of this approach is that no code is needed to apply
the workflow shown in Figure 1A. The molecular network
(Figure 2) generated from GNPS (Nothias et al., 2020) contained
6625 components in familial groupings (55% of the total) and
5406 singletons (components without molecular relatives in the
network). Familial groupings appear as subnetworks within the
molecular network (cf. orange rings in Figure 2).

Information Theory-Diversity and
Specificity of Lipidome
Based on information theory (Martínez and Reyes-Valdés, 2008;
Li et al., 2020), we calculated a set of previously established
indices: ion components (lipid species) specificity (Si index),
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FIGURE 1 | Testing the specificity and diversity of lipid species in the water column of the Black Sea using information theory and molecular network. (A) Schematic
overview of the lipidomic data process and analysis workflow. (B) Specificity of the ion components among all the water column samples, left showed all the ion
components while right showed the ion components connected through molecular network. Y axis represents the ion component counts, the different tones
represent the trends of ion component specificity. The percentage shown here stands for the proportion of ion components that had high specificity (Si > 2), i.e., ca.
23% of all the ion components had high specificity Si > 2. (C) Scatter plot of Hj (diversity) vs. δj (specialization).

Water depth lipid diversity (Hj index), and water depth lipid
specificity (δj index). We examined the distribution of the Si
index across all lipids (Figure 1B; n = 12,031) and across those in
subnetworks (familial groupings), assigned as lipids (n = 6,625).
For the Black Sea SPM, the Si specificity index highlights which
lipids (n = 12,031) are specific for a certain depth of the
water column, key for finding potential biomarkers associated
with specific microbial communities or specific environmental
conditions. A large number of lipids had small values of Si
(Si < 2.0, 77% of the total), indicating they were either in
low concentration or uniformly distributed throughout the
water column. The distribution trend of specificity of the lipids
connected through molecular network (Si < 2.0, 78%) was similar
to that of the total components. With the help of the Si index (cf.
Supplementary Table 2; Li et al., 2016), it is possible to focus on
those lipids that are specific to certain water depths and thus for
specific microbes and microbial niches.

The water depth lipid specificity (δj) is measured as the
average degree of uniqueness of individual lipids and thus is an
indicator for the average lipid specificity at a certain depth of
the water column. A high value of the Hj diversity index at a
specific depth, is either the result of a large proportion of the
total lipids being detected at that depth, or because the lipids at
that depth are evenly distributed in abundance. Cross plotting
the specialization and diversity of the Black Sea lipidome result
in groupings of depths (Figure 1C). The deep, euxinic waters

(anoxic and sulfidic, 500–2,000 mbsl) had the most specialized
lipidome profiles (i.e., unique occurrence of the lipid pattern),
accompanied with a medium extent of diversity among all the
water column depths. This supports observations that distinct
microbial communities inhabit the deep euxinic waters of the
Black Sea compared to the surface waters (Durisch-Kaiser et al.,
2005; Wakeham et al., 2007; Sollai et al., 2019; Suominen et al.,
2020a,b). The signature for low diversity and low specialization
observed at depths 70–95 mbsl (including 80, 85, and 90 mbsl)
was in line with the low numbers and low intensity of resolved
chromatographic peaks seen for these depths (data not shown).
The suboxic/euxinic zone interface (100–250 mbsl) exhibited the
most diverse lipidome profile and relatively low specialization
(i.e., the lipids generally were not found uniquely in this zone)
among all the water column depth samples. This finding is
in accordance with previous studies that showed that a wide
range of microbially mediated processes including anammox,
metal reduction, sulfide oxidation, anaerobic methane oxidation
and anoxygenic photosynthesis co-occur within the suboxic and
upper euxinic zone of the Black Sea (Wakeham et al., 2007).

Molecular Network: the Lipidome
Throughout the Water Column
The MS/MS spectra search through the GNPS library
resulted in 239 annotations (<2% annotation), which
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FIGURE 2 | Molecular network of the water column in the Black Sea. Nodes represent MS/MS spectra of ion components (lipids) which are connected based on
spectral similarity (cosine > 0.6). Nodes are labeled from light yellow to dark blue with the increasing of the summed intensity among all the water column samples
(15 depths). The spatial orientation of the nodes in the MS/MS network (Figure 2) is randomly generated by Cytoscape (Shannon et al., 2003; Smoot et al., 2010)
and does not relate to relationships between the subnetworks. Lipid classes (clusters) with the annotation are either tentatively identified in this study or have been
reported by the previous studies (Schubotz et al., 2009, 2018; Van Mooy and Fredricks, 2010; Danielewicz et al., 2011; Wakeham et al., 2012; Bale et al., 2016;
Kharbush et al., 2016; Becker et al., 2018b). DAG, diacylglycerol; DEG, dietherglycerol; AEG, acyletherglycerol; TAG, triacylglycerol; DGTS,
diacylglycerylhydroxymethyltrimethyl-(N,N,N)-homoserine; DGCC, diacylglycerylcarboxyhydroxymethylcholine; DGTA,
diacylglyceryl-hydroxymethyl)-tri-methyl-b-alanine; OL, ornithine lipid; DPG, diphosphatidylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG,
phosphatidylglycerol; PI, phosphatidylinositol; MMPE, phosphatidyl-(N)-methylethanolamine; MGDG, monoglycosyldiacylglycerol; GDGT, glycerol dialkyl glycerol
tetraethers; SM, sphingomyelin; SQDG, sulfoquinovosyl diacylglycerol.

included ca. 20 contaminants, leaving the vast majority of
components unknown. Such a low degree of annotation
is consistent with other non-targeted environmental
metabolomic studies (Petras et al., 2017, 2021). Lipidome
annotation remains a bottleneck in lipidomic studies
because public spectral databases are poorly populated.
However, molecular networking enables the visualization
of relationships between known and unknown lipids,
based on the similarity of their MS/MS spectra. Despite
the low percentage of library annotation, more than
half the components clustered together in an individual
network (Figure 2).

Most of the lipids that clustered together in the subnetworks
were either analogs of each other with an identical head group
or with a similar core, differing by simple transformations
such as alkylation, unsaturation, and glycosylation (Nothias
et al., 2020). Each node in a molecular network stands for an
individual lipid associated with a specific MS/MS spectrum (see
Supplementary Figure 1 as an example). Nodes in Figure 2
are labeled from light yellow to dark blue according to the
lipid’s summed intensity (which is equated to abundance
here) throughout the water column. Unknown lipids in a
subnetwork were annotated if they were connected to one or
two annotated lipids in the library (Supplementary Figure 2).
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Subnetworks of nodes without any library hits were annotated
manually, either by comparison to data from previous studies
(Rossel et al., 2008; Schubotz et al., 2009, 2018; Van Mooy
and Fredricks, 2010; Danielewicz et al., 2011; Wakeham et al.,
2012; Bale et al., 2016; Kharbush et al., 2016; Becker et al.,
2018b) or putatively identified based on accurate mass and
MS/MS fragmentation (Supplementary Table 1). Many of the
subnetworks in our molecular network represent lipids that
have been putatively identified earlier in studies of IPLs in
the Black Sea water column and sediments (Wakeham et al.,
2007; Schubotz et al., 2009; Becker et al., 2018b; Sollai et al.,
2019). These included: diacylglycerol phosphatidylcholine (PC-
DAG), diacylglycerol phosphatidylethanolamine (PE-DAG),
diacylglycerol phosphatidylglycerol (PG-DAG), 1,2-
diacylglyceryl-3-carboxyhydroxymethylcholine (DGCC), 1,2-
diacylglyceryl-3-trimethylhomoserine (DGTS), diacylglyceryl-
O-hydroxymethyl-(N,N,N-trimethyl)-β-alanine (DGTA),
ornithine lipids (OL), monoglycosyldiacylglycerol (MGDG),
dietherglycerol phosphatidylethanolamine (PE-DEG), glycosidic
ceramides, isoprenoidal quinones, and glycerol dialkyl glycerol
tetraethers (GDGT). Subnetworks tentatively identified within
our molecular network (Figure 2) which were not reported
in previous studies, included triacylglycerols (TAGs), some
novel sphingolipids, certain DEG-based IPLs, and some specific
chlorophylls. Our results demonstrate that a significant benefit
of molecular networking is that a wider range of annotated lipids
is produced with increased speed than arising by traditional
analysis of LC-MS data. Molecular networking enables the
grouping of different lipid classes both based on their polar
head group and their core moiety. For example, there were four
subnetworks of PC-DAGs (Figure 2). Some contained two short
acyl carbon chain length (in sum C28 to C34) with 0–2 double
bonds (Supplementary Table 1), most likely produced by algae
or nitrogen–fixing or heterotrophic bacteria (Kato et al., 1996;
Martínez-Morales et al., 2003; Sohlenkamp et al., 2003; Schubotz
et al., 2009). The other PC-DAGs contained longer acyl carbon
chain lengths (C34 to C40) with 0–8 double bonds, which are
typically associated with algae (Kato et al., 1996).

In order to demonstrate how the molecular network can be
used to understand lipidomic data in an environmental context,
we discuss the depth distribution of three subnetworks: those of
TAGs, carotenoids, and DEGs (Figures 3A–C). For this, the shape
of each node was changed from a solid circle (as per Figure 2) to a
heatmap (Figure 3), which represents the abundance gradient of
the lipid from surface water to deep anoxic zone (50–2,000 mbsl).

TAGs are mostly known as energy storage lipids produced
mainly by algal species under environmental stress, such as
photo-oxidative stress or nitrogen deprivation (Thompson, 1996;
Bigogno et al., 2002; Hu et al., 2008). They are generally
synthesized in the light and then reutilized for the synthesis of
other lipids in the dark (Thompson, 1996; Becker et al., 2018a),
thus can be used as a marker for the euphotic and (sub)oxic zone
(Figures 3A,D). The subnetwork TAG11 (Figure 3A) contains
three TAGs (m/z 848.7676–904.8313; Supplementary Table 1),
one DAG (m/z 638.5716, 18:1/18:1) and two unknown lipids.
All these three TAGs contain a same DAG group (18:1/18:1) but
differ in the third fatty acid chain length (C14, C16 or C18). They

were present in the lower photic zone (50–90 mbsl, Figure 3A),
below 90 mbsl their relative abundance decreased strikingly, by
more than one order of magnitude.

The subnetwork B (Figure 3B) contains several carotenoids,
including β-carotene (m/z 536.4372), chlorobactene (m/z
532.4065) and isorenieratene (m/z 528.3745). Isorenieratene is
a carotenoid uniquely biosynthesized by the low-light-adapted
photosynthetic green sulfur bacteria Chlorobiaceae (Repeta
et al., 1989; Sinninghe Damsté et al., 1993; Sinninghe Damsté
et al., 2001). Chlorobiaceae perform photosynthesis using
sulfide, thus they require an euxinic, stratified water column
with strictly anaerobic conditions and hence isorenieratene
and its derivatives can be used as biomarkers for photic zone
euxinia (Koopmans et al., 1996). Isorenieratene concentration
was highest between 100 and 130 mbsl (Figures 3B,D), which
is consistent with previous studies showing that green sulfur
bacteria were present in the chemocline of the Black Sea
(Overmann et al., 1992; Manske et al., 2005). Structurally closely
related carotenoids such as chlorobactene and β-carotene are also
found in this cluster, although with different depth distributions.

The subnetwork C (Figure 3C) contain diether glycerols
(DEGs) with several types of head groups (PE/PG/PI). They
differ from each other in chain length (C30 to C34) and degree
of unsaturation (zero up to two). DEGs with different head
groups (PE/PG/PI) have been commonly associated with sulfate-
reducing bacteria (Sturt et al., 2004; Schubotz et al., 2009) and
consequently are applied as indicators for anaerobic/sulfidic
conditions. In our dataset, DEGs were firstly encountered in the
upper anoxic zone with the appearance of sulfide (95 mbsl) and
reached a maximum at 130 mbsl (Figures 3C,D).

The stratification highlighted using these three subnetworks
is in agreement with the results achieved by hierarchical
clustering of the same MZmine data by Bale et al. (2021). It
shows that applying molecular networking to the water column
lipidome has the potential to deliver biologically meaningful
lipid-microbial community associations or environmental factors
on lipid distribution.

Different Microbial Sources Within the
Same Lipid Class
Molecular networking enables us to investigate the potential
sources of individual groups of compounds in the same
polar lipid classes. For example, there were fourteen separate
subnetworks of TAGs (Figure 2), indicating that groups of TAGs
differed significantly from each other in carbon chain length or
degree of unsaturation. TAGs which contain a polyunsaturated
fatty acid (FA; e.g., TAG-C16:0/C22:6/C22:6; clustered in TAG9)
were predominant in the euphotic zone (50–90 m; Figure 4A).
Algal species such as Euglenophyceae, Cryptophyceae, and
Eustigmatophyceae possess the ability to synthesize these TAGs
(Hu et al., 2008). Similar depth distributions were also detected
in the subnetwork of TAG11 (Figure 3A). These TAGs contain
a FA with carbon chain lengths of C16 and C18 and 0–2 double
bonds (Figure 3A), they are also known as typical storage lipids in
most algae (Volkman et al., 1989). Distinct from the subnetworks
of TAGs mentioned above, subnetworks of TAGs with odd (C15
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FIGURE 3 | Molecular subnetwork of specific lipid classes determines the photic and aerobic zone in the Black Sea. (A) Subnetwork of triacylglycerol 11. (B) Part of
subnetwork of carotenoid. (C) Subnetwork of PE/PG/PI-DEG. (D) Distribution and stratification of the summed intensity of TAG, isorenieratene and DEG in the water
column of the Black Sea (50–2,000 mbsl). The names of these selected lipid classes are linked to the ones in the major network (Figure 2). Boxes shown here are
the same as nodes shown in Figure 2, representing lipid species. The outlines of the boxes are labeled from light yellow to dark blue with the increasing of the
summed intensity among all the water column samples (15 depths). Inside the box, a heatmap represents the distribution of this lipid species across the water
column, from top (50 mbsl) to bottom (2,000 mbsl). The lipid components with closely related masses (e.g., m/z 707.5600 vs. 707.5573, C) have similar mass
spectra but different retention time (20.9 min vs. 20.3 min), suggesting they are structural isomers.

and C17; likely iso) and short (C12 and C14) acyl chain length,
were only shown to be abundant at 90 mbsl (TAG3, Figure 4B),
suggesting they have a different source. To further determine the
source of different types of TAGs mentioned above, we compared
betaine DGCC lipids to the long-chain polyunsaturated TAGs
(which contain at least one acyl chain with > 20 carbon atoms)
and short-odd-chain TAGs (which contain C12, C14, C15, or C17
acyl chains). DGCC lipids are supposed to be produced mainly
by algae (Kato et al., 1994; Van Mooy et al., 2009). We found
there was no correlation between the latter TAGs and DGCC
lipids, while the DGCCs did correlate with TAGs containing
even carbon numbered, long-chain polyunsaturated fatty acids
(R2 = 0.85, P < 0.01; Figure 4C). This suggests non-algae sources

for the TAGs with short and odd chain fatty acids, such as the
bacteria actinomycetes which are capable of producing odd chain
TAGs (Alvarez and Steinbüchel, 2002).

Another distinct depth pattern was found in the subnetwork
of the betaine lipids DGTS and DGTA (Figure 5). DGTS
and DGTA are structural isomers with the same characteristic
fragment ions in the MS/MS spectra, and hence they cluster
in the same subnetwork. Since DGTS cannot be distinguished
from DGTA based on mass spectra, we hereafter indicate these
betaine lipids as DGTS/DGTA for the following discussion.
DGTS/DGTA lipids with C32:2 and C32:1 acyl chains were
dominant in the oxic zone (50–90 mbsl; Figure 5A). The sum of
their abundance, together with another cluster of DGTS/DGTA
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FIGURE 4 | Molecular subnetwork of triacylglycerols and their source determination. (A) Subnetwork of TAG9. (B) Subnetwork of TAG3. (C) From left to right:
Distribution of oxygen (O2, µM, orange solid cycles) and sulfide (HS-, µM, orange hollow cycles) in the water column of the Black Sea (50–2,000 mbsl); Distribution
of summed TAGs with polyunsaturated fatty acids (at least one of the three acyl chain length with more than C20, orange cycles) and summed TAGs with odd (C15

and C17) and short (C12 and C14) carbon chain length (blue cycles); Scatter plots of DGCC vs. TAGs with polyunsaturated fatty acids (orange cycles) and TAGs with
odd (C15 and C17) and short (C12 and C14) carbon chain length (blue cycles). Significance: **P < 0.01; n.s., not significant. The names of these selected lipid classes
are linked to the ones in the major network (Figure 2). Boxes shown in subnetwork are the same as nodes shown in Figure 2, representing lipid species. The
outlines of the boxes are labeled from light yellow to dark blue with the increasing of the summed intensity among all the water column samples (15 depths). Inside
the box, a heatmap represents the distribution of this lipid species across the water column, from top (50 mbsl) to bottom (2,000 mbsl).

with longer (C34 to C40) acyl chains with 0–10 double bonds
(DGTS/DGTA1 in Figure 2 and Supplementary Table 1),
were significantly correlated with the abundance of headgroup-
less DAGs (R2 = 0.97, P < 0.001; Figure 5B). DAGs were

dominant in the oxic and suboxic zone and are likely catabolic
products or biosynthetic intermediates of TAGs, phospholipids
and glycolipids, derived mainly from algae (Kharbush et al.,
2016; Becker et al., 2018a). The correlation strongly suggesting
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FIGURE 5 | Molecular subnetwork of betaine lipids (DGTS/DGTA) and their source determination. (A) Subnetwork of betaine lipids DGTS/DGTA. (B) From left to
right: Distribution of DGTS/DGTA (oxic to suboxic, abundant at the surface water 50–90 mbsl, including DGTS/DGTA with C32:2, C32:1, C34 to C40 carbon chain
length and 0–10 double bonds, orange cycles) and DGTS/DGTA(euxinic, abundant at the deep water 110–2,000 mbsl, including DGTS/DGTA with C31 to C35

carbon chain length and 0–2 double bonds, blue cycles); Scatter plots of DAG vs. DGTS/DGTA (oxic/suboxic, orange cycles) and DGTS/DGTA (euxinic, blue cycles);
Scatter plots of DEG with several head groups (PE/PG/PI) vs. DGTS/DGTA (oxic/suboxic, orange cycles) and DGTS/DGTA (euxinic, blue cycles). Significance:
***P < 0.001; **P < 0.01; n.s., not significant. The name of selected DGTS/DGTA is linked to the one in the major network (Figure 2). Boxes shown in subnetwork
are the same as nodes shown in Figure 2, representing lipid species. The outlines of the boxes are labeled from light yellow to dark blue with the increasing of the
summed intensity among all the water column samples (15 depths). Inside the box, a heatmap represents the distribution of this lipid species across the water
column, from top (50 mbsl) to bottom (2,000 mbsl).

that these DGTS/DGTA lipids were also derived from algae
(Dembitsky, 1996; Van Mooy and Fredricks, 2010). A different
subnetwork of DGTS/DGTA with C31 to C35 acyl chains and

0–2 double bonds were absent from the surface waters but
were relatively more abundant in deep suboxic and euxinic
zone (110–2,000 mbsl) with a peak at 130 mbsl (Figure 5A).
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FIGURE 6 | Molecular subnetwork of sphingolipids1. Boxes shown in subnetwork are the same as nodes shown in Figure 2, representing lipid species. The outlines
of the boxes are labeled from light yellow to dark blue with the increasing of the summed intensity among all the water column samples (15 depths). Inside the box, a
heatmap represents the distribution of this lipid species across the water column, from top (50 mbsl) to bottom (2,000 mbsl). ∗Represents there is a –OH group in
the fatty acid chain of the lipid. Mass spectra of novel lipids are shown in Supplementary Figures 3A–D.

Significant correlation was found between the intensity of
these DGTS/DGTA lipids with that of DEGs with and without
headgroups (R2 = 0.70, P < 0.01; Figure 5B). In contrast to
DAGs, DEGs in the Black Sea water column has been shown
to correlate with sulfate reducing bacteria (Neretin et al., 2007)
and in general are mostly associated with anaerobic bacteria
(Grossi et al., 2015). This suggests these types of betaine lipids
were derived from anaerobic bacteria such as sulfate reducing
bacteria (López-Lara et al., 2003) or other bacteria residing in
the euxinic zone. Although distinct patterns of DGTS/DGTA
lipids throughout the water column were also observed in
previous studies (Schubotz et al., 2009; Van Mooy and Fredricks,
2010), here the application of molecular networking enables
the direct observation of individual DGTS/DGTA distributions
across the water column.

Targeting Unknown Lipids
Given the diversity and complexity of lipids from environmental
samples, less abundant but perhaps ecologically informative
lipids cannot be easily detected if they coelute with more
dominant components of the lipidome. With the help of
a molecular network, embedded with the heatmaps of the
lipids’ variation across the ecosystem, one can rapidly pick
out significant unknown lipids at certain depths or specific
environmental conditions. A great number of such lipids
can then be putatively identified by comparing their MS/MS
fragmentation pattern to the associated ones if they are
in a subnetwork.

Many of the subnetworks in our dataset (Figure 2) contained
unknown components. The MS/MS pattern recognition, intrinsic
to the molecular network data processing, provide an indication
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FIGURE 7 | Molecular subnetwork of sphingolipids3. Boxes shown in subnetwork are the same as nodes shown in Figure 2, representing lipid species. The outlines
of the boxes are labeled from light yellow to dark blue with the increasing of the summed intensity among all the water column samples (15 depths). Inside the box, a
heatmap represents the distribution of this lipid species across the water column, from top (50 mbsl) to bottom (2,000 mbsl).

as to their structures, based on similarity to known lipids
within the same subnetwork. To illustrate this, we focus first
on a subnetwork (Sphingolipids1) that contains four cluster of
unassigned lipids (Figure 6). From a first cursory inspection
of the MS/MS mass spectra associated with these components
(Supplementary Figures 3A–D), it became clear that all these
unassigned components shared structural features, explaining
why these clusters are connected, but differed from each other
in complexity of the whole molecule (see Supplementary Text
and Supplementary Figure 3 for details). The first unknown
cluster (Figure 6, cluster 1) contains 13 lipid species. The
MS/MS spectrum from one of the members of this cluster

(m/z 704.7254, Figure 6 and Supplementary Figure 2A) was
very similar to that of a ceramide standard (d18:1/24:0, m/z
650.6454, Supplementary Figure 4), but with one less loss of
H2O in the unknown lipid. We therefore tentatively identify it as
1-deoxyceramide (d20:0/27:1). Other lipid species in the cluster 1
are also 1-deoxyceramides, differing from each other in the chain
lengths of 1-deoxysphinganine base (C19 to C21, Figure 6) and/or
fatty acid groups (C20 to C32).

1-deoxysphinganine, the sphingoid base of the 1-
deoxyceramides was first found in a marine organism, Spisula
polynyma (Cuadros et al., 2000). Since then, 1-deoxyceramides
were typically reported as “total 1-deoxysphinganines” because
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they were quantified after acid hydrolysis to release the
sphingoid bases (Merrill, 2011). With the technical progress
in HPLC-HRMS over the last few years, it is now possible
to analyze 1-deoxycermide as individual molecular species
(Duan and Merrill, 2015). These atypical headless sphingolipids
cannot be degraded over the canonical catabolic pathways
and are incapable to be converted to complex sphingolipids
(Lone et al., 2019). Due to the lack of the C1-OH, they cannot
be further metabolized into more complex sphingolipids and
the understanding of their biological functions is still limited
(Carreira et al., 2019).

The other three clusters of unknown components that
connected to the cluster 1 are 1-deoxyceramides with polar
moieties (Figure 6). Unlike the common sphingolipids which
contain polar moieties as “headgroups” at the C1-OH position
(Walker et al., 2017; Heaver et al., 2018), the polar moieties of
these unusual 1-deoxyceramides appear to be located on their
fatty acid chain (Supplementary Text and Supplementary
Figures 3B–D). Based on the MS/MS spectrum, the lipid
species in the second unknown cluster contain a sulfate moiety
on their fatty acid chain, thus they are tentatively identified
as sulfate-1-deoxyceramides (Supplementary Figure 3B).
The third unknown cluster consists of 1-deoxyceramides
containing a hydroxy-fatty acid modified with a sulfur
trioxide moiety (Supplementary Figure 3C). We therefore
proposed them as sulfono-1-deoxyceramides. The fourth and
last unknown cluster has 1-deoxyceramides with an extra
acetic acid and a sulfur trioxide moiety on their fatty acid
chain (Supplementary Figure 3D), hence, we assigned these
components as acetylsulfono-1-deoxyceramides.

All these newly putatively identified sphingolipids were
at their maximum abundance at the interface between the
suboxic and euxinic zones (95–250 mbsl; Figure 6). Bacterial
sphingolipids are phylogenetically restricted to be produced by
mainly members of the Bacteroidetes and selected Proteobacteria
(Heaver et al., 2018). Certain Bacteroidetes are known to produce
capnines, sulfono-analogs of sphinganines (GodchauxIII, and
Leadbetter, 1980). Recently three members of the Bacteroidetes,
Ancylomarina euxinus sp. nov. Labilibaculum euxinus sp. nov.,
and Lutibacter sp., all isolated from the euxinic zone of the Black
Sea, were found to have capnines among their most abundant
lipids (Bale et al., 2020; Yadav et al., 2020). Capnines were also
found in the molecular network (Figure 2). We hypothesize
that the novel 1-deoxysphingolipids putatively identified in this
study, may also be produced by anaerobic heterotrophs related to
Bacteroidetes.

Another example of a subnetwork is one that only contained
unknown lipids (Figure 7) and which was associated within the
euxinic zone (130–2,000 mbsl). All 14 lipids in the subnetwork
exhibited sphingolipid-like MS/MS fragmentation, but unlike
the earlier-mentioned sphingolipid subnetwork (Figure 6), these
MS/MS spectra (Figure 7 and Supplementary Text) revealed
that these lipids contained relatively short dehydrosphinganine
bases (C15 to C18) connected to a longer chain hydroxy fatty acid
(C19). The polar head group was tentatively identified as a lysine
(Moore et al., 2016). Therefore, they were tentatively assigned
as lysine-dihydroceramides (Figure 7 and Supplementary Text).

To the best of our knowledge, this is the first report to indicate
the presence of lysinesphingolipids in environmental samples.
Their presence in the euxinic zone suggests they are derived from
anaerobic bacteria. Among all the annotated lipids, the newly
putatively identified sphingolipids (Figures 6, 7) have the highest
Sij index (Supplementary Table 2) in the deep zone (130–1,000
mbsl). The higher Sij index is, the more the occurrence of a certain
lipids is restricted to at certain depth. Thus, these newly putatively
identified sphingolipids are one of the most specialized lipids in
this distinct euxinic region.

CONCLUSION

In this study, we carried out comprehensive lipidomic profiling
of microbial communities throughout the water column of
the Black Sea using UHPLC-HRMS/MS spectra. A major
strength of our data processing method is that we combined
information theory and molecular networking to capture a
holistic view of the lipidome as well as specific signatures
in the environment. Indeed, the molecular network provided
a comprehensible visualization of the lipidome throughout
the water column, while information theory allowed us
to capture the signatures of diversity and specialization
within the lipidome. Application of molecular networking
has proven to be useful in discovering novel lipids, helping
to determine their origin, and associating biomarkers with
potential microbial niches. Another advantage on this method
is that the diversity of unknown lipids is revealed before
they are identified. In conclusion, this study reinforces a
powerful set of computational approaches to accelerate our
understanding of lipidomic information in environmental
microbial ecology.
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