
RESEARCH ARTICLE

Land Use as a Driver of Patterns of
Rodenticide Exposure in Modeled Kit Fox
Populations
Theresa M. Nogeire1*, Joshua J. Lawler1, Nathan H. Schumaker2, Brian L. Cypher3, Scott
E. Phillips3

1 School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, United
States of America, 2 Western Ecology Division, U.S. Environmental Protection Agency, Corvallis, Oregon,
United States of America, 3 California State University Stanislaus, Endangered Species Recovery Program,
Turlock, California, United States of America

* tnogeire@gmail.com

Abstract
Although rodenticides are increasingly regulated, they nonetheless cause poisonings in

many non-target wildlife species. Second-generation anticoagulant rodenticide use is

common in agricultural and residential landscapes. Here, we use an individual-based

population model to assess potential population-wide effects of rodenticide exposures on

the endangered San Joaquin kit fox (Vulpes macrotis mutica). We estimate likelihood of

rodenticide exposure across the species range for each land cover type based on a data-

base of reported pesticide use and literature. Using a spatially-explicit population model,

we find that 36% of modeled kit foxes are likely exposed, resulting in a 7-18% decline in

the range-wide modeled kit fox population that can be linked to rodenticide use. Expo-

sures of kit foxes in low-density developed areas accounted for 70% of the population-

wide exposures to rodenticides. We conclude that exposures of non-target kit foxes could

be greatly mitigated by reducing the use of second-generation anticoagulant rodenticides

in low-density developed areas near vulnerable populations.

Introduction
As their habitats become scarcer and more fragmented, many populations of animals increas-
ingly rely on human-dominated landscapes during all or part of their life cycles [1–4]. In Cal-
ifornia, where only 25% of natural land cover remains [5], agricultural lands provide some
habitat value to nearly half of the state’s terrestrial vertebrate species [6]. Similarly, many
wildlife species use lands with other types of human disturbances [7], such as low-density
housing or energy developments. Not surprisingly, animals in these human-dominated land-
scapes often face additional threats such as conflicts with humans [8], have higher mortalities
and lower fitness [9], and may exist at lower densities than those inhabiting more natural
landscapes [10].
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Second-generation anticoagulant rodenticides (SGARs) are commonly used in agricultural
[11] and exurban [12,13] landscapes, and have occasionally been found to be used illegally in
wildlands [14]. Legal SGAR use is confined to applications in and around the perimeter of
buildings [15], and both the U.S. Environmental Protection Agency (EPA) and the California
Department of Pesticide Regulation have recently changed regulations with the purpose of
reducing non-target wildlife exposure. Nonetheless, the use of SGARs may become even more
widespread in response to projected climate change-induced pest outbreaks [16].

Rodenticides such as brodifacoum, bromadiolone, difenacoum, and difethialone are
intended to poison rodents, but widespread exposure to these compounds is found in carniv-
orous and omnivorous mammals and birds. In California, these affected mammals include
San Joaquin kit foxes (Vulpes macrotis mutica), bobcats (Lynx rufus), cougars (Puma conco-
lor), and fishers (Pekania pennanti) [14,15]. Exposure to SGARs has also been found in rap-
tors in San Diego County [17], raptors in New York [15], red kites (Milvus milvus) in France
[18], 62 vertebrate species in Spain [19], birds, amphibians, and reptiles in New Zealand
[20,21], and rodents and raptors in the UK [14,22,23]. The U.S. EPA states that they believe
that exposure of non-target wildlife is occurring wherever these SGARs are used, based on
the widespread exposure that is found when surveys of non-target populations are conducted
[15]. Exposure of non-target wildlife occurs via both direct consumption of bait or, in the
case of carnivorous animals, by secondary exposure via the consumption of contaminated
prey items [15]. Secondary exposure is of particular concern because these compounds are
persistent in body tissues, and time-to-death after initial consumption is 5–7 days, potentially
allowing animals to consume many times the lethal dose and resulting in death of individuals
[15]. Non-target exposures to SGARs and other pesticides are of particular concern when
they affect threatened or endangered species such as red kites in France [18] or Pacific fishers
in California [24].

One such at-risk species is the San Joaquin kit fox, a small desert fox that persists primarily
around the perimeter of the San Joaquin Valley, a major agricultural area in central California
extending from the San Joaquin delta to the Tehachapi Mountains. The San Joaquin kit fox
(hereafter “kit fox”) is an endangered subspecies that eats primarily kangaroo rats (Dipodomys
spp) where their ranges overlap, or a variety of other small animals, including voles (subfamily
Arvicolinae), ground squirrels (subfamily Xerinae), rats (Rattus spp), mice (Mus musculus,
family Cricetidae, and family Heteromyidae), rabbits (family Leporidae), gophers (family Geo-
myidae), and insects (class Insecta) [25]. The current population of the kit fox is estimated to
be fewer than 3600 individuals [26]. Kit fox exposure to SGARs has been repeatedly docu-
mented (e.g., [26–28]), and is thought to result from the consumption of contaminated rodents
(either target or non-target) or as a result of eating bait directly [29].

Simple non-spatial models suggest that SGAR exposure could result in population-level
effects for kit foxes [30], but spatially-explicit models are also needed that can scale individual
effects up to population levels while accounting for spatial variation in exposure rates
[31,32]. Spatial models can predict where kit foxes are likely exposed to rodenticides, and can
thus help regulators target mitigation efforts through education, regulation, or enforcement.
Using land-cover mapping and estimated rodenticide use levels in each land-cover category,
we created a map of projected kit fox exposure probabilities. We then used a spatially explicit,
individual-based population model, which included life history traits and kit fox ecology, to
measure the impact of SGAR exposure on modeled kit foxes across their range. This detailed,
mechanistic population model also allowed us to evaluate management-relevant patterns of
exposure.
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Methods

Simulating kit fox populations
We simulated individual kit foxes across their range using HexSim [33], a computer modeling
platform for constructing spatially explicit population models. Our model integrated life his-
tory traits, repeated exposures to rodenticides, and spatial data layers describing habitat and
locations of likely exposures. We modeled female kit foxes using yearly time steps in which
each individual had the potential to disperse, establish a home range, acquire resources from
their habitat, reproduce, accumulate rodenticide exposures, and die.

We used a map of habitat suitability developed by Cypher et al. [26] to inform home
range establishment, resource accumulation, and dispersal. The suitability map was based on
land-cover data from the California Department of Water Resources Land Use Survey, Cali-
fornia Gap Analysis Program, National Wetlands Inventory, aerial photography, vegetation
density, terrain ruggedness, and expert opinion (see S1 Table). The suitability map includes
4,239 km2 of high suitability (suitability score> 90) habitat and 9,430 km2 of medium suit-
ability (> 75) habitat (Fig 1a) throughout the kit fox range. Approximately two thirds of this
habitat is fragmented: only 2,550 km2 of high-suitability habitat (60%) and 6,498 km2 of
medium suitability habitat (69%) occurred in patches of greater than 50 km2. We tessellated
the habitat suitability map using a grid composed of 14-ha hexagons, and each hexagon
derived a habitat “score” from the underlying habitat map. Habitat suitability was presumed
to be the same for breeding, movement, dispersal, and exploration. Kit foxes were precluded
from incorporating unsuitable habitat in home ranges, but were able to move through and
explore these areas.

Simulated kit foxes assembled home ranges based on local habitat suitability, with range
size inversely related to habitat suitability [34,35]. Kit foxes aimed to acquire a home range
with a target score corresponding to the observed 544 ha home range size in the most suitable
habitat [26]. Modeled home ranges varied in size from 170 ha to 1000 ha. Kit foxes were
assigned to a resource class depending on the quality of the habitat in their acquired home
range. The resource class then influenced rates of kit fox survival, with kit foxes being able to
survive if they accumulated at least 30% of the target habitat score (Table 1). Reproductive
success in kit foxes varies greatly. Field study estimates range from 67% to 100% success in
the best habitats and as low as 20% success in poor habitats [29]. As in Haight et al. [36], we
represented adult average reproductive success with a mean value of 61%. Individual values
were linearly scaled depending on resource class, and ranged from 0 to 100% success
(Table 1). Modeled adult kit foxes that reproduced produced 1–3 female pups, with a normal
distribution around a mean of 1.9 females (derived from field-based estimates from [29] and
a standard deviation of 0.95 females), which results in approximately 17% of litters with 3
female pups. Yearling kit foxes occasionally breed, but their reproductive success rates and
litter sizes have not been well studied. We estimated yearling reproductive success using data
from a single study in which 22 yearlings reproduced with one-third the success rate of adults
in the same study area [37]. Given that the yearling foxes in the study presumably used
lower-quality habitat, on average, than adults, and given that our own models scale reproduc-
tive rates based on habitat quality, we estimated yearling reproductive success to be half that
of adults in any given resource class. We believe this represents an optimistic estimate of
yearling reproductive success.

Juveniles and adults without ranges searched for a home range across 30 km2 outside of
their natal range, using HexSim’s ‘adaptive’ exploration algorithm [33]. In wild populations, kit
foxes without established home ranges are able to pass through and hunt within conspecific
home ranges due to lack of absolute territoriality [38–40], and we modeled this by allowing
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such individuals to survive by using up to half of the habitat resources (“score”) in another kit
fox’s range. These individuals, however, were subject to 40% lower survival rates. We used an
estimated actual population size of 2500 females based on initial population estimates to initial-
ize the model. The 2500 individuals were distributed across the best habitat throughout the kit
foxes’ range.

Fig 1. Habitat suitability and rodenticide use. San Joaquin kit fox suitable habitat (green) and rodenticide use within the kit fox range (purple). Rodenticide
use is defined as 30 x 30 m pixels which included land use where rodenticides are commonly used. Not suitable is defined as suitability = 0, low suitability is
2–4, medium suitability is 4–6.5, and high suitability is 6.5–8. Habitat suitability is from [26] and rodenticide use was defined as described in the methods. The
map was created in ArcMap 10.2.

doi:10.1371/journal.pone.0133351.g001
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Rodenticide exposure
To assess the potential effects of rodenticides on kit fox populations we mapped areas of likely
exposure to SGARs, applied a range of estimated SGAR-induced mortality rates to individuals
that encountered rodenticides, and measured changes in kit fox population size and distribu-
tion. To map exposure we used a state agricultural database [11], surveys of residents [13], and
liver tests of 68 opportunistically found kit foxes in and around Bakersfield [41,42] to identify
land-use types in which SGARs are used. We assigned scores that described the relative likeli-
hood of rodenticide exposure within different land-cover types. Land-cover types with high lev-
els of rodenticide use, including confined animal agriculture, semi-agricultural, or low-density
development (see S2 Table for definitions), were assigned a score of “2” [11]. We included low-
density residential areas in the high-likelihood zone for two reasons. First, consumers and pro-
fessional applicators frequently use SGARs for rodent control in such areas [43–46], and second,
McMillin et al. [42] documented exposure in kit foxes in these areas. Land-cover types with
intermediate levels of rodenticide use, including urban lands and orchards [11,13,47], were
given a score of “1”. Areas where SGARs are generally not used, including natural land-cover
types, farmland, or grazing lands [11,42], were assigned a score of “0” (see S2 Table for details).

For each kit fox with a home range, the score for likelihood of exposure for that home range
in each year was used to assign the individual to an overall exposure class. For each kit fox
without a home range, the score for the explored area was used. Kit foxes that encountered
rodenticides were classified into groups of low, medium or high exposure. Without clinical evi-
dence to support the exposure levels, we set likelihood of exposure score thresholds so that 1/3
of the exposed animals would fall into each exposure class. Kit foxes born to exposed mothers
were placed in the same exposure class as the mother. Exposure did not persist between years.
Kit foxes of all age classes were subjected to additional mortality according to their rodenticide
exposure class and exposure scenario (see Table 2).

Although no studies have directly quantified the lethal dose of SGARs for kit foxes, Gid-
dings and Warren-Hicks [30] were able to identify the range of mortality effects likely experi-
enced by kit fox populations exposed to brodifacoum (the most commonly used SGAR). They
estimated the median lethal dose sufficient to kill 50% of a population (LD50), and generated
dose-response curves, basing curve shapes on a literature review of responses to brodifacoum
observed in dogs, feral pigs, guinea pigs, mice, rabbits, rats, sheep and wallaby. Based on their
estimate that 1–2.5% of prey items are exposed to brodifacoum, they then simulated probable

Table 1. Survival and reproductive success rates for modeled kit foxes.

Percent of target habitat score accumulated (lower
bound of resource class)

Juvenile
survival

Adult and subadult
survival

Subadult reproductive
success

Adult reproductive
success

0 0 0 0 0

10 0 0 0 0

20 0 0 0 0

30 0.2 0.4 0.15 0.3

40 0.3 0.6 0.2 0.4

50 0.45 0.7 0.25 0.5

60 0.55 0.8 0.3 0.6

70 0.65 0.85 0.35 0.7

80 0.75 0.9 0.4 0.8

90 0.85 0.95 0.45 0.9

Rates scaled according to the quality of the habitat in each kit fox’s range (represented as percent of target habitat accumulated).

doi:10.1371/journal.pone.0133351.t001
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effects on mortality of individual kit foxes. Our mortality rates (Table 2) were based on these
mortality risk estimates. We used the upper bound of the Giddings and Warren-Hicks [30]
estimate because those authors concluded that even a 2.5% exposure rate is likely an underesti-
mate. We used these rates, based on exposure to brodifacoum, for all SGAR exposure, because
more specific data were not available for other types of SGARs.

We considered three scenarios of exposure effects based on mortality rates from Giddings
andWarren-Hicks’models, with each scenario being run 100 times, based on a leveling off of
variance. Our high-effect scenario (S1 File) used 10% exceedance values (a 10% chance that the
real mortality levels exceed the given value), ourmoderate-effect scenario (S2 File) used 50%
exceedance values, and our no-effect scenario (S3 File) had zero additional mortality from expo-
sure to rodenticides. We then consider two regulated scenarios, in which exposure was elimi-
nated from low-density developed lands (to simulate a situation in which rodenticides are no
longer used in these lands) but remains the same in other land-cover types. Finally, we multi-
plied the map of modeled occupancy by the map of exposure likelihood to determine the rela-
tive contribution of each land-cover type to exposure.

Sensitivity analyses
For our model parameters we were able to draw upon the considerable data available from the
literature, as cited throughout the manuscript, for this well-studied species. Nonetheless, we
still needed to make assumptions and estimates. We tested the impact of at least a 10% increase
or decrease in starting population, dispersal range, floater mortality, and threshold for exposure
classes, with 50 replicates of each scenario. We also tested the categorization of “Urban” lands
with a likelihood of exposure score of “2” instead of “1”, again with 50 replicates. Finally, we
tested the sensitivity of the parameter defining additional mortality suffered by exposed foxes.
We ran 100 replicates of seven scenarios in which we adjusted the additional mortality to 50%
below our moderate scenario, 10% below our moderate scenario, halfway between our moder-
ate and high scenarios, 10% above our high scenario, 50% above our high scenario, 90% above
our high scenario, and complete mortality (all exposed foxes die).

Results
Roughly 12% (491 km2) of the most suitable, occupied kit fox habitat and 4.3% (225 km2) of
occupied habitat of moderate suitability was predicted to have rodenticide use (Fig 1). As
expected, rodenticide exposure occurred primarily around the edges of kit fox habitat, and in
areas where habitat was more fragmented (primarily by agriculture). Highly affected patches
occurred around the Semitropic Ridge, Allensworth Natural Area, Lost Hills, and near the cit-
ies of Bakersfield, Taft and Maricopa, which host urban kit fox populations (Fig 2). Unaffected
habitat patches were found in the Carrizo Plain and in western Kern County.

Table 2. Additional mortality suffered by kit foxes with varying amounts of rodenticide exposure.

Scenario None Low Medium High

Range of exposure scores 0 1–2 3–6 7+

No effect 0 0% 0% 0%

Moderate effect 0 2% 6% 25%

High effect 0 9% 28% 67%

All estimates adapted from Giddings & Warren-Hicks [30]. For example, a kit fox with a high level of

exposure suffers 25% additional mortality in our ‘moderate-effect’ scenario.

doi:10.1371/journal.pone.0133351.t002
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Thirty-six percent of our modeled kit foxes were exposed to rodenticides. Low-density
development accounted for 70% of the exposures, followed by orchards (17%) and urban areas
(6.8%). Although confined animal agriculture and semi-agricultural lands had the highest like-
lihood of exposure, these land-cover types were not commonly occupied by kit foxes and were
thus responsible for a low percentage of kit fox exposure (0.48% and 5.9%, respectively). Mod-
eled exposures occurred primarily around the edges of core habitat blocks throughout the
southern part of the kit foxes’ range (Fig 2). A large area of exposures occurred in the Elk Hills,

Fig 2. San Joaquin kit fox modeled occupancy overlap with areas of rodenticide use. Source of mapped data are model outputs, created in ArcMap
10.2.

doi:10.1371/journal.pone.0133351.g002
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near the cities of Maricopa and Taft, and the surrounding areas. Modeled exposure did not
occur in the Carrizo Plain.

On average, our no-effect scenario yielded a population of 2075 female kit foxes (i.e., 4150
total kit foxes), of which approximately 77% were breeding adults. In our model, mean home
range size was 3.76 km2 (1.81–9.95 km2, stdev = 1.45, for all home ranges and 100 replicates).
The distribution of modeled kit foxes, shown in S1 Fig, is consistent with areas in which kit
foxes are known to occur with the exception of the area north of Bakersfield, where kit foxes
have not been reliably sighted [48].

SGAR exposure affected both the overall simulated kit fox population size (Fig 3) and the
distribution of the population (S1A and S1B File). Modeled rodenticide exposure under the
moderate-effect scenario caused a 7% population decline relative to the no-effect scenario (Fig
3). Modeled kit fox populations in this scenario were reduced from the area that is directly to
the east of Bakersfield, south to the Tejon Ranch and west to the Pleito Hills, in the Buttonwil-
low Ridge, near Goose Lake, and in the Kettleman Hills. The modeled population declined by
18% under the high-effect scenario (Fig 3), and populations were further reduced in the areas
described in the moderate-effect scenario as well as in the Ciervo Hills. In the high-effect sce-
nario, the Pleito Hills/Tejon Ranch population became separated from the population east of
Bakersfield. The regulated scenario, where SGARs were not used in low-density developed
lands, produced an increase in the population in both the moderate-effect (4.5% increase) and
high-effect (9.3% increase) scenarios (Fig 3).

Sensitivity analyses
Changing the size of the area explored by dispersers resulted in the greatest change to the total
population size (a 10% decrease in the parameter value resulted in a 4% decrease in total popu-
lation size; a 10% increase in the parameter value resulted in a 2% increase in total population
size), followed by mortality for kit foxes with no home range (1%; 0%), the threshold of the dif-
ferent exposure classes (1%; 0%), and the starting population size (1%; 0%) (Table 3). Percent
of population exposed, locations of exposures, and land covers with the greatest impact were
not sensitive to any of the tested parameters.

The impact of rodenticides on the total population was not sensitive to the above changes in
parameters. Each resulted in a maximum 1% difference between the no-effect and moderate-
effect or no-effect and high-effect scenarios. However, the impact of rodenticides on the total
population was, as expected, sensitive to the parameter defining additional mortality suffered
by exposed foxes. The scenarios with mortality rates 50% below and 50% above our estimated
rates would result in a 4–22% total population decline (compared to no effect), as opposed to
the 7–18% decline that our model predicted for our estimated rates. S2 Fig shows the range of
population sizes under the various scenarios.

We found little difference in the total population size when testing the categorization of
Urban Lands with a likelihood of exposure score of “2” instead of “1” (the population decreased
1.1% with a score of “2” relative to the scenario with a score of “1”). This is unsurprising
because the majority of the “urban” category consists of high density housing, which is charac-
terized as low-quality habitat for foxes. These areas were thus rarely explored by modeled
foxes, and changing their likelihood score resulted in few additional exposures or deaths.

Discussion
Pesticides are known to negatively impact non-target species, and SGAR residues have been
found in many non-target species [14,15,17,20,49], including the kit fox [41,42]. Our study is
one of the first to examine how rodenticides affect an entire wildlife population across its
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range, and where, in a complex landscape, those effects might be most severe (but [49] also
considers spatial impacts across a limited population). Our model predicted that 36% of kit
foxes were likely exposed to SGARs, resulting in an estimated 7–18% reduction in the popula-
tion depending on the mortality rate.

Ours is the first mechanistic population model of the entire San Joaquin kit fox population.
The resulting estimates of total population numbers were similar to those produced by Cypher

Fig 3. Impact of rodenticide application on kit fox population. Boxplot of impact of rodenticide application
on female kit fox populations across 100 replicates. Black boxes indicate no-, moderate-, and high-effect
scenarios. Grey boxes indicate moderate- and high-effect scenarios with no rodenticides in low-intensity
development land cover class.

doi:10.1371/journal.pone.0133351.g003

Table 3. Sensitivity analyses: percent change in total female kit fox population relative to baseline
when key parameters were increased and decreased 10%.

Parameter - 10% + 10%

Starting population 0% 0%

Dispersal range -4% 2%

Floater mortality -2% 0%

Threshold for exposure classes -1% 0%

doi:10.1371/journal.pone.0133351.t003
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et al. [26], who extrapolated density estimates from survey sites to other suitable habitat using
the same habitat map used in the present study. Our estimates ranged from 3300 (high effect of
exposure) to 4150 (no effect of exposure), while Cypher et al. estimated 3600 kit foxes, but
argued that this was likely an overestimate [26]. Not all suitable habitat was occupied by kit
foxes in our model runs, which is consistent with the observation that some habitat patches
were isolated and thus difficult for dispersers to reach, and a large proportion (66%) of habitat
was fragmented and unlikely to support persistent kit fox populations. In addition, some habi-
tat was periodically vacant even within substantial habitat patches, indicating that the modeled
population size was limited by high mortality rates rather than quantity of habitat. This was
supported by field studies that concluded that high mortality rates, due in large part to coyote
predation, limit populations in suboptimal habitats [50].

Several assumptions and approximations likely impact our estimated percentage declines in
the kit fox population as a result of rodenticide exposures. It was difficult to map all land-cover
types where rodenticides were applied. For example, the NLCD category of Developed, Open
Space included some types of lands where SGARs were likely used, such as golf courses, parks,
and very low-density housing. However, the majority of lands in this category, which often
included dirt roads, were not expected to have rodenticides, so this category was classified as
“0” likelihood of exposure. Additionally, application of SGARs in low-density developments
may have decreased due to regulations put in place in 2008, since the studies used to parame-
terize our model were conducted. Further, this study examined only SGAR usage, but kit foxes
are also exposed to first-generation anticoagulant rodenticides (FGARs). FGARs may have less
impact on kit foxes because they are not as persistent, leaving less time for the toxicant to affect
higher trophic levels. However, FGARs are also more widely used in areas frequented by kit
foxes, particularly in rangelands, where they are broadcast-baited in grains.

The mortality estimates we used are based on several assumptions which could have influ-
enced our population estimates. First, we use brodifacoum-based toxicity estimates for all
SGARs, although in reality other SGARs have lower toxicity (Eason et al [51], for example,
summarize toxicity of several SGARs). We use these estimates because brodifacoum is the
most commonly found SGAR in tested wildlife (some examples from carnivores in California
include [12,14,42]) and because no other estimates were available. Second, Giddings andWar-
ren-Hicks assume no illegal use of SGARs, although as they note, such misuse is probably very
common, and misuse was also reported by surveyed residents in a separate study [45]. Field
testing of other species supports the idea that our SGAR exposure estimates were likely conser-
vative. In comparison, anticoagulant rodenticide exposure levels in southern California were
90% for bobcats [12] and 70% for all mammals and birds tested by California Department of
Fish andWildlife [15]. Third, the mortality estimates we applied in the areas of high likelihood
of exposure are likely to be conservative. We based our estimates on the assumption that 2.5%
of all rodents consumed by kit foxes across their range were exposed to rodenticides [30], but
we only applied these estimates to areas where SGAR use was likely. Thus, the percentage of
rodents exposed to SGARs in high-likelihood areas could be expected to be much higher than
2.5%. We would expect considerable variation in the percentage of rodents exposed even
within 30-m pixels, because the percent of rodents that are exposed will vary based on their dis-
tance from the site of application. For example, at sites in close proximity to where SGARs
were applied, Tosh, et al. [52] found 15–33% of target mice were exposed and Brakes and
Smith [21] found an average exposure rate of 48.6% across three species of non-target rodents.
Another study, focused on non-target rodent exposure, found that most of the rodents with
SGAR residues were within 15 m of application sites [53]. Finally, although kit foxes are fre-
quently observed near structures, we would expect variation in kit fox hunting preferences in
relation to these structures.

Rodenticides and Kit Foxes
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Sublethal impacts of rodenticides, which we did not simulate, also have an indirect effect on
mortality [15,21,30,44]. When not immediately fatal, SGAR exposure can still cause weakness,
lack of coordination, rapid breathing, depression, severe abdominal pain, and loss of appetite
[54], all of which could significantly reduce fitness. For example, SGARs have been implicated
in an increased frequency of vehicle strikes in fishers [23] and increased mortality in bobcats
due to a mange epidemic, where Riley et al. [12] hypothesize that mites benefited from reduced
clotting caused by SGAR exposure. Other studies have been inconsistent in the degree of attri-
bution of SGAR exposure to deaths in SGAR exposed birds and mammals. In some studies, it
has been found that less than 10% of deaths in animals with SGAR residues were definitively
attributed primarily to SGAR exposures [19,55–57], although another study found that it was
“highly probable” that 50% of deaths in animals with SGAR residues were caused by the
SGARs [15]. These inconsistent results further supports the need for further studies to deter-
mine what, if any, sublethal impacts are caused by SGARs. Some researchers also note that the
number of confirmed cases likely underestimates the number of actual deaths caused by
SGARs [19,21,55,56,58], primarily because of the difficulty in detecting microscopic
hemorrhages.

Spatial patterns and management implications
Although 36% of modeled kit foxes were exposed, the exposures took place on a relatively
small portion (16%) of the landscape. Low-density development was the largest source of expo-
sures of kit foxes to SGARs. Low-density development most commonly includes single-family
housing units. In many instances, residents do not know which chemicals are used to control
rodents on their properties, nor the mode of action of these chemicals. However, owners of
these single-family units are generally interested in learning about the effects rodenticides have
on of non-target species [46], suggesting that education programs could help reduce the impact
of anticoagulant rodenticide usage. Kit foxes have also been enormously successful in some
areas with low-density development. Estimates of survival and reproduction, for example, are
higher within the city of Bakersfield than in wildland populations [29]. Urban populations are
also becoming established in the cities of Taft and Maricopa. In these urban settings, rodenti-
cide exposures could be offset by the positive impacts of fewer predators and a more steady
food supply, and reducing exposure may therefore not be a high priority. Exposure may be
more of a concern in low-density development that is near the natural habitat of kit foxes, and
it is this exposure that has the greatest population-wide effect in our model. Successful enforce-
ment of SGAR regulations and additional regulations or education discouraging their use in
low-density developments within the kit fox range could also increase kit fox population
numbers.
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S1 Fig. Mapped comparison of no-effect and high-effect scenarios. Suitable range-wide habi-
tat with occupancy as modeled under the ‘no-effect’ scenario (S1A Fig) and ‘high-effect’ sce-
nario (S1B Fig). Modeled kit foxes were concentrated in western Kern County and the Carrizo
Plain, with populations continuing north along the western edge of the San Joaquin Valley,
through the Lokern natural area and Kettleman Hills, north to the Panoche Hills. There were
no persistent populations north of the San Luis Reservoir. The population also extended into
the Valley around the Lost Hills, through the Semitropic Ridge natural area northeast to the
Pixley National Wildlife Refuge. On the east side of the San Joaquin Valley, there was a large
population of modeled kit foxes east of Bakersfield and north to the border of Kern County.
South and east from Bakersfield, the population extended south through the Tejon Ranch and
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west to the Pleito Hills and the WindWolves Preserve. This distribution is entirely consistent
with areas in which kit foxes are known to occur except the area north of Bakersfield, where kit
foxes have not been reliably sighted [48]. The distribution of kit foxes in the high-effect sce-
nario is more consistent with recent kit fox sightings, with less occupancy modeled north of
Bakersfield, a gap in occupancy near northern Tejon, another gap between the Kettleman Hills
and the Panoche area, and fewer kit foxes overall. Habitat suitability is from [25] and source of
occupancy data are model outputs. The map was created in ArcMap 10.2.
(DOCX)

S2 Fig. Fox population versus modeled mortality rate. The shaded portion of the plot indi-
cates the range between our ‘moderate-effect’ and ‘high-effect’ scenarios. We also ran 100 repli-
cates each of 8 additional scenarios ranging from no effect of exposure (0 additional mortality)
to 100% mortality from exposure (all foxes that become exposed die). The x-axis is the mean
mortality rate across the three classes of exposure.
(TIFF)
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S1 Table. Habitat suitability map. Assigned suitability values for land cover classes, scored
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