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ABSTRACT The rapid and robust identification of mutations in Mycobacterium tu-
berculosis complex (MTBC) strains mediating multidrug-resistant (MDR) and exten-
sively drug-resistant (XDR) phenotypes is crucial to combating the MDR tuberculosis
(TB) epidemic. Currently available molecular anti-TB drug susceptibility tests either
are restricted to a single target or drug (i.e., the Xpert MTB/RIF test) or present a risk
of cross-contamination due to the design limitations of the open platform (i.e., line
probe assays). With a good understanding of the technical and commercial boundar-
ies, we designed a test cartridge based on an oligonucleotide array into which dried
reagents are introduced and which has the ability to identify MTBC strains resistant
to isoniazid, rifampin, and the fluoroquinolones. The melting curve assay interro-
gates 43 different mutations in the rifampin resistance-determining region (RRDR) of
rpoB, rpoB codon 572, katG codon 315, the inhA promoter region, and the quinolone
resistance-determining region (QRDR) of gyrA in a closed cartridge system within 90
min. Assay performance was evaluated with 265 clinical MTBC isolates, including
MDR/XDR, non-MDR, and fully susceptible isolates, from a drug resistance survey
performed in Swaziland in 2009 and 2010. In 99.5% of the cases, the results were
consistent with data previously acquired utilizing Sanger sequencing. The assay,
which uses a closed cartridge system in combination with a battery-powered Alere q
analyzer and which has the potential to extend the current gene target panel, could
serve as a rapid and robust point-of-care test in settings lacking a comprehensive
molecular laboratory infrastructure to differentiate TB patients infected with MDR
and non-MDR strains and to assist clinicians with their early treatment decisions.
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With more than 10 million new cases of Mycobacterium tuberculosis infection
occurring every year and an estimated 1.8 million deaths from tuberculosis (TB)

occurring in 2015, TB remains one of the central health problems worldwide. One major
cause of the global TB situation and the challenges associated with disease elimination
is the increasing occurrence of M. tuberculosis complex (MTBC) bacteria resistant to
antibiotics. In 2015 alone there were an estimated 480,000 new cases of multidrug-
resistant TB (MDR-TB) and approximately 250,000 deaths from MDR-TB, defined as
resistance to rifampin and isoniazid. The average proportion of MDR-TB cases with
additional resistance to at least one fluoroquinolone and a second-line injectable agent
(extensively drug-resistant TB [XDR-TB]) was 9.5%, similar to estimates in previous years
(1, 2). The increasing occurrence of drug-resistant MTBC strains is associated, inter alia,
with a diagnostic gap in many regions with a high incidence of TB (1). It is projected
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that MDR-TB is detected in only one out of three MDR-TB patients worldwide, and the
rates of treatment success for MDR-TB patients are dramatically low at 48% (1). A
successful treatment outcome is essentially associated with the early administration of
adequate drugs and, therefore, with individualized drug susceptibility testing (3–5).

Culture-based methods are still considered the “gold standard” for the diagnosis of
infection with MTBC bacteria and the detection of resistance in MTBC strains, but these
methods do not enable early treatment decisions to be made. Additionally, these
methods are heavily burdened with the requirement for a complex laboratory infra-
structure (6, 7). Molecular tests subsequently become additionally important because
the molecular mechanisms of MTBC drug resistance are well characterized. These
mechanisms include, e.g., mutations in defined regions of the rpoB gene, coding for an
RNA polymerase subunit; katG, coding for a catalase; the inhA promoter region,
controlling RNA transcripts for an enoyl-acyl carrier protein involved in fatty acid
biosynthesis; and gyrA, coding for a subunit of the DNA gyrase. Approximately 97% of
rifampin-resistant MTBC isolates harbor mutations in the 81-bp rifampin resistance-
determining region (RRDR) of the rpoB gene (codons 507 to 533), wherein the most
frequent mutations affect codons 516, 526, and 531 (Escherichia coli numbering) (8–10).
Several studies showed that mutations at amino acid position 572 in the rpoB gene also
contribute to rifampin resistance in MTBC strains (11–13) and are not interrogated by
currently available molecular drug susceptibility tests (DSTs). Mutations in codon 315 of
the katG gene or in the inhA promoter region (positions �8 and �15) are associated
with isoniazid resistance in 70 to 90% of isoniazid-resistant MTBC strains (8–10).
Mutations in the quinolone resistance-determining region (QRDR) of gyrA (codons 88 to
94) are associated with resistance to fluoroquinolones, the backbone of MDR-TB
treatment, in more than 80% of MTBC clinical isolates (10, 14, 15).

Over the past decade, molecular tests (e.g., line probe assays or the Xpert MTB/RIF
test) have been developed to identify resistance-related mutations (16). However, these
tests are restricted by either their ability to investigate only a single resistance target or
the risk of contamination that they present due to the use of an open platform. In this
report, we describe a rapid, sensitive, and simple test which is performed with a single
prototype cartridge and the Alere q analyzer. The original functional use of the Alere q
platform was for the detection of HIV using competitive reporter-monitored amplifi-
cation (CMA), in which Cy5-labeled reporter oligonucleotides are competitively hybrid-
ized onto a probe array (17). A new method based on melting curve analysis has now
been implemented. The special feature of the assay described here is that the fluores-
cence measurement is performed on the solid phase. On this account, just one
fluorescent dye is needed for analysis, in contrast to other melting curve assays
described previously (18–22). This enables the simultaneous detection of many differ-
ent mutations which are associated with resistance to rifampin, isoniazid, and fluoro-
quinolones.

MATERIALS AND METHODS
Strains of mycobacteria. The MTBC strains used for the clinical studies (see Table S1 in the

supplemental material) were isolated under standard routine conditions at the National Reference Center
for Mycobacteria, Research Center Borstel, Borstel, Germany. The nontuberculous mycobacteria (NTM)
tested were incubated in tubes with Middlebrook and Cohn 7H10 agar (BD Diagnostics, Franklin Lakes,
NJ, USA) at 37°C for multiple days at Alere Technologies GmbH, Jena, Germany. To obtain inactivated cell
culture material, the strains were treated with ultrasound and heated at 99°C for 15 min each.

For the clinical evaluation, we tested 265 clinical MTBC isolates which were previously analyzed by
Sanger sequencing of the respective resistance-associated gene regions. The isolates were derived from
a national survey of drug resistance in Swaziland, a region with a high incidence of MDR-TB (23). The
selection covered MDR-TB strains (n � 116), XDR-TB strains (n � 1), non-MDR strains (n � 19), and a
random selection of fully susceptible strains (n � 129).

Isolation of genomic DNA. For isolation of bacterial genomic DNA, inactivated culture material
(from Lowenstein-Jensen slants) was resuspended in 1 ml TET buffer (Tris, ETDA, Tween 20) and filtered
through a 5-�m-pore-size filter (Omnifix Braun, Melsungen, Germany) to obtain single cells. The bacterial
solution was washed twice with TET buffer, centrifuged at 5,000 � g for 5 min, and, finally, adjusted to
an optical density of 0.01 in TET buffer. Subsequently, 400 �l of the bacterial solution was disrupted using
a bead beating device (VWR, Erlangen, Germany) and 300 mg of glass beads (�106 �m; Sigma-Aldrich,
St. Louis, MO, USA), which were centrifuged at 5,000 � g for 80 s. The cell lysate obtained was
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centrifuged at 5,000 � g for 10 s, and the supernatant was filtered through a 10-�m-pore-size filter
(Mobitec, Eupen, Belgium) and centrifuged at 5,000 � g for 1 min. The genomic DNA was extracted from
100 �l of this cell lysate using a QIAamp blood minikit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. DNA quantification was performed using a Quant-iT PicoGreen double-
stranded DNA kit (Invitrogen, Carlsbad, CA, USA). Finally, the DNA sequences of the MBTC strains were
determined by GATC Biotech AG (Constance, Germany) and analyzed using GENtle software (http://
gentle.magnusmanske.de).

Primers, TaqMan probes, and array probes. Sequence information for all primers, array probes,
and TaqMan probes is available in Table S3. The array probes had a C-7 amino linker for immobilization
on the array surface. Forward primers for melting curve analysis were labeled with Cy5 at the 5= end; the
reverse primers used for melting curve analysis as well as the primers used for TaqMan analysis were
unlabeled. All oligonucleotides were synthesized by Eurogentec, Cologne, Germany.

Efficiency of multiplex target amplification using real-time PCR. Real-time PCR was performed
with primers and fluorescence-labeled TaqMan probes specific for the targets. Due to the limitation in
the fluorescence channels of the 7500 real-time PCR system used (Applied Biosystems, Foster City, CA,
USA), the multiplex amplification was analyzed in two reactions. Sequence-specific primers were added
iton both reaction mixtures, whereas the respective TaqMan probes were added to one or the other
reaction mixture. MTBC strains are characterized by a high GC content, which required an adaptation of
the PCR buffer used (24). To improve the PCR amplification in connection with an increased specificity
and reaction yield, betaine and tetramethylammonium chloride were added to the reaction mixture
(25–27). Therefore, the amplification was performed in a final reaction volume of 100 �l containing TET
buffer (Tris, ETDA, Tween 20), 75 mM Tris-HCl (pH 8.5; Alere Technologies GmbH, Jena, Germany), 3 mM
magnesium chloride (Sigma-Aldrich, St. Louis, MO, USA), one betaine tablet (resulting in 2 M betaine;
Friedrich Alexander University, Erlangen, Germany), 100 mM tetramethylammonium chloride (Alere
Technologies GmbH, Jena, Germany), 0.2 mM deoxynucleoside triphosphates (Thermo Fisher Scientific,
Waltham, MA, USA), 0.6 �M each forward primer (Table S3), 0.2 �M each reverse primer (Table S3), 0.2
�M the corresponding TaqMan probes (Table S3), 12.5 U of BTR Hot Start Taq (biotechrabbit, Henning-
sdorf, Germany), genomic DNA from the M. tuberculosis H37Rv reference strain (102 to 104 copies per
reaction mixture; Tebu-Bio, Offenbach, Germany), and 104 copies per reaction mixture of the internal
process control (Ionian Technologies, San Diego, CA, USA). For the negative controls, the same reaction
mix but without any template was used. The reaction was performed using a model 7500 real-time PCR
system with the following conditions: 95°C for 2 min following 40 cycles at 95°C for 10 s, 64°C for 30 s,
and 72°C for 30 s. The fluorescence values obtained were used to determine a standard calibration curve
as well as to calculate the efficiency of the multiplex amplification of the MTBC-specific targets.

Melting curve analysis for detection of MTBC drug resistance. The melting curve assay was
performed in a prototype cartridge (Alere Technologies GmbH, Jena, Germany) on the Alere q analyzer.
After the reaction mix was applied to the cartridge, all steps from amplification to detection were
performed automatically. In the first step, a multiplex amplification of the defined targets was performed
using Cy5-labeled forward primers. The fluorescence-labeled amplicons were denatured, and the single
strands were hybridized to the probes carrying either the wild-type or the mutant genotype sequence
spotted on the array (Fig. 1A). At the beginning of the melting curve profile, nonmatching amplicon-
probe bonds were dissolved (Fig. 1B), and with a further increase in temperature, the amplicons
complementary to the probe sequence at their specific melting points were also dissolved (Fig. 1C).

Our assay used 61 immobilized probes representing the wild-type or mutant genotypes for the
detection of 43 different mutations mediating resistance to rifampin, isoniazid, and fluoroquinolones.
With the melting curve assay, single nucleotide polymorphisms (SNPs) could be precisely identified in
codons 511 [Leu511Pro, C(T/C)G], 513 [Ser513Leu, C(A/T)A; Ser513Lys, (C/A)AA; Ser513Pro, C(A/C)A], 516
[Asp516Phe, (G/T)(A/T)C; Asp516Val, G(A/T)C; Asp516Tyr, (G/T)AC], 518 [Asn518Ser, A(A/G)C], 522
[Ser522Gln, (T/C)(C/A)G; Ser522Leu, T(C/T)G; Ser522Trp, T(C/G)G], 526 [His526Asp, (C/G)AC; His526Arg,
C(A/G)C; His526Asn, (C/A)AC; His526Leu, C(A/T)C; His526Tyr, (C/T)AC; His526Cys, (C/T)(A/G)C; His526Gln,
CA(C/A); His526Pro, C(A/C)C; His526Ser, (C/A)(A/G)C], 531 [Ser531Leu, T(C/T)G; Ser531Trp, T(C/G)G], 533
[Leu533Pro, C(T/C)G], and 572 [Ile572Phe, (A/T)TC] (28–38). For the detection of isoniazid resistance,
probes carrying SNPs in katG codon 315 [Ser315Asn, A(G/A)C; Ser315Ile, A(G/T)C; Ser315Gly, (A/G)GC;
Ser315Thr, A(G/C)C; Ser315Thr, A(G/C)(C/A)] and within the inhA promoter region at positions �8
(�8T ¡ A, �8T ¡ C) and �15 (�15C ¡ T) were applied (39–44). Resistance to fluoroquinolones is
mostly associated with mutations in the gyrA target region (10, 14, 15). Therefore, specific probes carrying
SNPs in codons 88 [Gly88Cys, (G/T)GC], 89 [Asp89Asn, (G/A)AC], 90 [Ala90Val, G(C/T)G], 91 [Ser91Pro,
(T/C)CG], and 94 [Asp94Ala, G(A/C)C; Asp94Asn, (G/A)AC; Asp94Gly, G(A/G)C; Asp94His, (G/C)AC;
Asp94Tyr, (G/T)AC; Asp94Val, G(A/T)C] were spotted onto the array (45–48). In addition, a specific probe
carrying an SNP at position 95 defining the phylogenetic Ser95Thr mutation [A(G/C)C], which is not
associated with resistance to fluoroquinolones (49), was also implemented.

The melting curve assay was performed in a reaction volume of 100 �l comprising 75 mM Tris
hydrochloride, pH 8.5 (Alere Technologies GmbH, Jena, Germany), 3 mM magnesium chloride (Sigma-
Aldrich, St. Louis, MO, USA), 1 betaine tablet (resulting in 2 M betaine; Friedrich Alexander University,
Erlangen, Germany), 100 mM tetramethylammonium chloride (Alere Technologies GmbH, Jena, Ger-
many), 0.2 mM a deoxynucleoside triphosphate mixture (Thermo Fisher Scientific, Waltham, MA, USA), 0.6
�M each Cy5-labeled forward primer (Table S3), 0.2 �M each reverse primer (Table S3), 25 U of BTR Hot
Start Taq (biotechrabbit, Henningsdorf, Germany), 104 copies per reaction mixture of the internal process
control (Ionian Technologies, San Diego, CA USA), and 1 �l of genomic MTBC DNA or crude cell culture
material. The genomic DNAs with known genotypes were tested with 3-fold of the concentration at the
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limit of detection. The extracted bacterial DNA from the patient-derived isolates in the clinical validation
study as well as the crude cell lysate was diluted 1:1,000 with Tris-EDTA buffer (Sigma-Aldrich, St. Louis,
MO, USA). Negative-control reactions were also performed. Amplification was performed at 95°C for 2
min following 40 cycles at 95°C for 10 s, 64°C for 30 s, and 72°C for 30 s. A magnesium chloride pellet
stored in the cartridge (resulting in 200 mM magnesium chloride; Alere Technologies GmbH, Jena,
Germany) was dissolved in the reaction mix containing the generated Cy5-labeled amplicons. After
denaturation at 95°C for 2 min, the amplicons were hybridized on the array probes at 30°C for 2 min.
Subsequently, a washing step using buffer WB2.10 (Alere Technologies GmbH, Jena, Germany) and a
magnesium chloride pellet (resulting in 200 mM magnesium chloride; Alere Technologies GmbH, Jena,
Germany) was performed. Finally, an image of the array was acquired during the melting curve analysis
over a temperature range of from 51°C to 71°C in 2°C increments.

Data processing and analysis. The image series acquired was analyzed using Iconoclust software
(Alere Technologies GmbH, Jena, Germany). The array spots were identified using a defined grid. The raw
fluorescence signal of each array spot was calculated by subtraction of the nonspecific background from
its absolute value. Afterwards an interpolation was performed to receive a continuous signal. If the raw
signal exceeded 0.05, 0.1, or 0.2 (depending on the probe being considered), it was declared to be
detected and the signal was normalized. For each probe, the temperature at a signal level of 0.4 was
determined. For corresponding probe pairs representing wild-type and mutant genotypes, the ratio of
the temperatures was calculated and was considered the so-called discrimination factor. A discrimination

FIG 1 Principle of isolate detection by the melting curve assay. For the drug resistance-associated targets rpoB RRDR, rpoB
codon 572, katG, gyrA QRDR, and the inhA promoter region, probes representing the wild-type (wt) and mutant (mut)
genotypes were spotted onto the array. (A) Cy5-labeled amplicons (e.g., those for the wild type) are generated during the
multiplex amplification and initially bind to the specific sequence of the wild type as well as the specific sequences of the
unspecific mutant probes due to the low temperature profile. (B) With an increase in temperature, the unspecific amplicon
bond dissolves, resulting in a loss of the signal at the nonmatching mutant probes but retention of the signal at the matching
wild-type probes. (C) At the final temperature of 71°C, a very low fluorescence signal is detected on the array spots, as almost
all bonds are dissolved.
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factor of �1 represented the wild-type genotype, and a discrimination factor of �1 represented the
mutant genotype.

RESULTS

Our melting curve assay comprised two parts: amplification of the selected target
regions (the rpoB RRDR, rpoB codon 572, katG codon 315, the gyrA QRDR, and the inhA
promoter region) by a multiplex PCR and detection of mutations by a melting curve
analysis. The efficiency of the multiplex amplification was determined by use of a
standard curve (50). It was calculated to be excellent for all targets, as judged by
efficiencies of �0.97 (data not shown). Melting curve analysis was done with a DNA
array carrying several immobilized hybridization probes. Initially, several different vari-
ants of the probe sequences were screened to find pairs which yielded a reliable
discrimination between wild-type and mutant strains (data not shown).

Sensitivity and specificity. The sensitivity was determined using genomic DNA
from M. tuberculosis reference strain H37Rv over a concentration range of 5 to 60 copies
per reaction mixture. An increase in the detection rate was observed with increasing
DNA concentrations. The detection limit of the melting curve assay was 24 copies per
reaction mixture (95% confidence interval, 21 to 27 copies per reaction mixture) (Fig. 2).

In addition to probes for the resistance targets, a probe for the highly specific
detection of MTBC strains was applied. DNA isolated from different nontuberculous
mycobacteria, such as M. intracellulare, M. malmoense, M. asiaticum, M. fortuitum, and M.
marinum, was tested. No unspecific reaction could be observed. On the contrary, other
species of the MTBC, like M. bovis BCG, showed signals comparable to those produced
by M. tuberculosis (Fig. 3).

Detection of mutations in rpoB, katG, gyrA, and the inhA promoter region. A set
of 30 different MTBC isolates whose sequences were verified were analyzed. Overall,
these isolates carried 18 mutations in the rpoB RRDR, 1 mutation in rpoB codon 572, 5
different SNPs in katG codon 315, 9 mutations in the gyrA QRDR, and 2 SNPs in the inhA
promoter region. The results for all isolates are summarized in Table 1. When genomic
wild-type DNA was tested, a discrimination factor (i.e., the ratio of the temperature for
the wild type and the mutant probes at a signal level of 0.4) of �1 was observed with
all probes, whereas a mutation within the respective target region could be identified
by determination of a discrimination factor of �1 with the corresponding probe. In
addition, there were also discrimination factors of �1 for the noncorresponding probes

FIG 2 Sensitivity of the melting curve assay for the multiplex amplification of the MTBC strain-specific
targets rpoB RRDR, rpoB codon 572, katG, gyrA QRDR, and the inhA promoter region using the prototype
cartridge and the Alere q analyzer. The sensitivity was determined to be 24 copies per reaction mixture
with a 95% confidence interval of 21 to 27 copies per reaction mixture. For each concentration (number
of copies per reaction mixture), 25 tests were performed. The dashed line shows the threshold where in
95% of the cases MTBC DNA could be detected.
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(Table 1); however, the mutation could be correctly identified, as the highest value of
the discrimination factor with the matching probe was always measured. With the
exception of the rpoB Leu511Arg mutation in isolate 853/07 and the rpoB Ile569Val
mutation in isolate 10523/05, all mutations were correctly identified.

Clinical isolates. To evaluate the clinical value of our melting curve assay, 265
isolates of different MTBC strains from Swaziland were investigated (Table 2). One
hundred forty-four of the isolates tested showed a wild-type genotype within the rpoB
RRDR as well as in codon 572. All these isolates could be correctly identified. The other
121 isolates carried mutations in these targets determining rifampin resistance. Rifam-
pin resistance-mediating mutations could be identified in 99.2% (120/121) of the
samples. One isolate exhibiting a rpoB deletion (codons 513 and 514) was misclassified
by our assay as a mutant carrying a Ser513Leu change [C(A/T)A]. For three isolates with
linked mutations, i.e., Asp516Phe [(G/T)(A/C)C] and Asn518Asp [(A/G)AC], we could
detect the variant in codon 516 and observed a missing mutant probe for codon 518.
The most common mutations in our strain collection were Ser531Leu [T(C/T)G] (44.63%
of isolates) and Ile572Phe [(A/T)TC] (33.06%). Additionally, the following mutations
were detected: His526Asp [(C/G)AC; 4.96% of isolates], His526Leu [C(A/T)C; 4.96%],
His526Tyr [(C/T)AC; 4.96%], Asp516Phe [(G/T)(A/C)C; 3.31%], Asp516Tyr [(G/T)AC;
0.83%], Asp516Val [G(A/T)C; 0.83%], and Ser531Trp [T(C/G)G; 0.83%].

Isoniazid resistance-associated mutations in the target region of katG and in the
inhA promoter region were identified in 99.2% (122/123) of all isolates. One isolate with
a rare mutation in katG (Met275Ile) that is not interrogated by our assay was not
identified. The mutations detected were the katG mutations Ser315Thr [A(G/C)C;
91.06% and Ser315Gly (A/G)GC; 4.07%] and the �15C ¡ T (26.83%) mutation in the
inhA promoter region.

The gene gyrA is the major target for mutations mediating resistance to fluoro-
quinolones. Six of the investigated isolates showed such mutations: Asp94Gly [G(A/G)C;
50.00% of isolates], Asp94Tyr (33.33%), and Asp94Asn [(G/A)AC; 16.67%]. All isolates
were correctly identified. The phylogenetic SNP in gyrA Ser95Thr [A(G/C)C, which is
specific for clinical isolates phylogenetically related to the H37Rv reference strain] was
correctly identified in 242/242 (100%) of the isolates.

FIG 3 Specificity of the melting curve assay. The x axis shows the mycobacterial species tested, including M. tuberculosis, M. bovis BCG,
and nontuberculous mycobacteria. A probe specific for MTBC strains was used as an internal process control for verification of species
specificity. Hybridization signals of �0.05 at 63°C are defined as positive and indicate the presence of strains belonging to the MTBC;
thus, M. tuberculosis and M. bovis BCG were measured to be positive at the specific spot. NTM showed no cross-reaction with 106
copies per reaction in a reaction mix (hybridization signal � 0.05).
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Overall, our assay detected 963/968 (99.5%) of the known resistance targets (four
gene regions in 265 isolates) as the correct wild-type or mutant sequence, as previously
confirmed by Sanger sequencing.

Assay performance using crude culture material. The potential of our melting
curve assay for use in a nonlaboratory environment was characterized by the investi-
gation of crude culture material. For this purpose, four different MTBC strains carrying
six different mutations in the rpoB, katG, and gyrA genes and in the inhA promoter
region were selected. Crude cell culture extracts as well as the genomic DNA of these
strains were tested, and the results obtained by the melting curve assay were com-
pared. All mutations could be clearly identified, and no difference in the performance
of the assay with genomic DNA and the performance of the assay with crude culture
material with regard to the calculated discrimination factors was observed (Table S2).

DISCUSSION

The melting curve assay utilizing the Alere q analyzer platform can be performed
with the DNA from patient-derived (subcultured) MTBC isolates as well as with crude
cell material. The test is able to rapidly and reliably detect clinically relevant mutations
that mediate resistance to three major anti-TB drugs, i.e., rifampin, isoniazid, and
fluoroquinolones.

TABLE 1 Discrimination factors determined with array probesa

Isolate

Discrimination factor obtained for the following mutations with the indicated probes:

rpoB RRDR
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_v

02
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eu
_v

03
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_v

02
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03

51
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52
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03
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_v

02
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_v

04

52
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04

52
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_v
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_v
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52
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yr
_v

04

52
6C

ys
_v

03

52
6G
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_v

03
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_v

04

52
6S

er
_v

01

53
1L

eu
_v

04

53
1T

rp
_v

05

53
3P

ro
_v

04

H37Rv 0.93 0.94 0.90 0.95 0.96 0.93 0.93 0.89 0.84 0.88 0.87 0.88 0.89 0.89 0.94 0.93 0.88 0.90 0.96 0.89 0.93 0.89 *
3736/04 1.13 0.94 0.87 0.92 0.96 0.94 0.94 0.89 0.84 0.87 0.88 0.93 0.93 0.93 0.97 0.96 0.91 0.94 0.95 0.93 0.94 0.99 *
698/05 0.87 1.01 0.94 1.09 0.98 0.96 0.94 0.90 0.83 0.87 0.87 0.89 0.90 0.90 0.95 0.94 0.90 0.93 0.97 0.89 0.91 0.89 *
10502/06 0.89 1.04 0.93 1.01 0.97 0.96 0.94 0.89 0.83 0.86 0.86 0.88 0.89 0.89 0.94 0.92 0.86 0.91 0.95 0.92 0.94 0.91 *
6695/04 0.92 0.92 0.92 0.95 0.96 0.93 0.91 1.05 0.85 0.88 0.92 0.89 0.88 0.91 0.93 0.92 0.86 0.90 0.96 0.87 ** ** 1.06
7941/01 0.92 0.94 0.91 0.95 0.96 0.94 0.93 0.90 0.92 1.09 0.97 0.88 0.90 0.87 0.94 0.92 0.85 0.90 0.95 0.88 0.94 0.93 *
49-02-SR4a 0.93 0.94 0.91 0.95 0.95 0.94 0.93 0.89 0.98 1.04 1.15 0.86 0.88 0.84 0.92 0.90 0.85 0.89 0.93 0.86 0.93 0.89 *
5976/01 0.93 0.94 0.91 0.95 0.96 0.93 0.93 0.89 0.83 0.87 0.86 0.93 0.97 0.93 1.10 1.01 0.99 0.97 1.04 0.96 0.94 0.95 *
4787/03 0.93 0.94 0.91 0.96 0.96 0.94 0.93 0.89 0.93 0.85 0.87 0.95 0.97 0.97 0.99 1.07 1.00 0.91 1.05 0.94 0.92 0.88 *
3307/03 0.93 0.93 0.90 0.94 0.96 0.94 0.93 0.88 0.88 0.85 0.86 0.98 0.92 1.08 0.98 1.03 0.95 0.96 0.99 0.97 0.94 0.89 *
10427/01 0.93 0.95 0.91 0.96 0.96 0.94 0.92 0.89 0.89 0.84 0.85 0.98 1.04 0.98 1.00 1.07 1.14 0.94 0.98 1.05 0.91 0.91 *
2822/06 0.93 0.93 0.91 0.95 0.96 0.94 0.93 0.89 0.86 0.85 0.86 1.15 0.96 1.05 0.98 1.07 0.97 0.93 0.97 0.97 0.92 0.89 *
H37Rv-SR4k 0.93 0.94 0.91 0.95 0.96 0.93 0.93 0.89 0.84 0.86 0.89 0.93 0.99 0.97 1.04 1.07 0.94 1.05 1.12 0.92 *** *** *
4724/03 0.90 0.94 0.91 0.95 0.96 0.94 0.93 0.90 0.94 0.87 0.88 0.95 1.04 0.93 1.00 1.02 1.01 0.96 1.02 0.93 0.98 0.98 *
368/01 0.92 0.94 0.91 0.95 0.96 0.94 0.93 0.89 0.86 0.87 0.87 0.90 0.88 0.91 0.94 0.93 0.87 0.90 0.96 0.89 1.07 1.01 *
H37Rv-SR8a2 0.93 0.94 0.91 0.95 0.96 0.94 0.93 0.89 0.84 0.87 0.90 0.88 0.92 0.90 0.95 0.93 0.87 0.90 0.96 0.87 *** *** *
4709/09 0.91 0.94 0.91 0.95 0.97 0.94 0.93 0.90 0.86 0.87 0.90 0.91 0.91 0.91 *** 0.96 0.89 0.91 0.99 0.87 0.94 *** *
12401/03 0.90 0.94 0.91 0.95 0.96 0.94 0.93 0.89 0.88 0.88 0.87 0.88 0.90 0.91 0.95 0.93 0.92 0.90 0.97 0.89 1.05 1.01 *
3355/02 0.93 0.94 0.91 0.95 0.96 0.94 0.93 0.89 0.83 0.87 0.88 0.90 0.90 0.90 0.95 0.94 0.88 0.94 0.97 0.89 *** 0.90 *
3429/03 0.92 0.94 0.91 0.96 0.96 0.94 0.93 0.89 0.84 0.87 0.87 0.89 0.90 0.90 0.95 0.93 0.88 0.91 0.97 0.90 0.97 0.92 *
1429/02 0.93 0.94 0.91 0.97 0.96 0.94 0.93 0.88 0.84 0.87 0.91 0.90 0.93 0.90 0.95 0.93 0.90 0.94 0.98 0.88 0.97 0.98 *
8085/03 0.93 0.91 0.88 0.96 0.99 1.07 1.03 0.85 0.83 0.86 0.86 0.90 0.89 0.89 0.94 0.93 0.89 0.91 0.95 0.88 0.94 0.89 *
853/07 0.97 0.94 0.96 0.97 1.08 1.00 1.04 0.84 0.82 0.86 0.84 0.90 0.89 0.89 0.94 0.94 0.88 0.90 0.95 0.87 0.96 0.90 *
H37Rv-SO4a 0.92 0.94 0.91 0.95 0.96 0.93 0.93 0.89 0.84 0.86 0.87 0.91 0.92 0.92 0.95 0.94 0.93 0.93 0.98 0.93 0.96 0.93 *
4535/04 0.90 0.94 0.90 0.95 0.96 0.95 0.93 0.89 0.83 0.87 0.86 0.88 0.88 0.90 0.94 0.93 0.87 0.89 0.96 0.90 1.07 0.93 *
464/11 0.93 0.94 0.91 0.95 0.96 0.94 0.93 0.88 0.83 0.87 0.87 0.89 0.89 0.89 0.94 0.92 0.87 0.91 0.96 0.87 1.07 0.97 *
1598/06 0.92 0.94 0.90 0.95 0.96 0.93 0.93 0.88 0.86 0.87 0.88 0.89 0.89 0.90 0.94 0.92 0.89 0.91 0.96 0.92 1.05 0.95 *
10523/05 0.93 0.93 0.90 0.95 0.96 0.94 0.93 0.88 0.84 0.87 0.87 0.89 0.88 0.90 0.94 0.92 0.86 0.90 0.95 0.87 1.08 0.98 *
3075/05 0.93 0.94 0.90 0.95 0.96 0.93 0.92 0.89 0.83 0.87 0.87 0.88 0.88 0.89 0.94 0.92 0.86 0.90 0.95 0.87 1.08 0.96 *
8444/05 0.90 0.94 0.91 0.95 0.96 0.94 0.93 0.88 0.87 0.87 0.87 0.89 0.93 0.91 0.94 0.94 0.88 0.94 0.97 0.89 1.06 0.92 *
aNonboldface numbers indicate detection of the wild-type genotype, and boldface numbers indicate detection of the mutant genotype. The highest discrimination
factor is underlined. *, no reaction of the mutant probe (strong discrimination); **, cross-reaction with mutant 533Pro (probe overlapping) with no clear reaction or a
weak reaction; ***, clear identification in raw data; x, positive reaction of the assay controls; �, negative reaction.

(Continued on next page)
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Rifampin resistance is mainly caused by mutations in the rpoB RRDR and in rpoB
codon 572 (8–13). Until now, more than 50 mutations have been identified within the
rpoB RRDR. Mutations in codons 526 and 531 are well-known to be markers for
high-level resistance to rifampin, and their detection is therefore of high importance in
predicting the resistance profile (51–53). In addition, the molecular detection of the
mutations Leu533Pro [C(T/C)G], Leu511Pro [C(T/C)G], Asp516Tyr [(G/T)AC], and His526Leu
[C(A/T)C] have also been described to be linked to treatment failures observed by the
use of standard regimens with 600 mg/day rifampin (54, 55). Individual RRDR mutations
can confer either low- or high-level resistance, depending on the amino acid change
(56). The possibility that high-dose rifampin treatment or treatment with rifabutin
instead of rifampin could be used to overcome the resistance conferred by individual
RRDR mutations has been discussed, although such treatments for this purpose remain

TABLE 1 (Continued)
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H37Rv 0.97 0.96 0.96 0.93 0.92 0.94 0.96 0.95 0.96 0.93 0.98 0.94 0.96 0.98 0.99 0.93 0.98 0.98 0.97 0.99 x x �
3736/04 0.97 0.96 0.96 0.92 0.91 0.94 0.98 0.96 0.96 0.91 0.99 0.94 0.97 1.01 0.98 0.98 0.99 0.97 0.95 1.02 x x �
698/05 0.97 1.05 1.04 1.11 1.07 1.00 0.96 0.92 0.92 0.93 0.99 0.93 0.97 0.98 0.97 0.95 0.98 0.97 0.95 1.02 x x �
10502/06 0.97 1.05 1.03 1.11 1.05 0.99 0.98 0.96 0.95 0.93 1.00 0.95 0.98 0.98 0.98 0.94 0.98 0.97 0.95 1.01 x x �
6695/04 0.98 1.06 1.04 1.11 1.07 1.00 0.94 0.98 0.97 0.93 0.94 0.93 0.97 0.97 0.98 0.94 0.98 0.97 0.95 1.01 x x �
7941/01 0.97 0.96 0.96 0.92 0.92 0.94 0.94 0.92 0.90 0.90 0.97 0.89 0.93 0.96 0.96 0.95 0.98 0.96 0.94 1.06 x x �
49-02-SR4a 0.97 0.95 0.96 0.91 0.91 0.94 0.99 0.97 0.96 0.94 0.99 0.96 0.98 0.99 0.98 0.94 0.99 0.97 0.95 1.01 x x �
5976/01 0.96 1.06 1.04 1.12 1.07 1.00 0.95 0.93 0.92 0.91 0.98 0.90 0.94 0.98 0.97 0.96 0.98 0.97 0.96 1.03 x x �
4787/03 0.96 1.05 1.04 1.11 1.07 1.00 0.93 0.93 0.91 0.93 0.98 0.93 0.97 0.99 0.98 0.93 0.98 0.97 0.95 1.02 x x �
3307/03 0.97 0.96 0.96 0.92 0.91 0.94 0.91 0.88 1.06 0.90 0.97 0.89 0.93 0.97 0.97 0.93 0.98 0.96 0.95 1.05 x x �
10427/01 0.97 1.06 1.04 1.12 1.07 1.00 0.94 0.92 0.90 0.90 0.97 0.90 0.93 0.97 0.97 0.93 0.98 0.96 0.94 1.05 x x �
2822/06 0.97 0.95 0.96 0.92 0.91 0.94 0.89 0.87 1.07 0.90 0.97 0.88 0.93 0.97 0.96 0.95 0.97 0.96 0.94 1.08 x x �
H37Rv-SR4k 0.96 0.95 0.96 0.92 0.91 0.94 0.93 0.91 0.90 0.90 0.97 0.89 0.93 0.97 0.97 0.91 0.96 0.97 0.95 0.97 x x �
4724/03 0.96 1.05 1.04 1.11 1.07 1.00 0.94 0.92 0.90 0.90 0.96 0.89 0.93 0.98 0.97 0.96 0.98 0.96 0.95 1.06 x x �
368/01 0.98 1.05 1.04 1.12 1.07 1.01 0.93 0.91 0.91 0.90 0.97 0.90 0.93 0.97 0.97 0.93 0.98 0.96 0.94 1.06 x x �
H37Rv-SR8a2 0.97 0.96 0.97 0.93 0.92 0.94 0.93 0.91 0.91 0.91 0.97 0.91 0.93 0.97 0.97 0.90 0.96 0.96 0.95 0.97 x x �
4709/09 1.10 1.05 1.04 1.11 1.06 0.99 0.94 0.93 0.92 0.90 0.97 0.90 0.93 0.98 0.97 0.93 0.98 0.98 0.95 1.05 x x �
12401/03 0.97 1.14 1.05 1.05 1.05 1.01 0.93 0.92 0.91 0.90 0.97 0.89 0.93 0.96 0.97 0.95 0.98 0.97 0.95 1.07 x x �
3355/02 0.97 1.06 1.13 1.03 1.05 1.00 0.92 0.91 0.90 0.90 0.97 0.89 0.93 0.96 0.97 0.95 0.98 0.96 0.95 1.06 x x �
3429/03 0.97 0.98 0.97 0.93 0.94 1.10 0.87 0.85 1.07 0.90 0.97 0.90 0.93 0.96 0.97 0.95 0.98 0.96 0.95 1.04 x x �
1429/02 0.96 1.07 1.05 1.05 1.19 1.03 0.93 0.91 0.90 0.90 0.96 0.88 0.93 0.96 0.97 0.95 0.98 0.97 0.94 1.08 x x �
8085/03 0.97 1.05 1.03 1.11 1.06 1.00 1.06 0.99 0.96 0.90 0.97 0.88 0.93 0.97 0.97 0.93 0.98 0.96 0.94 1.09 x x �
853/07 0.97 1.05 1.03 1.11 1.06 1.00 0.94 0.92 0.89 0.86 1.16 0.97 0.91 0.96 0.96 0.93 0.97 0.96 0.94 1.08 x x �
H37Rv-SO4a 0.96 0.96 0.96 0.92 0.91 0.94 0.93 0.91 0.91 0.91 0.97 1.07 0.93 0.93 0.94 0.90 0.93 0.93 0.93 0.97 x x �
4535/04 0.97 1.06 1.04 1.11 1.07 1.00 0.93 0.92 0.91 0.90 0.98 0.96 1.08 *** 0.94 1.00 0.95 0.96 *** 1.04 x x �
464/11 0.97 1.05 1.04 1.12 1.07 1.00 0.93 0.92 0.93 0.90 0.97 0.89 0.93 1.10 1.00 1.02 1.05 1.02 1.01 1.06 x x �
1598/06 0.97 1.06 1.04 1.13 1.07 1.00 0.93 0.93 0.91 0.90 0.98 0.90 0.93 1.03 1.00 1.04 1.02 1.00 1.03 1.06 x x �
10523/05 0.92 1.05 1.04 1.11 1.06 1.00 0.93 0.91 0.89 0.89 0.98 0.89 0.92 1.02 0.98 1.03 1.01 1.04 0.96 1.07 x x �
3075/05 0.97 1.14 1.05 1.04 1.05 1.00 0.92 0.91 0.90 0.89 0.97 0.89 0.91 1.05 1.10 1.05 1.06 1.03 0.99 1.08 x x �
8444/05 0.95 0.96 0.97 0.92 0.92 0.94 0.88 0.87 1.06 0.90 0.97 0.92 0.92 0.97 1.04 0.93 1.12 1.04 0.98 0.95 x x �

TABLE 2 Clinical evaluation of M. tuberculosis isolates from Swaziland

Assay

No. (%) of isolatesa

RIF INH FQ

TotalWild type Mutant Wild type Mutant Wild type Mutantb

Melting curve assay 144 (54.3) 121 (45.7) 143 (54.0) 122 (46.0) 259 (97.7) 6 (2.3) 265 (100)
Sequencing 144 (54.3) 121 (45.7) 142 (53.6) 123 (46.4) 259 (97.7) 6 (2.3) 265 (100)
aRIF, rifampin; INH, isoniazid; FQ, fluoroquinolones.
bExcluding the phylogenetic SNP Ser95Thr.
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controversial. This highlights the importance of differentiating between the various
resistance markers to determine more individualized treatment options that could
improve treatment outcomes (57, 58). Furthermore, we implemented the correspond-
ing probes for the detection of the mutation Phe572Ile [(A/T)TC] due to its ability to
confer resistance to rifampin, as shown in recent studies (11–13).

Studies have also shown that resistance to isoniazid is very common in countries
with a high burden of TB and that isolates resistant to isoniazid may not necessarily be
coresistant to rifampin (53). Thus, there is a need to test MTBC strains for isoniazid
resistance (59, 60). To obtain proof of isoniazid resistance, we applied probes repre-
senting the sequences of the wild type and mutant variants with mutations in katG
codon 315 as well as at positions �15 and �8 in the inhA promoter region. Specific
mutations in the katG gene are associated with high-level isoniazid resistance, whereas
mutations in the inhA promoter region, especially the �15C ¡ T mutation, are the
cause of high-level resistance to ethionamide and prothionamide and low-level resis-
tance to isoniazid (61). Thus, the �15C ¡ T mutation could also lead to the exclusion
of ethionamide and prothionamide from MDR-TB treatment regimens.

Resistance to fluoroquinolones is mainly caused by mutations in the gyrA gene
(10, 14, 15). The mutations Ala90Val [G(C/T)G], Asp94Asn [(G/A)AC], and Asp94Val
[G(A/T)C] were observed to be related to high-level resistance (62, 63). In addition,
several mutations in the gyrB gene have been detected; however, these have not
been frequently detected and are usually detected in association with gyrA muta-
tions (9, 47, 64–67). Fluoroquinolones play an important role in the treatment of
MDR-TB and are widely used for the treatment of MDR-TB due to the relatively low
incidence of side effects in association with their use and their high bactericidal
activity compared to the activities of other anti-TB drugs (10). Currently, new
fluoroquinolones are being evaluated in clinical trials in an effort to shorten the
long-term fluoroquinolone treatments currently used and the associated burden for
TB patients (68, 69). All in all, our assay can be used for the detection of the most
important mutations which are associated with resistance to rifampin and isoniazid
as well as to fluoroquinolones. The results of this assay could possibly help to
determine more effective treatment options as a result of determination of the
mutations present in isolates from individual patients. The prototype cartridge was
designed with a focus on MDR-TB detection and cannot detect resistance to
second-line injectable drugs; however, it will be easy to adjust the assay by
adjusting the respective probes on the array. The same is true in the event that the
focus swings to other mutations or drugs, as the maximum probe number has not been
achieved, and an extension of the analysis spectrum is possible.

Overall, we tested 30 genomic DNAs from different MTBC strains for the initial
evaluation of the performance of the melting curve assay. With one exception, the
mutations in all isolates carrying mutations in one of the respective target regions
were correctly identified. Isolate 853/07, which has the uncommon mutation
Leu511Arg [C(T/G)G], could not be identified as the corresponding probe for that
mutation was not applied on the array. Furthermore, the rpoB mutation Ile569Val
[(A/G)TC], which occurs outside the rpoB RRDR (isolate 10523/05) and which is
likewise a rare mutation and in most cases is connected to mutations in the rpoB
RRDR, was also not detected (70).

To test the performance of the assay in settings with a high incidence of MDR-TB,
we tested 265 isolates from a recent drug resistance survey in Swaziland, a country
with one of the highest burdens of HIV infection and TB globally (1). Among 116
multidrug-resistant strains included in the same drug resistance survey from 2009
and 2010, Sanchez-Padilla et al. observed 38 (32.8%) strains that carried the rpoB
Ile572Phe [(A/T)TC] mutation, which confers resistance to rifampin (23, 71). Al-
though this mutation was previously reported at a low frequency in clinical isolates
in Hong Kong and Australia (72), we decided to implement the detection of the rpoB
Ile572Phe [(A/T)TC] mutation in our melting curve assay. Overall, the resistance-
mediating mutations previously identified by Sanger sequencing were confirmed by
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our assay to be present in all fluoroquinolone-resistant isolates and in 99.2% of the
isoniazid- and rifampin-resistant isolates. The few exceptions were the mutation
consisting of the deletion of codons 513 and 514 in rpoB in one isolate that was
misinterpreted as having the Ser513Leu [C(A/T)A] mutation. Three isolates carrying
linked mutations in the rpoB RRDR in codons 516 and 518 were identified to have
the correct mutation in codon 516, but for codon 518 we misinterpreted the
wild-type sequence due to the absence of an Asn518Asp [(A/G)AC] probe in our
assay. The mutation rpoB Ala633Cys [(G/T)(C/G)C] of isolate 4723/09 is not associ-
ated with resistance. In this case, rifampin resistance was correctly predicted by
detection of the Ile572Phe [(A/T)TC] mutation in rpoB. The rare proposed isoniazid
resistance marker katG Asn275Ile [A(C/T)C] could not be identified in isolate
1057/10 because this mutation is, like the rpoB mutation in codon 633, located
outside the defined areas where mutations are detected by the assay. Moreover, a
clear association between these rare mutations and their impact on the resistance
phenotype is still missing (73, 74). These examples of rare and partially unknown
mutations also show the conceptual limitations of target-based molecular tests in
general. The predefined set of clinically and epidemiologically relevant mutations
will need to be carefully selected and is limited, and the evaluation of particular
mutations might differ even in adjacent geographic regions, as observed in
KwaZulu-Natal in South Africa and Swaziland, which have distinct MDR/XDR strain
types and where the strains have distinct mutation profiles (71, 75).

The gold standard for the detection of drug resistance is still the culture-based
proportion method with Lowenstein-Jensen medium, which is recommended by
WHO and has been used for over 50 years (76). However, due to a generation time
of MTBC strains of approximately 24 h, culture-based methods are very slow and
technically challenging and require a well-established laboratory infrastructure.
Consequently, these aspects delay the detection of drug resistance and lead to
inappropriate treatment and the spread of drug-resistant strains (77). Fast culture
methods, such as those that use the Bactec MGIT 960/BactT/Alert system and the
phage technique, are also tedious and require a biosafety level 3 laboratory
environment and specialized staff (78, 79). Therefore, and because drug resistance
is associated with mutations which code for resistance to the respective drug target
or for enzymes involved in the drug inactivation process, molecular test systems are
now widely used in (supra-)national TB reference laboratories (80). Several com-
mercial assays that test for rifampin, isoniazid, and fluoroquinolone resistance are
available. The results of line probe assays, such as the GenoType MTBDRplus assay
(v1.0 and v2.0) and the GenoType MTBDRsl assay (v2.0), which detect mutations
mediating resistance to rifampin, isoniazid, fluoroquinolones, and ethambutol, as
well as to injectable drugs, have shown a high concordance with those of standard
diagnostic methods (culture, real-time PCR) and DNA sequencing (81, 82). Despite
its high sensitivity and specificity, the open platform design harbors a risk for
potential amplicon contamination, and its performance is still labor-intensive (83).
The Xpert MTB/RIF assay is the first point-of-care system that enables the sensitive
and specific detection of rifampin resistance by the direct use of primary sputum
samples. In summary, after preparation of the sputum specimen, all subsequent
steps, including PCR amplification and interpretation of the results, are fully auto-
mated (84, 85). So far, the Xpert system is limited to the detection of rifampin
resistance, and other proposed molecular test systems are also suitable for the
detection of multidrug resistance, but they require several manual handling steps
and specialized equipment (86–88).

In conclusion, our melting curve assay with a prototype cartridge is suitable for the
detection of rifampin, isoniazid, and fluoroquinolone resistance, and from the time of
application of the reaction mix to the time of detection, the assay can be completed
within 90 min. The assay reliably detects MTBC DNA in amounts down to 24 copies per
reaction mixture and works with genomic DNA as well as with crude cell extracts. The
prototype cartridge has the advantage that it can be run with dried reagents, which has
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been confirmed with wild-type genomic DNA (see Fig. S1 in the supplemental material).
Furthermore, the array system is very flexible, and resistance markers as well as the
maximum amount of spotted probes can be adapted to future diagnostic requirements
in a straightforward manner.
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