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cardiovascular disease
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1Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing,
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Medical College, Xuchang, China

Background and aims: Growing studies have focused on the e�ect of lead

exposure on human circulatory system, while the relationship between lead

exposure and subclinical myocardial injury (SC-MI) is still poorly known.

Therefore, this study was to explore the e�ect of lead exposure on SC-MI.

Methods: The study included 6,272 individuals aged 40 and older without

cardiovascular disease (CVD) from the third National Health and Nutrition

Examination Survey. Blood lead was used as an alternative marker of lead

exposure. Multivariable logistic regression models, restricted cubic spline and

threshold e�ect analyses were performed to investigate the e�ect of blood

lead on SC-MI.

Results: After adjusting for age, sex, race, diabetes, hypertension, systolic

blood pressure, body mass index, waist-to-hip ratio, triglycerides, total

cholesterol, creatinine, fasting plasma glucose and hemoglobin Alc, higher

blood lead level was independently related to higher risk of SC-MI (OR 1.047,

95% CI [1.018, 1.077]; P = 0.003). Restricted cubic spline curve showed that

there was a non-linear correlation between blood lead and SC-MI. Threshold

e�ect analysis determined that the inflection point of blood lead was 3.8 ug/dl.

When the blood lead level was higher than 3.8 ug/dl, there was an independent

positive correlation between blood lead level and the risk of SC-MI (OR 1.031,

95% CI [1.009, 1.053]; P < 0.01). And similar associations were also observed

among subgroups of male, ≤60 years, >60 years, never smoker, non-Hispanic

White, non-Hispanic Black or without hypertension and diabetes.

Conclusions: Blood lead was non-linearly related to SC-MI in population free

from CVD.
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Introduction

In the past few decades, cardiovascular disease (CVD)

remains one of the leading causes of death in the world,

with the total number of cases increasing from 271 million

in 1990 to 523 million in 2019, and the number of deaths

has increased by nearly 35% during this period, which

poses a great health and economic burden (1). Therefore,

it is urgent to prevent the occurrence and development

of CVD. For all we know, hypertension, dyslipidemia,

and diabetes have been perceived as independent risk

factors of CVD (1). Nevertheless, with the development

of industrialized society, increasing evidence shows that

environmental pollutants may also be potential risk factors for

CVD (2).

Since the industrial revolution, lead, as the main element

involved in environmental pollution, has become a ubiquitous

heavy metal in nature. Previous studies have shown that

the bioaccumulation of lead in the human body can cause

multi-system damage, so lead exposure has become a public

health problem of widespread concern (3). Although lead

exposure has been well-controlled in the past 20 years with

the development of intelligent industry and the improvement

of occupational protection (4), several studies have found

that long-term low levels of lead exposure can also cause

some damage to the health of children and adults (5–7).

Lead exposure mainly includes natural exposure (such as

contaminated drinking water, food and air, and smoking)

and occupational exposure (such as industrial emissions) (8,

9). Lead mainly accumulates in human bone tissue (10),

while it is difficult to detect lead in bone, so blood lead is

regarded as the most widely used alternative marker of lead

exposure (11). As an immunotoxic element, lead can cause

many side effects, including hepatotoxicity, nephrotoxicity,

endocrine toxicity, immunotoxicity and cardiovascular toxicity,

among which the cardiovascular toxicity of lead exposure

is the most widely explored (12–16). An increasing number

of evidence shows that blood lead is related to circulatory

diseases, such as hypertension, peripheral arterial disease,

coronary heart disease and stroke (17–20). Additionally, several

experimental studies have confirmed the association between

blood lead and CVD (21–23). For example, Zeller et al.

found that lead could promote arterial intimal hyperplasia and

lead to atherosclerosis by endothelial interleukin-8 synthesis

mediated by nuclear factor erythroid 2-related factor-2 and

subsequent of invasion smooth muscle cells in vivo and vitro

studies (23).

However, we found no any epidemiological studies

showing a link between lead exposure and SC-MI.

Consequently, this study aimed to evaluate the effect of

blood lead on SC-MI in the general population of the

United States.

Materials and methods

Study population

All participants were from third National Health and

Nutrition Examination Survey (NHANES III), a nationwide

survey involving 33,994 individuals, aimming to assess the

nutrition and health status of the general population, the

survey design, methods and contents of which were available

on NHANES website (https://www.cdc.gov/nchs/nhanes/index.

htm). After excluding individuals with CVD and severe

abnormal electrocardiograph (ECG), 6,272 participants for

whom data were available on blood lead and SC-MI were

ultimately enrolled in this study (Figure 1). The protocol of

study was approved by the NCHS Ethics Review Board. Written

informed consent was provided by all participants, and our study

was performed in compliance with the Declaration of Helsinki.

Analyses of blood lead levels

Blood samples of all participants in this study were collected

by professionals when participating in the NHANES III, then

stored at −30◦C, and finally transported to the NHANES

Laboratory of Environmental Health Center of US Centers for

Disease Control and Prevention, where they were uniformly

measured by professionals. The contaminated and substandard

blood samples were removed before determining blood lead.

The concentration of lead in blood was determined by graphite

furnace atomic absorption spectrophotometry and expressed in

ug/dl. Details of the specific determination methods and quality

control procedures have been described elsewhere (24).

Definition of SC-MI

The diagnosis of SC-MI stemmed from a non-invasive,

economical and convenient 12-lead ECG-based risk score, that

is, cardiac infarction/injury score (CIIS), which was obtained

by applying a multivariate decision-theoretic ECG classification

scheme and establishing a risk score system reflecting the

severity of myocardial injury by experienced people in the light

of ECGwaveform related tomyocardial ischemia, specific details

of which were available elsewhere (25). SC-MI was defined as

CIIS ≥ 10, without ischemic heart disease and heart failure on

the basis of previous study (25, 26).

Covariates

Demographic information of all participants was

obtained by NHANES III investigators through standardized

questionnaires, including age, sex, race, diabetes, hypertension,
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FIGURE 1

Flow chart of the study population. NHANES, the third National Health and Nutrition Examination Survey; ECG, electrocardiograph; CIIS, cardiac

injury/infarction score; CVD, cardiovascular disease; SC-MI, subclinical myocardial injury.

and smoking. In this study, we divided races into non-Hispanic

White, non-Hispanic Black, Mexican American, and others.

Smoking status was defined as Never, Former or Current (27).

Diabetes was defined as having been diagnosed with diabetes by

a doctor. Hypertension was defined as having been diagnosed

with hypertension by a doctor. Professionals measured blood

pressure, body mass index (BMI), and waist-hip ratio (WHR)

in all individuals using standard physical examination methods.

BMI was defined as weight (kg) divided by the square of

height (meter) and expressed in kg/m2. WHR was defined

as waist circumference (cm) divided by hip circumference

(cm). Professional technicians used established experimental

procedures to determine the blood parameters of all participants

in a standard laboratory, including blood lipids, fasting plasma

glucose (FPG), hemoglobin A1c (HbA1c) and creatinine.

Details of the specific determination methods and quality

control procedures of all covariates were available through

NHANES website.

Statistical analysis

Due to the nature of the multi-stage probability sampling

design of NHANES, we adjusted the weights in our analysis

to avoid oversampling and reduce the non-response rate, that

is, data for continuous and categorical variables were expressed

as weighted means (95% CIs) and weighted percentages (95%

CIs), respectively. Either a weighted chi-square test (categorical

variables) or a weighted linear regression model (continuous

variables) were used to calculate differences between groups.

And we added the frequency distribution plot on the blood lead

stratified by gender (28). Multivariate logistic regression analysis

model, restricted cubic spline analysis with 3 knots at 10th, 50th,

and 90th percentage and sensitivity analysis were performed

to determine the relationship between blood lead and SC-MI.

Using R Programming Language (version 3.6.3), SPSS 19.0 (SPSS

Inc., Chicago, Illinois, USA) and EmpowerStats (version 2.0) to

perform all statistical analyses. A two-tailed P< 0.05 was defined

as statistically significant.

Results

Baseline characteristics of study
population

According to CIIS, 6,272 participants (mean age: 58.5± 13.1

years old; 46.1% men) were divided into two groups: SC-MI and

non-SC-MI group. Individual who suffered from SC-MI tended

to be older, smoker and non-Hispanic White, and more likely

to develop hypertension and diabetes compared to individual
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without SC-MI (P < 0.001). In terms of traditional risk factors

for CVD, participants with SC-MI had higher levels of systolic

blood pressure (SBP), WHR, FPG, HbA1c, total cholesterol

(TC) and creatinine than those without SC-MI. Importantly, the

blood lead levels were also higher in the SC-MI group (Table 1).

Figure 2 showed the frequency distribution on the blood lead

stratified by gender.

Association between blood lead and
SC-MI

The results of multivariate logistic regression analyses for

the association between blood lead and SC-MI were showed

in Table 2. After adjusting the confounding factors step by

step, higher blood lead level was independently related to

higher risk of SC-MI in model 3 with adjustment for age,

sex, race, smoker, diabetes, hypertension, SBP, BMI, WHR,

TG, TC, creatinine, FPG, HbA1c (OR 1.047, 95% CI [1.018,

1.077]; P = 0.003).

The restricted cubic spline curve showed that there was

a non-linear correlation between blood lead and SC-MI

(Figure 3). We further analyzed the threshold effect between

blood lead and the prevalence of SC-MI (Table 3). Fitting 1-

line and 3-piecewise logistic regression model to examine the

relationship between blood lead and SC-MI. The results showed

that the 3-piecewise logistic regressionmodel was better than the

1-linear (P for log likelihood ratio test= 0.028). We determined

that the inflection point of blood lead was 3.8 ug/dl. When the

blood lead level ≥3.8 ug/dl, there was an independent positive

correlation between blood lead level and the risk of SC-MI (OR

1.031, 95% CI [1.009, 1.053]; P = 0.006).

Subgroup analyses

Although stratified analyses by sex, age, race, smoking

status, hypertension, and diabetes confirmed that the

association between blood lead and risk of SC-MI was

stable in the subgroups of male, ≤60 years, >60 years, never

TABLE 1 Baseline characteristics of the participants.

Variable Overall (n = 6,272) SC-MI (n = 1,350) Non-SC-MI (n = 4,922) P

Age, years 55.43 (54.69, 56.18) 59.29 (58.00, 60.58) 54.49 (53.79, 55.19) <0.001

Male, % 44.25 (42.65, 45.86) 44.69 (39.94, 49.54) 44.14 (42.16, 46.14) 0.847

Race/ethnicity, % <0.001

Non-hispanic white 81.83 (79.32, 84.10) 85.25 (83.24, 87.07) 80.99 (78.18, 83.51)

Non-hispanic black 7.96 (7.09, 8.94) 8.41 (7.15, 9.85) 7.86 (6.95, 8.87)

Mexican American 3.52 (3.02, 4.11) 2.96 (2.38, 3.67) 3.66 (3.11, 4.31)

Others 6.68 (5.04, 8.81) 3.38 (2.35, 4.83) 7.49 (5.62, 9.92)

Smoking status, % <0.001

Never 43.37 (41.12, 45.65) 35.26 (31.96, 38.70) 45.37 (42.90, 47.86)

Former 34.18 (32.44, 35.96) 36.13 (32.96, 39.43) 33.70 (31.72, 35.73)

Current 22.45 (20.56, 24.45) 35.26 (31.96, 38.70) 20.93 (18.85, 23.18)

Diabetes, % 6.74 (5.82, 7.80) 10.23 (8.44, 12.34) 5.89 (4.92, 7.02) <0.001

Hypertension, % 29.63 (27.95, 31.36) 36.03 (32.23, 40.02) 28.05 (26.26, 29.92) <0.001

Systolic BP, mmHg 127.22 (126.37, 128.07) 130.79 (128.88, 132.71) 126.34 (125.62, 127.05) <0.001

Diastolic BP, mmHg 76.20 (75.75, 76.66) 75.96 (75.10, 76.83) 76.26 (75.81, 76.71) 0.462

Body mass index, kg/m2 27.15 (26.88, 27.41) 27.63 (26.93, 28.34) 27.03 (26.81, 27.25) 0.077

Waist-to-hip ratio 0.93 (0.93, 0.94) 0.94 (0.94, 0.95) 0.93 (0.92, 0.93) 0.002

Triglycerides, mg/dl 157.14 (150.17, 164.10) 165.15 (155.48, 174.82) 155.17 (147.32, 163.02) 0.086

Total cholesterol, mg/dl 217.22 (215.45, 219.00) 221.16 (217.40, 224.92) 216.26 (214.37, 218.14) 0.020

LDL-C, mg/dl 136.80 (134.65, 138.95) 140.48 (136.21, 144.75) 135.91 (133.42, 138.39) 0.077

HDL-C, mg/dl 51.59 (50.70, 52.48) 51.45 (49.97, 52.92) 51.62 (50.70, 52.54) 0.806

Creatinine, mg/dl 1.08 (1.07, 1.09) 1.10 (1.08, 1.12) 1.08 (1.07, 1.08) 0.011

FPG, mg/dl 102.71 (101.38, 104.05) 107.58 (104.30, 110.86) 101.52 (100.06, 102.98) 0.002

Hemoglobin Alc, % 5.53 (5.48, 5.58) 5.72 (5.63, 5.81) 5.48 (5.43, 5.54) <0.001

Blood lead, ug/dl 3.88 (3.66, 4.10) 4.29 (4.00, 4.57) 3.78 (3.55, 4.01) <0.001

Data were expressed as weighted mean (95% CI), or weighted percentage (95% CI).

SC-MI, subclinical myocardial injury; BP, blood pressure; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; FPG, fasting plasma glucose.
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FIGURE 2

Distribution histogram of blood lead. (A) All participants. (B) Male. (C) Female.

TABLE 2 Association between blood lead and subclinical myocardial

injury.

OR 95% CI P

Crude model 1.055 1.028–1.082 <0.001

Model 1 1.041 1.014–1.068 0.004

Model 2 1.022 0.991–1.055 0.161

Model 3 1.047 1.018–1.077 0.003

Crude model: unadjusted. Model 1 was adjusted for age and sex. Model 2 was

adjusted for variables included in Model 1 and race, smoking status, diabetes,

hypertension. Model 3 was adjusted for variables included in Model 1 and race, diabetes,

hypertension, systolic blood pressure, body mass index, waist-to-hip ratio, triglycerides,

total cholesterol, creatinine, fasting plasma glucose, hemoglobin Alc. OR, odd ratio; CI,

confidence interval.

smoker, non-Hispanic White, non-Hispanic Black or without

hypertension and diabetes (P < 0.05), it was also unexpectedly

found that the interaction between blood lead and diabetes and

smoking status was significant (Figure 4).

Discussion

As far as we know, this study was the first to confirm

the relationship between lead exposure and SC-MI. The results

showed that after adjusting for traditional cardiovascular risk

factors, there was a non-linear correlation between blood

lead and SC-MI, which was stable in the subgroups of male,

≤60 years, >60years, never smoker, non-Hispanic White,

non-Hispanic Black or without hypertension and diabetes.

Additionally, we also found the threshold effect of blood lead on

SC-MI, that is, the blood lead level of ≥3.8 ug/dl was positively

correlated with the risk of SC-MI independently.

At present, CVD is still the leading cause of death worldwide,

and lead exposure accounts for 2% of the total burden of CVD,

indicating that lead exposure may be an important potential

risk factor for CVD (29). As some studies have shown, low or

high levels of lead exposure were consistently associated with

CVD, all-cause mortality and CVD-related mortality in different

populations (including occupational and general populations)

(2, 7, 13, 18, 30–32). For example, when using the health impact

model for concentration response function analysis, Brown

et al. found that approximately decline of 16–46% in CVD-

related mortality from 1999 to 2014 could be attributed to a

decline in blood lead levels (31). In addition, lead exposure

is also dangerous in other non-fatal vascular diseases. For

instance, Navas-Acien et al. found in a cross-sectional survey

involving 2,125 participants aged ≥40 years that blood lead

below safety standards remained strongly associated with the

risk of peripheral artery disease after adjusting for confounding

factors (20). Besides, Asgary et al. confirmed an independent

association between blood lead and coronary artery disease

in a case-control study matched by sex, age and place of

residence (OR 1.050, 95% CI [1.009, 1.094]; P = 0.018) (17).

Furthermore, recent studies have also found that blood lead was

associated with an increased risk of carotid atherosclerosis and

hypertension (19, 33). Besides clinical diseases, the side effects

of blood lead were also observed in subclinical diseases, namely,

several studies have demonstrated that blood lead was related

to poor cardiovascular metabolic parameters, obesity, metabolic

disorder and impaired left ventricular systolic function (12,

16, 34–38). In addition to blood lead, other studies have also

revealed that urine lead and dietary lead intake were positively

correlated with CVD risk factors, metabolic syndrome or all-

cause mortality (39, 40). For humans, the evidence for the

effects of lead exposure on the circulatory system is particularly

extensive, while data on the relationship between lead exposure

and SC-MI (a necessary pathway for CVD) are limited in the

general population. However, our study showed for the first time

the relationship between blood lead and the risk of SC-MI, and

this relationship had a certain threshold effect.

Although our study confirmed the relationship between

blood lead and SC-MI, the mechanism was still unclear.
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FIGURE 3

Restricted cubic spline plots of the association between blood lead with SC-MI (A) and CIIS (B). The association was adjusted for age, sex, race,

diabetes mellitus, hypertension, systolic blood pressure, body mass index, waist-to-hip ratio, triglycerides, total cholesterol, creatinine, fasting

plasma glucose, hemoglobin Alc. SC-MI, subclinical myocardial injury; CIIS, cardiac injury/infarction score.

TABLE 3 Threshold e�ect analysis of blood lead on SC-MI using piecewise binary logistic regression models.

Model Inflection point Group OR (95% CI) P for log likelihood ratio test

Lead Three-piecewisea 3.8 ug/dl <3.8 0.939 (0.872, 1.011) 0.028

≥3.8 1.031 (1.009, 1.053)*

One-lineb NS NS 1.018 (0.999, 1.037)

Analyses was adjusted for age, sex, race, smoking status, diabetes mellitus, hypertension, systolic blood pressure, body mass index, waist-to-hip ratio, triglycerides, total cholesterol,

creatinine, fasting plasma glucose, hemoglobin Alc.
aThree-piecewise logistic regression model.
bOne-line logistic regression model.
*P < 0.01, **P < 0.001; SC-MI, subclinical myocardial injury; OR, odd ratio; CI, confidence interval.

Currently, there are many mechanisms that may mediate the

cardiotoxicity of lead. First, after summarizing the results of

previous cellular, animal and human experimental studies, Vaziri

showed that lead exposure could lead to endothelial injury,

inhibit angiogenesis, hinder the growth and repair of endothelial

cells, stimulate the proliferation and phenotypic transformation

of vascular smooth muscle cells, and finally cause thrombosis,

atherosclerosis, arterial stiffness, and even myocardial injury

and CVD by promoting chronic inflammation and oxidative

stress, interfering with signal transduction, increasing lipid

peroxidation, limiting the use of nitric oxide, increasing

endothelin production and enhancing adrenergic activity (22).

Second, some epidemiological studies have found that lead

exposure could lead to cardiovascular metabolic disorders,

obesity and metabolic syndrome, which have previously been

shown to be risk factors for myocardial injury (34, 35, 41).

Third, lead exposure may also cause genetic and epigenetic

changes through DNA methylation and histone modification.

There is evidence that long-term chronic lead exposure is

associated with abnormal DNAmethylation in children, and this

DNAmethylationmaymediate lead-relatedmyocardial damage,

which may genetically affect the occurrence of SC-MI (42–

45). Nevertheless, more basic and clinical studies are needed to

explore proven and potential mechanisms.

Although our research had achieved encouraging results,

there were still several limitations. For example, as a cross-

sectional study, we were unable to determine the causal

connection between blood lead and SC-MI. In addition, bone

lead is regarded as the best biomarker of long-term lead

exposure, while bone lead is difficult to obtain in epidemiological

and clinical studies. Besides, bone lead has a certain effect on

bone metabolism, and bone metabolism is closely related to

CVD and blood lipid levels (46, 47), so including bone mineral

density (BMD) reflecting bone metabolism as a covariable

in the study can reduce the deviation of the results and

increase the stability of the results. However, as far as we

know, BMD was only detected in the NHANES survey in

2001–2002 and 2005–2020, while the outcome variable of

our study, SC-MI, was only detected in the NHANES survey

from 1988 to 1994, so our study population only came from
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FIGURE 4

Association between blood lead and subclinical myocardial injury in various stratifications. The model used in the subgroups analysis consisted

of all covariates used in Model 3 except for the variables that were used for stratification. The OR was examined by per 1-unit increase of blood

lead. The interaction of blood lead and variables used for stratification was examined by likelihood ratio tests. OR, odd ratio; CI, confidence

interval.

the participants who participated in the 1988–1994 NHANES

survey, which meant that the participants in this study did

not test BMD. Therefore, to sum up, we can not analyze

BMD as a co-variable and there might be a certain bias in

using blood lead as an alternative marker of lead exposure

in this study. Moreover, there might be other uncontrolled

confounding factors, such as diet. Finally, this study only

included American adults, not teenagers and children, so there

might be some limitations in extending the results to other

countries and populations.

Conclusion

In summary, our study showed a link between lead exposure

and SC-MI, adding evidence for the potential myocardial

damage effect of lead in CVD. Nevertheless, further cellular,

animal and human studies are warranted to identify their

causal relationship.
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