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selection and infarct volume prediction in
anterior cerebral circulation large vessel
occlusion
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Abstract

Background: Computed tomography perfusion (CTP) is the mainstay to determine possible eligibility for endovascular
thrombectomy (EVT), but there is still a need for alternative methods in patient triage.

Purpose: To study the ability of a computed tomography angiography (CTA)-based convolutional neural network (CNN)
method in predicting final infarct volume in patients with large vessel occlusion successfully treated with endovascular
therapy.

Materials and Methods: The accuracy of the CTA source image-based CNN in final infarct volume prediction was
evaluated against follow-up CT or MR imaging in 89 patients with anterior circulation ischemic stroke successfully treated
with EVT as defined by Thrombolysis in Cerebral Infarction category 2b or 3 using Pearson correlation coefficients and
intraclass correlation coefficients. Convolutional neural network performance was also compared to a commercially
available CTP-based software (RAPID, iSchemaView).

Results: A correlation with final infarct volumes was found for both CNN and CTP-RAPID in patients presenting 6–24 h
from symptom onset or last known well, with r = 0.67 (p < 0.001) and r = 0.82 (p < 0.001), respectively. Correlations with
final infarct volumes in the early time window (0–6 h) were r = 0.43 (p = 0.002) for the CNN and r = 0.58 (p < 0.001) for
CTP-RAPID. Compared to CTP-RAPID predictions, CNN estimated eligibility for thrombectomy according to ischemic
core size in the late time window with a sensitivity of 0.38 and specificity of 0.89.

Conclusion: A CTA-based CNN method had moderate correlation with final infarct volumes in the late time window in
patients successfully treated with EVT.
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Introduction

Endovascular thrombectomy (EVT) has been the standard
of care for some years now for patients with ischemic stroke
and large vessel occlusion (LVO) presenting within 6 h of
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symptom onset.1 With large trials showing the efficacy and
safety of endovascular therapy up to 24 h after time from last
known well,2 the need for advanced neuroimaging and
interpretation of these studies has surged.

The main questions to answer for determining eligibility
for thrombectomy are: (1) is there salvageable brain
tissue, that is, is there a mismatch between the ischemic
core and penumbra and (2) how large is the ischemic
core. Currently, both computed tomography perfusion
(CTP)-based methods and magnetic resonance imaging
(MRI)-based perfusion-weighted imaging with diffusion-
weighted imaging (DWI) are the mainstay for determining
the core and penumbra in stroke diagnosis and treatment
selection. In patients with stroke symptoms, computed
tomography angiography (CTA) is routinely acquired for
LVO detection and detecting significant carotid artery
stenoses.3

With the growing number of patients possibly eligible for
thrombectomy, the need for patient triage has surged, and
there is still a need for alternative triage methods, as current
imaging methods do not always provide the information
needed or they may not be available in hospitals outside of
comprehensive stroke centers.

To this end, several studies have looked at CTA-based
deep learning methods in ischemic stroke detection with
promising results4–7 and our previous study suggested that a
convolutional neural network (CNN) model could be useful
in determining eligibility for thrombolytic therapy.5 How-
ever, CNN performance in final infarct estimation might
vary depending on treatment selection and could be dif-
ferent in patients receiving thrombolytic therapy versus
patients treated with EVT.

In this study, we set out to investigate whether our
CTA-based CNN model can predict the final infarct
volume in patients with acute ischemic stroke (AIS)
treated successfully with mechanical thrombectomy.
The premise was that with successful recanalization, the
baseline infarct core determined by the CNN should
roughly match the final infarct volume on follow-up
imaging. CNN performance was analyzed for patients
presenting either in the early (0–6 h) or late (6–24 h)
time window and compared to a commercially available
CTP-based software (RAPID, iSchemaView) to inves-
tigate the ability of this method in predicting final infarct
volume.

Materials and methods

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
Helsinki University Hospital ethics committee approved
this retrospective study and patients’ informed consent was
waived.

Study population

We retrospectively studied the clinical and imaging findings
of consecutive stroke suspected cases that presented to
Helsinki University Hospital between February 2018 and
March 2020. The total number of thrombectomies per-
formed in our institution during this time period was 505.
Inclusion criteria for this study were: (1) stroke code ac-
tivated, (2) admission stroke protocol imaging performed
using fast CTA acquisition protocol and CTP, (3) anterior
circulation LVO at CTA (CCA, ICA, MCAM1, MCAM2),
(4) successful EVT, defined as Thrombolysis in cerebral
infarction score 2b or 3 and (5) a follow-up NCCT or an
MRI study with DWI performed no later than 5 days after
the onset of symptoms. Patients with hemorrhagic trans-
formation of infarct resulting in parenchymal hematoma
with mass effect were excluded. This exclusion was done so
that the hematomas and related edema would not produce
errors in infarct volume measurements. Patient character-
istics are presented in Table 1.

Image acquisition and preprocessing

A majority of patients (n = 82) were imaged in the acute
setting using a Siemens SomatomDefinition Edge (Siemens
Healthineers, Erlangen, Germany) 128-slice CT scanner.
The CTA imaging parameters were tube voltage 120 kVp,
reference current time 150 mAs, pitch 1.3, reconstruction
kernel I30f, and slice thickness/increment 0.75/0.5 mm. The
iodine concentration of the contrast agent was 350 mg/mL
with an amount of 50 mL and injection rate of 5 mL/s. The
timing of the scan was 12 s after time to peak of the test
bolus in the ascending aorta. Five patients were imaged with
a 128-slice Siemens Somatom Definition Flash (Siemens
Healthineers, Erlangen, Germany) and two patients with a
128-slice GE Revolution EVO (GE Healthcare, Milwaukee,
WI). CT was used for follow-up in 78 patients and 11
patients had a follow-up MRI. All follow-up studies were
performed in our institution and a majority (n = 64) were
performed with the same scanner as the CTA (Siemens
Somatom Definition Edge). Six follow-up CT studies were
performed with a Siemens Somatom Definition Flash and
eight with a GE Revolution EVO. Follow-up MRI studies
were performed with a Siemens MagnetomVerio 3T (n = 5),
a Siemens Magnetom Skyra 3T (n = 3), and a Siemens
Magnetom Avanto 1.5 T (n = 3). Almost all follow-up
studies (n = 87) were performed 24 h after admission. In two
patients the follow-up study was performed 2 or 3 days from
admission. Images were anonymized and stored on a server
running the Extensible Neuroimaging Archive Toolkit, or
XNAT, version 1.1.6.8

All follow-up studies were evaluated for final infarct
volume. A senior neuroradiologist (MK) and a radiologist in
training (LH), with over 20 and over 5 years of experience,
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respectively, segmented the infarcted regions on follow-up
CT and diffusion weighted MRI scans in consensus using
3D Slicer image processing and visualization platform.9 No
blinding was used regarding image assessment. Image data
preprocessing and 3D convolutional neural network im-
plementation was conducted by a physicist (TM).

The CNN had been previously trained and validated and
has been used in a recent publication.5 A total of 150 pa-
tients with a suspected AIS of the middle cerebral artery
territory were retrospectively selected for CNN develop-
ment. From this population, 75 were diagnosed with stroke
and 75 were stroke mimics based on acute neurological
symptoms and imaging findings. The CNN was trained on
20 non-stroke and 20 stroke patient CTA-SI volumes with
manually delineated lesion targets. This was equal to 1400
axial images of which 20% included an ischemic lesion.
Additional five non-stroke and five stroke volumes were
used as validation data. Two test data sets were used, both
consisting of 25 stroke and 25 stroke mimic cases. The
volumes in both training and inference were resampled to
isotropic 0.5×0.5×0.5 mm³ resolution. Cases used in CNN
training were not part of the study population for this study.
The CNN consisted of a two-channel input, 40 3D con-
volutional layers with 3×3×3 kernel size, 16 filters each and
valid padding, followed by a fully connected layer with 50
neurons and two output neurons (lesion/background) and
softmax activation, producing voxel-by-voxel lesion pres-
ence confidences. Skip connections passing single layers
were used to encourage gradient propagation. The network
was fed with 147×147×147-voxel sub-volumes with equal
number of stroke lesion positive and negative sub-volumes
in each batch. The second input channel was the corre-
sponding (left-right-mirrored) sub-volume from the contra-

lateral hemisphere. The model was trained using batch-size
eight and Adam optimizer for 30 epochs after which the
validation loss, calculated on the separate set of 10 CTA-SI
volumes, stopped improving. The network was im-
plemented using Keras library version 2.2.410 and Ten-
sorflow version 1.12.0.11

Study design

Lesion volumes from CNN outputs and manual segmen-
tations of final infarcts were calculated from all lesions in
the affected cerebral hemisphere. Computed tomography
perfusion-RAPID ischemic core estimations were reported
as calculated by the software.

Only lesions in the affected cerebral hemisphere detected
by the CNN were selected for the analysis with a volume
threshold of >0.1 mL and a probability threshold of 0.5 for
lesion inclusion. False positive lesions in the contralateral
hemisphere or cerebellum were discarded from the analysis.
This approach was chosen because in LVO, the site of
arterial occlusion, and thus the affected hemisphere is
readily identifiable from CTA.

Convolutional neural network performance was com-
pared against a commercial software (RAPID, iSchema-
View) in determining the infarct core volume derived from
CTP as this is a validated and widely used method for
treatment selection. The effect of two clinically relevant
time windows (0–6 h and 6–24 h from symptom onset to
start of CT protocol) on CNN and CTP-RAPID output
accuracy in final infarct volume prediction was also tested.
Patients whose time of symptom onset could not be ac-
curately inferred from patient history (n = 32), were as-
signed to the 6–24 h time window. These were patients with

Table 1. Patient characteristics.

No. of patients 89

Age, mean (SD, range) 67 (13.3, 28-92)
Female, n (%) 46 (52)
NIHSS, median (IQR)a 12 (7–17)
Time from symptom onset to CT imaging (min), median (IQR)b 121 (71–228)
Time from symptom onset to recanalization (min), median (IQR)2 215 (169–348)
Most proximal target occlusion location, n (%)
CCA 1 (<1)
Proximal ICA 3 (3)
Distal ICA 10 (11)
MCA M1 54 (61)
MCA M2 21 (24)
Intravenous thrombolysis, n (%) 40 (45)

aNIHSS was reported for 86 patients.
bExact time from symptom onset was unknown in 32 patients.
SD: standard deviation; IQR: interquartile range; NIHSS: national institutes of health stroke scale; CT: computed tomography; CCA: common carotid
artery; ICA: internal carotid artery; MCA: middle cerebral artery; CNN: convolutional neural network; CTP-RAPID: computed tomography perfusion
RAPID; CBF: cerebral blood flow.
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either a wake-up stroke or patients who were found with
stroke symptoms and who were last known to be well ≤24 h
from presentation to the emergency department.

ASPECTS anatomical regions were visually evaluated to
determine CNN performance regarding anatomical accu-
racy against expert segmentation, that is, did the CNN
predicted lesions’ locations match the final infarct locations
within the ASPECTS regions in the middle cerebral artery
territory. Individual regions were labeled “positive” or
“negative” for ischemic changes by a radiologist (LH), as
determined by the CNN from acute phase CTA and by
manual segmentations from follow-up CT. Manual seg-
mentations were considered as ground truths. Accuracy,
sensitivity, specificity, and Sørensen-Dice similarity coef-
ficient were calculated from the regions’ true or false
labeling.

Convolutional neural network was compared to CTP-
RAPID in determining patient eligibility for EVT according
to criteria from the DAWN trial (DWI or CTP Assessment
with Clinical Mismatch in the Triage of Wake Up and Late
Presenting Strokes Undergoing Neurointervention) in pa-
tients that presented in the 6–24 h time window.2 The cutoff
points were ischemic core volumes ≤20 mL, ≤30 mL,
or ≤50 mL depending on patient age and National Institutes
of Health Stroke Scale score. Volume outputs from the CNN
and CTP-RAPID were compared according to Figure 1. The
number of true positives, true negatives, false positives, and
false negatives was then calculated and sensitivity, speci-
ficity, negative, and positive predictive value for the CNN
prediction were derived.

Statistical analysis

A linear model was fitted between the CNN derived volume
outputs, manually segmented final infarct volumes, and
CTP-RAPID ischemic core volumes (defined by cerebral
blood flow (CBF) < 30%). Pearson correlation coefficients
(r) were calculated to evaluate the correlation of CNN and
CTP-RAPID derived volumes against final infarct volumes
and CNN derived volumes to CTP-RAPID core volumes.
Bland-Altman plots of agreement between infarct volume
estimates and final infarct volumes and between CNN and
CTP-RAPID derived estimates were also calculated. Cal-
culations were performed using MATLAB version 2018b
(MathWorks, Natick, MA, USA). Intraclass correlation
coefficient (ICC) estimates and their 95% confidence in-
tervals were calculated using SPSS Statistics for Windows,
version 27.0 (IBM Corp., Armonk, NY) based on a single
rater/measurement, absolute agreement, two-way mixed-
effects model.

Results

A total of 117 patients met the inclusion criteria. Patients
with hemorrhagic transformation of infarct resulting in
parenchymal hematoma with mass effect were excluded,
leaving 89 patients for the analysis. Mean infarct volume
estimates for CNN and CTP-RAPID outputs as well as
final infarct volumes are presented in Table 2. No dis-
cernible infarct was found in 10 patients on follow-up
imaging.

Figure 1. Accuracy of the convolutional neural network (CNN) in triaging patients for endovascular thrombectomy (EVT) was assessed
by defining CNN results as true positives, true negatives, false negatives, or false positives using criteria from the DAWN-study.
Sensitivity, specificity, negative, and positive predictive value for the CNN prediction were then derived.
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Among all cases, irrespective of time from symptom
onset, CTP-RAPID showed a tendency for more accurate
estimates of final infarct volumes (r = 0.69, slope 1.1, p <
0.001), while the CNN had a tendency for overestimation
(r = 0.50, and per linear regression, final infarct volume =
0.7 × CNN volume +1.0 mL, p < 0.001) as shown (Figures 2
and 3). The CNN underestimated infarct volumes compared
to final infarct volumes in 28% of cases with a mean volume
difference of 38.9 mL (SD 44.7 mL). Compared to CTP-
RAPID, the CNN underestimated infarct volumes in 11% of
cases with a mean volume difference of 13.9 mL (SD
12.5 mL).

Correlations with final infarct volumes in the early 0–6 h
time window were r = 0.43 (p = 0.002) for the CNN and r =
0.58 (p < 0.001) for CTP-RAPID. Computed tomography
perfusion-RAPID showed a trend for more accurate volume
estimates (slope 0.9 vs. 0.4 for the CNN) as shown (Figures
2 and 3).

In the late 6–24 h time window, a better correlation with
final infarct volumes was found for both the CNN (r = 0.67,
slope 1.2, p < 0.001) and CTP-RAPID (r = 0.82, slope 1.4,
p < 0.001) (Figures 2 and 3). Both methods showed a trend
for underestimating infarct volumes. The mean volume
difference between CNN output and final infarct volume

Table 2. Infarct lesion volumes provided by the CNN, CTP-RAPID, and measurements from follow-up imaging in mL, mean (SD, range).

All cases (n = 89) 0–6 h time window (n = 51) 6–24 h time window (n = 38)

CNN output (mL) 54 (45, 0–183) 58 (49, 0–183) 48 (39, 0–177)
CTP-RAPID infarct core (mL) 28 (36, 0–207) 31 (33, 0–106) 24 (39, 0–207)
Final infarct volume (mL) 36 (58, 0–358) 32 (50, 0–209) 41 (69, 0–358)

CNN: convolutional neural network, CTP-RAPID: Computed tomography perfusion RAPID.

Figure 2. Lesion volume (mL) correlation between convolutional neural network (CNN) output and manual segmentation from follow-
up imaging. (a) All cases (n = 89). (b) Patients imaged <6 h from symptom onset (n = 51). (c) Patients imaged 6–24 h from symptom
onset (n = 38). (d) Bland-Altman plot of agreement between lesion volume estimates of the CNN based on acute phase CT angiography
(CTA) and final infarct volumes in the 6–24 h time window.
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was 7 mL (95% limits of agreement �145–81 mL). The
mean volume difference between CTP-RAPID and final
infarct volume was �18 mL (95% limits of
agreement �152–34 mL).

Intraclass correlation coefficients for the comparisons
above are presented in Table 3 suggesting moderate

reliability between CNN output and final infarct volume in
the late time window.

A correlation of r = 0.73 (slope 0.6, p < 0.001) was found
between CNN and CTP-RAPID outputs when all patients,
irrespective of time of symptom onset, were included in the
analysis, with the CNN having a tendency to overestimate

Figure 3. Lesion volume (mL) correlation between CT perfusion RAPID (CTP-RAPID) ischemic core (CBF <30%) and manual
segmentation from follow-up imaging. (a) All cases (n = 89). (b) Patients imaged <6 h from symptom onset (n = 51). (c) Patients imaged
6–24 h from symptom onset (n = 38). (d) Bland-Altman plot of agreement between lesion volume estimates of CTP-RAPID and final
infarct volumes in the 6–24 h time window.

Table 3. Reliability of the convolutional neural network (CNN) and CT perfusion RAPID (CTP-RAPID) in predicting final infarct
volume, intraclass correlation coefficients and their 95% confidence intervals.

Intraclass correlation 95% confidence interval p-value

All cases
CNN Output versus final infarct volume 0.46 0.28–0.61 <0.001
CTP-RAPID versus final infarct volume 0.61 0.47–0.73 <0.001

0–6 h time window (n = 51)
CNN Output versus final infarct volume 0.38 0.11–0.59 <0.001
CTP-RAPID versus final infarct volume 0.54 0.32–0.71 <0.001

6–24 h time window (n = 38)
CNN Output versus final infarct volume 0.58 0.32–0.76 <0.001
CTP-RAPID versus final infarct volume 0.67 0.44–0.82 <0.001

CNN: convolutional neural network, CTP-RAPID: Computed tomography perfusion RAPID.
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infarct sizes compared to CTP-RAPID (Figure 4). In sub-
group analyses using the early and late time windows,
correlations between CNN and CTP-RAPID were r = 0.72
(slope 0.5, p < 0.001) and r = 0.77 (slope 0.8, p < 0.001),
respectively. In the late time window, the mean volume
difference between CNN and CTP-RAPIDwas 25 mL (95%
limits of agreement �27–82 mL).

Convolutional neural network accuracy in triaging pa-
tients for EVT in the late time window was compared to
CTP-RAPID and assessed according to criteria from the
DAWN trial as described in the statistical analysis section.
Compared to CTP-RAPID, the CNN had a sensitivity of
0.38 with a specificity of 0.89, negative predictive value of
0.31, and positive predictive value of 0.92.

Among all patients, 11 had a chronic cerebral infarct on
the same side as the LVO. In three of these cases, the CNN
marked parts of the chronic infarct as an acute ischemic
lesion. However, this changed the volume prediction only
by 0.2–3 mL. A total of 890 ASPECTS regions were
evaluated to determine the anatomical accuracy of the CNN.
The accuracy, sensitivity, and specificity were 0.62, 0.70,

and 0.57, respectively. The Sørensen-Dice similarity co-
efficient was 0.60.

Discussion

Better correlation between our CTA-based CNN outputs
and CTP-RAPID core estimates with final infarct vol-
umes were found in the late (6–24 h) versus early (0–
6 h) time window. This finding supports the notion of
Goyal et al. that extensive use of perfusion imaging in
the early time window might not be desirable, and that
instead, clinical-imaging mismatch (using NCCT)
should be considered to be used for penumbra esti-
mation while using CTA for LVO detection.12 In the
same vein, Lopez-Rivera et al. found an increased
likelihood for undergoing EVT in centers with lower
CTP utilization, which was not associated with worse
clinical outcomes or increased hemorrhage, suggesting
under-treatment bias with routine CTP.13 Also, Boned
and Martins have described the “ghost infarct core,”
which refers to the tendency of CTP to overestimate

Figure 4. Lesion volume (mL) correlation between the convolutional neural network (CNN) output and CT perfusion RAPID (CTP-
RAPID) ischemic core (CBF <30%). (a) All cases (n = 89). (b) Patients imaged <6 h from symptom onset (n = 51). (c) Patients imaged 6–
24 h from symptom onset (n = 38). (d) Bland-Altman plot of agreement between lesion volume estimates of the CNN and CTP-RAPID in
the 6–24 h time window.
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infarct core size in an early time window of <3 h from
symptom onset.14,15

Correlation with realized infarcts was moderate with the
CNN and good with CTP-RAPID in the late time window.
Previously, we found a good correlation between CNN
outputs and final infarct volumes in patients with anterior
circulation AIS that were not treated with EVT.5 In that
study, 55% of patients were treated with supportive care and
45% received thrombolytic therapy, which may explain the
differences in performance, as a large proportion of patients
can be assumed to have suffered from infarct growth and
several studies have shown that CTA is more CBF than
CBV weighted including some penumbra.16–18 On the other
hand, Bal et al. found CTA-SI ASPECTS better than NCCT
at predicting final infarct extent, especially in a very early 0–
90 min time window.19 In another study, Sallustio et al.
found CTA-SI ASPECTS to be a better predictor of out-
come than NCCT in patients with stroke treated with EVT.20

In both of these studies, a fast image acquisition protocol
was used for CTA. The conflicting results from these five
studies could, at least in part, be explained with different
ways of measuring infarct extent as three of the studies used
ASPECTS and two used manually segmented lesion vol-
umes to compare performance. These studies also used
variable outcome measures for determining CTA perfor-
mance and inclusion criteria for time from symptom onset to
presentation also varied between studies from <3 h to <9 h.
As such, findings from these studies may not reflect CTA
performance in later time windows.

The observation that in the late time window, CTP-
RAPID tended to underestimate core volumes, is in con-
tradiction with numerous previous studies, which have
shown a trend for core volume overestimation with
CTP.21–24 These studies, however, used delays of <9 h from
symptom onset as inclusion criteria, so these findings might
not reflect CTP performance with delays of >9 h. Moreover,
large studies have shown the benefit of EVT up to 24 h after
symptom onset using CTP-RAPID to guide patient
selection.1,2,25 However, CTP has also received critique in
recent history, and it has been questioned, whether it should
even be used outside of properly powered clinical trials.22

Possible problems in using CTP for treatment selection in
individual patients include: optimal thresholds varying
between vendors and postprocessing platforms, with time
after stroke, quality of collateral flow, ischemic pre-
conditioning, and duration of perfusion scans.12,22,26–29

CTP is also more susceptible to motion artifacts than CTA.
Our CNNmethod had a positive predictive value of 0.92,

that is, if CNN predicted core volume was below the cutoff
point, CNN had a probability of 0.92 to correctly classify
the patient as eligible for thrombectomy. However, the
negative predictive value was only 0.31, which means that a
number of patients that could benefit from EVT, would be
left outside of treatment if only the CNN method was used.

Our CNN was trained with lesions that were manually
segmented from CTA-SI as the ground truth. More accurate
final infarct volume prediction may be possible by training
the CNN with a different ground truth, such as manually
segmented final infarcts from follow-up imaging. This in-
troduces its own challenges, though. For example, there is no
one optimal delay for follow-up imaging, as more than 30%
relative growth in infarct volume can be witnessed in a
significant portion of patients after 24 h30 and a 3–5 day delay
may overestimate infarct size also due to ischemia related
edema. Follow-up ischemic lesion volume at 24 h has
nevertheless been found to be a valuable secondary outcome
measure.30 The CNN underestimated final infarct volume in
28% of cases. In all of these cases, an underestimation was
observed with CTP-RAPID also. This underestimation may
be related to infarct progression and edema.

Sheth et al. used CTP-RAPID ischemic core estimates as
ground truth for their DeepSymNet algorithmwith good results
but did not present comparisons to follow-up imaging.6 The
results from their study and our previous study, however,
suggest that it may be possible to get reasonably accurate infarct
core estimations for triaging purposes using a CTA-based deep
learning method. Hilbert et al. have also used CTA-based deep
learning models in predicting functional outcome and re-
perfusion results in AIS.7 Their approach was quite different in
that no lesion segmentations or volumetric data was used for
neural network training, but instead, functional outcome and
reperfusion measures were used as outcomes and visualization
models were used afterward to assess which features or parts of
the images the models used for decision making.

In this study, we selected consecutive patients who re-
ceived EVT to simulate real life performance. This resulted
in some limitations to available data, as the exact time from
symptom onset to recanalization was unknown for almost
half of all patients, albeit they presented ≤24 h from the time
they were last known to be well. This prohibits us from
analyzing whether correlation between CNN outputs and
final infarct volumes would have been better depending on
the delay from symptom onset to recanalization. We used
follow-up CT to determine final infarct extent, as a 24 h
follow-up CT is the standard protocol in our institution,
although it is not as sensitive as DWI. Other limitations of
this study include different vendors for CTA imaging and
variation in follow-up time and imaging modalities.

In conclusion, a CTA-based CNN is able to detect an-
terior circulation ischemic strokes with moderate correlation
to final infarct volumes in the late time window (6–24 h) in
patients successfully treated with EVT.
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