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Abstract

Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and
immunity. However, the mechanism of LPA regulation during inflammatory response is
largely unknown. Autotaxin (ATX) is the key enzyme to produce extracellular LPA from lyso-
phosphatidylcholine (LPC). In this study, we found that ATX was induced in monocytic
THP-1 cells by TLR4 ligand lipopolysaccharide (LPS), TLR9 ligand CpG oligonucleotide,
and TLRS3 ligand poly(l:C), respectively. The ATX induction by TLR ligand was abolished by
the neutralizing antibody against IFN-$ or the knockdown of IFNAR1, indicating that type |
IFN autocrine loop is responsible for the ATX induction upon TLR activation. Both IFN-8
and IFN-a were able to induce ATX expression via the JAK-STAT and PI3K-AKT pathways
but with different time-dependent manners. The ATX induction by IFN- was dramatically
enhanced by IFN-y, which had no significant effect on ATX expression alone, suggesting a
synergy effect between type | and type Il IFNs in ATX induction. Extracellular LPA levels
were significantly increased when THP-1 cells were treated with IFN-a/B or TLR ligands. In
addition, the type | IFN-mediated ATX induction was identified in human monocyte-derived
dendritic cells (moDCs) stimulated with LPS or poly(1:C), and IFN-a/$ could induce ATX
expression in human peripheral blood mononuclear cells (PBMCs) and monocytes isolated
form blood samples. These results suggest that, in response to TLR activation, ATX is
induced through a type | INF autocrine-paracrine loop to enhance LPA generation.

Introduction

Autotaxin (ATX), also known as ENPP2 (ectonucleotide pyrophosphatase phosphodiesterase-
2), is a secreted glycoprotein with lysophospholipase D (lysoPLD) activity converting lysopho-
sphatidylcholine (LPC) into lysophosphatidic acid (LPA)[1]. LPA is a bioactive phospholipid
acting on specific G protein-coupled receptors to regulate a wide range of cellular activities,
ranging from cell proliferation, differentiation, migration, to anti-apoptosis[2]. ATX functions
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as the key enzyme for LPA production in plasma [3-5]. Many, if not all, biological functions of
ATX appear to be mediated by LPA signaling.

Increased ATX expression has been detected in several cancers, and the effects of ATX-
LPAaxis in cancers are extensively studied [2, 6, 7]. Meanwhile, emerging data indicate that
ATX-LPA axis plays an important role in immunity. As an important phospholipid mediator
in inflammation and immunity, LPA modulates immune response by attracting and activating
T-cells, B-cells and macrophages directly or indirectly by influencing their interactions with
other cell types[8-13]. ATX is constitutively expressed in the high endothelial venules (HEVs)
and facilitates T cell entry into lymph nodes by stimulating transendothelial migration (TEM)
[14-16]. Recently, it has been found that ATX expression and activities are increased in several
inflammatory diseases. For example, ATX is induced in mouse lung bronchial epithelial cells
and alveolar macrophages during the bleomycin-induced pulmonary inflammation and fibro-
sis [17, 18], and upregulation of ATX expression is observed in synovial fibroblasts from rheu-
matoid arthritis (RA) patient as well as in the mouse model of arthritis [19, 20]. Increased ATX
activity levels are detected in serum of patient with hepatitis C [21], and ATX expression is sig-
nificantly elevated in hepatitis-related hepatocellular cancer (HCC) compared to HCC tissues
developed from non-inflammatory background [22]. However, the mechanism of ATX upre-
gulation in inflammatory states is largely elusive.

The multiple IFN-o members and IFEN-f belong to the type I interferons (IFNs), which are
the first family of cytokines discovered and named for their potent ability to “interfere” with
viral replication [23]. Type I IFNs function through the type I IFN receptor (IFNAR) composed
of two subunits, IFNAR1 and IFNAR2 [24]. JAKs, TYK2, and STATs are the major down-
stream signaling molecules of the IFN pathway [25-27]. The Toll-like receptors (TLRs) com-
prise of a cellular system in response to a broad range of infections by bacteria, fungi, protozoa
and viruses [28, 29]. Several TLR ligands, such as lipopolysaccharide (LPS, ligand for TLR4)
and nucleic acids (ligands for TLR3, TLR7, TLR8 and TLR9), induce potent induction of type I
IFNs through the activation of interferon-regulatory factors (IRFs) [30, 31]. Type I IFNs impli-
cate in the induction of a significant proportion of genes regulated by TLR signaling, and func-
tion as key components in infection and inflammatory reaction [32].

We have recently demonstrated that ATX is induced in LPS-stimulated THP-1 cells [33,
34]. To further understand the regulation of ATX-LPA axis in immune responses, in this study
we investigated the mechanism of ATX regulation by different TLR ligands in several immune
cell types, including human peripheral blood mononuclear cells (PBMCs), monocytes, and
monocyte-derived dendritic cells (moDCs). It was found that ATX was induced via the type I
IFN autocrine loop during TLR activation, and that type I IFNs also could function as para-
crine factors to induce ATX in immune cells. Our findings described a previously unknown
function of type I IFNs in ATX induction and revealed the mechanism of ATX-LPA axis regu-
lation in response to TLR activation.

Material and Methods
Cells culture and treatments

THP-1 cells were cultured in RPMI-1640 medium supplemented with fetal bovine serum
(10%), L-glutamine (2 mM), streptomycin (100 pg/ml) and penicillin (100 U/ml) at 37°Cina
humidified atmosphere containing 5% CO2. For experiments to detect the secreted ATX,
THP-1 cells were cultured in a conditioned serum-free medium with 250 pg/ml fatty-acid free
BSA as described previously [33]. Human peripheral blood mononuclear cells (PBMCs) were
obtained from leukapheresis specimens of normal donors after Ficoll-Paque density gradient
separation. PBMCs were washed twice in Hank’s balanced salt solution and then resuspended
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in RPMI-1640 medium supplemented with fetal bovine serum (10%). Highly enriched mono-
cytes (>80% CD14+) were purified by adherence as described [35]. For the generation of den-
dritic cells, monocytes were cultured for 7 days in RPMI and 10% FBS supplemented with 50
ng/ml GM-CSF and 50 ng/ml IL-4 [36]. This study has been approved by the ethics committee
of College of Life Sciences, Beijing Normal University. The donors who were enrolled in this
study have signed the informed consent.

Cytokines, antibodies and inhibitors

LPS (from Escherichia coli serotype 055:B5) and poly(I:C) was purchased from Sigma-Aldrich.
CpG oligonucleotides were purchased from InvivoGen (San Diego, CA). Recombinant human
IFN-o, IFN-B, IFN-y, GM-CSF, IL-4 and TNF-o were purchased from PeproTech. JAK inhibi-
tor pyridone 6 (P6) was obtained from Sigma-Aldrich. PI3-kinase inhibitor LY294002, extra-
cellular signal-regulated kinase (ERK) inhibitor PD98059 and p38 MAPK inhibitor SB202190
were obtained from Calbiochem (La Jolla, CA). The primary antibodies against STAT3,
IFNARI and B-actin were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The
primary antibodies against STAT1, AKT, IRF3 and IRF7 were purchased from Cell Signalling
Technology (Beverly, MA). The neutralizing antibody against IFN-o and that against IFN-f
were purchased from PeproTech. The primary antibody against ATX was produced by our lab
as described previously [33].

RT-PCR and quantitative real-time RT-PCR (qRT-PCR)

Total RNA was extracted from cells with Trizol (Invitrogen), and then digested with DNase I
(Ambion) for 15 min at 37°C in order to remove DNA contamination. RNA (2 pg) from cells
were reverse-transcribed using anchored oligo dT primers and the Reverse Transcription Sys-
tem (Promega). The cDNAs encoding indicated genes were amplified with specific primers.
ATX: forward primer, 5’-GACTATGACTAGGATGGCTTAC-3’ and reverse primer, 5" -
GATGATGCTGTAGTAGTGAGT-3’ ; GAPDH: forward primer, 5 ~TTAGCACCCCTGTC
CAAGG-3' and reverse primer, 5/ ~-CCTACTCCTTGGAGGCCATG-3’ ; MX2: forward primer,
5’ ~AACTGTTCAGAGCACGATT-3’ and reverse primer, 5/ ~-TTCCAAGAAGTAGGCATTCA-
37 ; IFNARI: forward primer, 5’ ~-TGCCATGCCAGAAGATAGTG-3' and reverse primer, 5" -
TTAGGTGCTCAGGCTTCCAG-3’ ; TLR3 forward primer, 5 ~CAACAACAACATAGC
CAACA-3' and reverse primer, 5’ ~ACCTTCTTCTCAACGGATG-3’ ; TLR4 forward primer,
5’ ~-TGGATACGTTTCCTTATAAG-3' and reverse primer, 5’ ~GAAATGGAGGCACCCCTTC-
37 ; TLRY forward primer, 5 ~CAACATCCACAGCCAAGT-3' and reverse primer, 5’ —
CAGGTAATTGTCACGGAGA-3’ ; IFN-as, forward primer, 5 ~GATGGCCGTGCTGGTGC
TCA-3' [37] and reverse primer, 5 ~TGATTTCTGCTCTGACAACCTCCC-3" ; IFN-B, for-
ward primer, 5’ ~AAACTCATGAGCAGTCTGCA-3’ and reverse primer, 5’ —~AGGAGATCTT
CAGTTTCGGAGG-3' . TNF-q, forward primer, 5’ ~-TCCAGACTTCCTTGAGACA-3’ ;and
reverse primer, 5/ ~GGCGATTACAGACACAACT-3’ . The qRT-PCR was performed using the
iQ SYBR Green Supermix (BioRad) with the iCycler iQ realtime RT-PCR detection system
(Bio-Rad). Relative expression of each target gene was estimated by normalization with the
expression of GAPDH. Each qRT-PCR experiment was repeated at least three times with 3 par-
allel samples.

Immunoblotting assays

Cells were lysed in RIPA buffer for 30 min. After centrifugation, the supernatants were quanti-
fied by bicinchoninic acid assay (Micro BCA; Pierce Biotechnology, Rockford, IL). For
experiments detecting the secreted ATX protein, the culture medium was concentrated (by
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approximately 30-fold) using Amicon Ultra 30,000 (Millipore). Protein quantification was
conducted and equal amount protein was loaded for each sample. Protein samples were sub-
jected to SDS-PAGE and analyzed as described previously [33]. Each Western blot analysis was
repeated at least three times.

RNA interference

All siRNAs were synthesized in Gene-Pharma (Shanghai, China), and the target sequences
were: IFNARI: 5’ ~-CTGGGATGGATAATTGGAT-3" ;IRF3: 5/ ~CCACTTTGGTGTTTCATAA~
3’ IRF7: 5 ~GCCTCTATGACGACATCGAZ ; STATI1: 5 ~GCTTCTTGGTCCTAACGCC-3';
STAT3: 5" -CCACTTTGGTGTTTCATAA-3' ;JAKI: 5’ - GACAUGAUAUUGAGAACGA-3' ;
TYK2: 5" - GCAUCCACAUUGCACAUAA -3’ ; non-specific-siRNA (siNC): 5’ —UUCUCC
GAACGUGUCACGU-3' . The siRNAs were transfected into cells with lipofectamine 2000 (Invi-
trogen), according to the protocol supplied by manufacturer. In each siRNA transfection
experiment, the siNC was used as control.

Lipid extraction and analysis

Lipids were extracted by Bligh and Dyer method[38] with modification. In brief, 0.8 ml of con-
ditioned medium were collected and used for extraction of LPA. The conditioned medium
were mixed with 0.5 mL of PBS (1X) and 3 mL of a 1:2 (v/v) mixture of CHCl;: MeOH with
HCI (10 pl, 6N). 14:0 LPA (10 pmol in 10 uL. MeOH) was added as internal standard. The sam-
ples were vortexed and incubated on ice for 10 min. CHCl; (1 ml) and H,O (0.5 ml) were then
added and the samples were revortexed. The phases were separated by centrifugation (1,750 g
for 10 min at 10°C) and the bottom phase was recovered. After solvent evaporation, the dried
lipids were resuspended using 100 pl of MeOH for mass spectrometry (MS) analysis. Electro-
spray ionization-mass spectrometry and tandem mass spectrometry analyses were done using
a QTRap 4500 Mass Spectrometer (Applied Biosystems/MDS SCIEX, Forster City, CA) as
described previously [39].

Detection of lysoPLD activity

The conditioned serum-free medium from THP-1 cells with or without exposure to IFN-o.

(50 ng/ml), IFN-B (10 ng/ml) or LPS (0.1 pug/ml) for 24h, by CpG ODN (1 pM) or poly(I:C)
(10 pg/ml) for 12h was concentrated (40-fold) using Amicon Ultra 30,000 (Millipore). The
lysoPLD activity in the concentrated conditioned medium was analyzed using fluorogenic sub-
strate FS-3 as described previously [33]. Briefly, the assays were performed by mixing 50 pl
concentrated medium with 10 uM FS-3 at 37°C for 4 h. LysoPLD activity was measured by
detecting the fluorescence increase with 494 and 520 nm as the excitation and emission wave-
lengths, respectively.

Results

ATX induction in LPS-stimulated THP-1 cells is mediated by autocrine
IFN-B production

In previous study, we have demonstrated that ATX is induced in human monocytic THP-1
cells under lipopolysaccharide (LPS) stimulation [33, 34]. LPS, as TLR4 ligand, induced a time-
and dose-dependent ATX expression (Fig 1A, Figures A and B in S1 Fig). A significant induc-
tion of ATX was detected as early as 8h stimulation, and sustained to 24 h (Fig 1A). Cyclohexi-
mide (CHX), a translation inhibitor, significantly inhibited LPS-induced ATX expression (Fig
1B), suggesting that the ATX induction is dependent on new protein synthesis.
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Fig 1. ATX is induced by TLR4 ligand LPS in THP-1 cells dependent on the IRF3-mediated autocrine IFN-B production. (A) THP-1 cells were
stimulated with LPS (0.1 pg/ml) for the indicated times. ATX mRNA expression was detected by qRT-PCR. After LPS stimulation for 24h, the secreted ATX
protein in culture medium was detected by Western blot. (B) THP-1 cells were incubated with CHX (1 uM) for 30 min prior to the stimulation with LPS. ATX
mRNA expression was analyzed after LPS stimulation for 16h by qRT-PCR. (C) THP-1 cells were transfected with IRF3 siRNA and non-specific siRNA
(siNC) respectively. After siRNA transfection for 48 h, THP-1 cells were treated with LPS for 16h. IRF3 protein was detected by Western blot, and ATX mRNA
expression was analyzed by qRT-PCR. (D) THP-1 cells were preincubated for 30 min with IFN-B specific neutralizing antibody (anti-IFN-f; 1 pg/ml) or
negative control antibody (rabbit IgG; 1 pg/ml), and then subjected to LPS stimulation. ATX mRNA expression was detected after LPS stimulation for 16h by
gRT-PCR. (E) THP-1 cells were transfected with IFNAR1 siRNA and non-specific siRNA (siNC), respectively. After siRNA transfection for 48 h, THP-1 cells
were treated with LPS for 16h. IFNAR1 protein was detected by Western blot, and ATX mRNA expression was analyzed by qRT-PCR. The ATX expression
detected by gRT-PCR analyses was normalized to expression of GAPDH and presented relative to expression in untreated cells. All gRT-PCR data are
expressed as mean values + SD, n = 3. The p values derived from Student’s t test are (*) p < 0.05, (**) p < 0.01. A representative experiment out of three is
shown.

doi:10.1371/journal.pone.0136629.g001
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Type Iinterferons (IFNs) are produced in response to TLR activation and control the induc-
tion of significant proportion of genes regulated by TLR signaling [32]. IFN-f, but not IFN-a,
was induced in the LPS-stimulated THP-1 cells (Figures A and B in S1 Fig). IFN-f is induced
by LPS through the activation of IFN regulatory factors 3 (IRF3), which is phosphorylated and
then translocated to the nucleus after TLR4 activation [40]. Knockdown of IRF3 by siRNA
inhibited the ATX induction by LPS in THP-1 cells (Fig 1C). Furthermore, the neutralizing
antibody against IFN- significantly blocked ATX induction in LPS-stimulated THP-1 cells
(Fig 1D). Type I IENs, IEN-o and IFN-B, share a heterodimeric receptor IFNAR composed of
IFNARI1 and IFNAR?2 subunits. ATX induction by LPS was suppressed by the knockdown of
IFNARI with siRNA (Fig 1E). These data indicate that the autocrine IFN-f production and the
IFNAR signaling are required for the ATX induction in THP-1 cells in response to LPS
stimulation.

CpG oligonucleotides induce ATX expression through the IFN-3
autocrine loop

The innate immune system of vertebrates is able to recognize unmethylated CG dinucleotides
within the CpG motifs in microbial DNA via TLR9. Consequently, CpG oligonucleotides
(ODN) can active the immune cells with TLR9 expression and induce cytokines to modulate
immune responses [41]. Here, we found that ATX was induced in the CpG ODN-treated THP-
1 cells in a time- and dose-dependent manner (Fig 2A, Figures C and D in S1 Fig). Type I IFNGs,
both IFN -o and IFN-, were induced in the CpG ODN-treated THP-1 cells (Figures C and D
in S1 Fig). CpG ODN induces type I IFN through the TLR9-IRF7 pathway [42]. Knockdown of
IRF7 to block type I IFN production suppressed the ATX induction by CpG ODN (Fig 2B).
The ATX induction in THP-1 cells in response to CpG ODN treatment was significantly inhib-
ited by the neutralizing antibody against IFN-f, but not by the neutralizing antibody against
IFN-a (Fig 2C). Moreover, the ATX induction by CpG ODN was inhibited by IFNAR1 knock-
down (Fig 2D). These data indicate that ATX is induced through the IFN-f autocrine loop in
CpG ODN-treated THP-1 cells.

Poly(I:C) induces ATX expression through IRF3-mediated type | IFN
production

TLR3 recognizes viral double-stranded RNA (dsRNA) during infection. Polyriboinosinic:poly-
ribocytidylic acid (poly(I:C)) is the synthetic analog of dsRNA, and functions as TLR3 ligand
to active immune cells [43]. ATX induction was observed in the poly(I:C)-treated THP-1 cells
(Fig 3A, Figures E and F in S1 Fig), and suppressed by IRF3 knockdown (Fig 3B), which blocks
the type I IEN production by poly(I:C) via TLR3 activation [44]. Both IFN-B and IFN-o were
induced in poly(I:C)-treated THP-1 cells (Figures E and F in S1 Fig). The neutralizing antibody
against IFN-P significantly inhibited the ATX induction in poly(I:C)-treated THP-1 cells, but
the neutralizing antibody against IFN-o. did not (Fig 3C). Knockdown of IFNARI1 blocked the
ATX induction by poly(I:C), suggesting the IFNAR signaling is essential for ATX induction
(Fig 3D). These data indicate that the TLR3 ligand poly(I:C) induces ATX in THP-1 cells
through the IRF3-mediated IFN-f production and the IFNAR signaling.

Type | IFNs induce ATX expression through the JAK-STAT and
PIBK-AKT signaling pathways

In order to detect whether type I IFN (IFN-a/B) can induce ATX expression directly, the
THP-1 cells were treated with IFN-o and IFN- respectively. It was found that both IFN-a and
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Fig 2. ATX is induced by TLR 9 ligand CpG oligonucleotides (ODN) in THP-1 cells dependent on the IRF7-mediated autocrine IFN-B production. (A)
THP-1 cells were treated with CpG ODN (1 uM) for the indicated times. ATX mRNA expression was detected by gRT-PCR. After CpG ODN treatment for
12h, the secreted ATX protein in culture medium was detected by Western blot. (B) THP-1 cells were transfected with IRF7 siRNA and non-specific sSiRNA
(siNC) respectively. After siRNA transfection for 48 h, THP-1 cells were treated with or without CpG ODN for 6h. IRF7 protein was detected by western blot,

and ATX mRNA expression was analyzed qRT-PCR. (C) THP-1 cells were preincubated for 30 min with IFN-a specific neutralizing antibody (anti-IFN-a;

1 pg/ml) or IFN-B specific neutralizing antibody (anti-IFN-B; 1 pg/ml), and then subjected to CpG ODN treatment. ATX mRNA expression was detected after
CpG ODN treatment for 6h by gRT-PCR. (D) THP-1 cells were transfected with IFNAR1 siRNA and non-specific siRNA (siNC), respectively. After siRNA

transfection for 48 h, THP-1 cells were treated with CpG ODN for 6h. IFNAR1 protein was detected by Western blot, and ATX mRNA expression was

analyzed by gRT-PCR. The ATX expression detected by gRT-PCR analyses was normalized to expression of GAPDH and presented relative to expression
in untreated cells. All qRT-PCR data are expressed as mean values + SD, n = 3. The p values derived from Student’s t test are (*) p < 0.05, (**) p<0.01. A

representative experiment out of three is shown.

doi:10.1371/journal.pone.0136629.9002
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Fig 3. ATX is induced by TLR 3 ligand poly(I:C) in THP-1 cells dependent on the IRF3-mediated autocrine IFN-B production. (A) THP-1 cells were
treated with poly(I:C) (10 pg/ml) for the indicated times. ATX mRNA expression was detected by gRT-PCR. After poly(l:C) treatment for 12 h, the secreted
ATX protein in culture medium was detected by Western blot. (B) THP-1 cells were transfected with IRF3 siRNA and non-specific siRNA (siNC) respectively.
After siRNA transfection for 48 h, THP-1 cells were treated with or without poly(I:C) for 6 h. IRF3 protein was detected by Western blot, and ATX mRNA
expression was analyzed gRT-PCR. (C) THP-1 cells were preincubated with IFN-a specific neutralizing antibody (anti-IFN-a; 1 pg/ml) or IFN-B specific
neutralizing antibody (anti-IFN-8; 1 ug/ml) for 30 min, and then subjected to poly(l:C) treatment. ATX mRNA expression was detected after poly(l:C)
treatment for 6 h by gRT-PCR. (D) THP-1 cells were transfected with IFNAR1 siRNA and non-specific siRNA (siNC), respectively. After siRNA transfection
for 48 h, THP-1 cells were treated with poly(l:C) for 6 h. IFNAR1 protein was detected by Western blot, and ATX mRNA expression was analyzed by
gRT-PCR. The ATX expression detected by gRT-PCR analyses was normalized to expression of GAPDH and presented relative to expression in untreated
cells. All gRT-PCR data are expressed as mean values + SD, n = 3. The p values derived from Student’s t test are (*) p < 0.05, (**) p < 0.01. A representative
experiment out of three is shown.

doi:10.1371/journal.pone.0136629.9003
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IFN-B induced ATX expression in THP-1 cells but with different time-dependent manners
(Fig 4A). With IFN-o treatment, ATX expression was induced quickly, peaked at 2h of treat-
ment and then decreased. However, with IFN-f treatment, ATX expression was increased con-
tinually, achieved high levels after 8h treatment and then kept at the high levels. The reason for
such a difference between the ATX induction by IFN-o and IFN-f remains to be further
clarified.

The binding of IFN-o/p to IFNAR induces activation of the receptor-associated Janus pro-
tein tyrosine kinases (TYK2 on IFNARI and JAK1 on IFNAR?2), leading to the phosphoryla-
tion of STATSs, which are involved in type I IFN-mediated induction of gene expression [27].
IFN-0/B-induced ATX expression in THP-1 cells was inhibited when Jak signaling was blocked
by its specific inhibitor pyridone 6 (P6) or by Jak1/Tyk2 knockdown (Fig 4B and 4D). The
ATX induction by IFN-0/ was dramatically inhibited by STAT3 knockdown, and partially
inhibited by STAT1 knockdown (Fig 4E). PI3K is regarded as an upstream molecule implicated
in IFN-mediated signaling. When PI3K-AKT signaling pathway was blocked in the presence of
LY294002, the specific kinase inhibitor for PI3K, or by the knockdown of AKT, IFN-o/8
-induced ATX expression in THP-1 cells was also inhibited (Fig 4B and 4C). However,
PD98059 (an inhibitor for ERK activation) and SB202190 (an inhibitor for p38-mediated sig-
naling) could not inhibit the IFN-o/B-induced ATX expression in THP-1 cells (Fig 4C). These
results suggest that the activation of JAK-STAT and PI3K-AKT pathways, but not p38 MAPK
and ERK signaling, is required for the ATX induction by IFN-0/f in THP-1 cells. Accordingly,
the activation of JAK-STAT and PI3K-AKT pathways was also essential for the ATX induction
in LPS-stimulated THP-1 cells (S2 Fig).

The synergistic effects of IFN-y on ATX induction by IFN-3

Type-I1IEN (IFN-o/p) is produced in response to TLR activation at the early stages of the
innate immune response. It is important to recognize whether IFN-0/f has the synergistic or
antagonistic interaction with other cytokines in ATX expression regulation. The crosstalk
between type I and type I IEN (IFN-y) signaling has been reported previously [45, 46]. Here
we found that, compared with IFN-B, IEN-y itself has a very week ability to induce ATX in
THP-1 cells, but the ATX induction by IFN-f was significantly enhanced in the presence of
IFN-y (Fig 5A). When the THP-1 monocytic cells were primed by IFN-v, the ATX induction
by LPS was also dramatically promoted (Fig 5B). The enhanced ATX induction was suppressed
by the neutralizing antibody against IFN-f and knockdown of IFNAR1 (Fig 5C and 5D). These
data suggest that IFN-y has synergistic effects on the ATX induction by IFN-f.

LPA production is enhanced during TLR activation and IFN-a/3
treatment

ATX is a secreted lysoPLD hydrolyzing membrane-derived or albumin-bound LPC to produce
extracellular LPA production [47]. With the ATX induction in THP-1 cells, the LysoPLD activ-
ity in cell culture was significantly increased during TLR activation or IFN-0/f treatment (Fig
6A). In order to investigate the effect of ATX upregulation on extracellular LPA levels, THP-1
cells cultured with serum-free medium were treated with IFN-a/f, LPS, CpG ODN, or poly(I:
C) respectively. After stimulation, the concentration of major LPA species (16:0, 18:0, and 18:1
LPA) in THP-1 cell culture supernatants was detected by electrospray ionization mass spec-
trometry (ESI-MS) analyses. It was found that the ATX inducted by either IFN-o/, LPS, CpG
ODN or poly(I:C) treatment significantly increased the concentration of total LPA (Fig 6B and
6C) as well as that of 16:0, 18:0 and 18:1 LPA individually in cell culture medium with mem-
brane-derived LPC as substrate (S1 Table). In addition, as the albumin-bound LPC is the
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detected by Western blot. (B) THP-1 cells were treated with LY294002 (10 uM), SB202190 (10 uM), PD98059 (20 uM), pyridone 6 (P6; 10 pM) for 30 min
before IFN-a or IFN-B treatment. After IFN-a treatment for 2 h or IFN-@ treatment for 4 h, ATX mRNA levels were detected by qRT-PCR. (C) THP-1 cells were
transfected with AKT siRNA and non-specific siRNA (siNC) respectively. After siRNA transfection for 48 h, THP-1 cells were treated with IFN-a for 2 h or with
IFN-B for 4 h. AKT protein was detected by Western blot, and ATX mRNA expression was analyzed by gRT-PCR. (D) TYK2 and JAK1 siRNAs were
transfected into THP-1 cells respectively, with non-specific siRNA (siNC) as the control. After siRNA transfection for 48 h, THP-1 cells were treated with IFN-a
for 2 h or with IFN- for 4 h. TYK2 and JAK1 were detected by Western blot, and ATX mRNA expression was analyzed by gRT-PCR. (E) STAT1 and STAT3
siRNAs were transfected into THP-1 cells respectively, with non-specific siRNA (siNC) as the control. After siRNA transfection for 48 h, THP-1 cells were
treated with IFN-a for 2 h or with IFN-@ for 4 h. STAT1 and STAT3 were detected by Western blot, and ATX mRNA expression was analyzed by qRT-PCR.
The ATX expression detected by gRT-PCR analyses was normalized to expression of GAPDH and presented relative to expression in untreated cells. All
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experiment out of three is shown.

doi:10.1371/journal.pone.0136629.g004
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doi:10.1371/journal.pone.0136629.9005

available ATX substrate in blood, we tested the effects of TLR ligand stimulation and IFN-o/f
treatment on LPA production in the presence of additional LPC and BSA. The increase of LPA
levels in cell culture medium were also detected (S3 Fig). These results suggest that the extracel-
lular LPA generation is enhanced during the TLR activation or IFN-o/f treatment.
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LPA levels in the supernatant of conditional medium were assayed by mass spectrometry. Data represent the mean and SD of triplicate determinations. The
p values derived from Student’s t test are (*) p < 0.05, (**) p < 0.01.

doi:10.1371/journal.pone.0136629.9g006

Type | IFNs function as autocrine factors to induce ATX in moDCs in
response to TLR activation

Human peripheral blood mononuclear cells (PBMCs) were isolated from blood samples, and
then monocytes were further separated from PBMCs. Monocyte-derived dendritic cells
(moDCs) were obtained by culturing blood monocytes in the presence of GM-CSF and IL-4 as
described previously [36]. The expression of TLR3 and TLR4, but not TLRY, was detected in
moDCs by RT-PCR (Fig 7A). IFN-B was produced when human moDCs were stimulated with
the TRL4 ligand LPS (Fig 7B). ATX induction was detected in the LPS-stimulated moDCs and
suppressed by the neutralizing antibody against IFN-f (Fig 7C). Both IFN-o and IFN-3 were
produced when human moDCs were treated with the TRL3 ligand poly(I:C) (Fig 7B). The sig-
nificant induction of ATX was also observed in the poly(I:C)-stimulated moDCs. The
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neutralizing antibody against IFN-B, as well as the neutralizing antibody against IFN-a,, could
suppressed the ATX induction by poly(I:C) in moDCs (Fig 7D). These data suggest that type I
IFNs function as autocrine factors to induce ATX expression in moDCs in response to TLR

activation.

Type | IFNs induce ATX in human PBMCs and monocytes isolated from

blood samples

When type I IFN production is triggered by TLR activation, the type I IFNs (IFN-a and IFN-f)
can function as autocrine and paracrine factors to regulate the gene expression in immune
cells. In this study, human PBMCs and monocytes were isolated from blood samples and
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doi:10.1371/journal.pone.0136629.g008

subjected to type I IFN treatment. ATX was expressed at low levels in human PBMCs and
monocytes, but significantly induced by both IFN-o and IFN-f treatment (Fig 8A). Consistent
with the results obtained above in IFN-0/B-treated THP-1 cells, ATX induction by IFN-o/f
in PBMCs and monocytes was inhibited by the JAK inhibitor P6 and the PI3K inhibitor
LY294002, indicating that activation of JAK-STAT and PI3K-AKT pathways is essential for
the ATX induction. As to the MAPK inhibitors, ATX induction by IFN-a/f in PBMCs and
monocytes was suppressed by SB202190, the inhibitor for p38-mediated signaling, but not by
PD98059, an inhibitor for ERK activation (Fig 8C and 8D). Type I IEN receptor (IFNAR) is
ubiquitously expressed. However, when HUVEC, Jurkat and several other cells were subjected
to IFN-o/ treatment, MX2, the target gene of type I IFN, was induced, but ATX expression
was not upregulated at all (Fig 8B, 54 Fig), suggesting that the ATX induction by IFN-0/f has
cell type specificity.
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Discussion

LPA is a pleiotropic lipid molecule mediating various physiological and pathological activities
through interaction with its receptors on cell membrane [48]. LPA receptors are expressed in
most immune cells, including T-cells, B-cells, NK cells, mast cells, eosinophils, neutrophils,
macrophages and monocytes [49]. As an important phospholipid mediator in immune
responses, LPA is able to enhance the motility of human and mouse T cells [50], stimulate the
production of reactive oxygen metabolites, integrin upregulation and chemotaxis in human
eosinophils [51], and enhance maturation and cytokine production in immature dendritic cells
(DCs) [52, 53]. However, the mechanism of LPA production regulation during immune
responses remains unclear. ATX is a secreted glycoprotein with lysoPLD activity, functioning
as the enzyme to produce most extracellular LPA from LPC [54]. Here we demonstrated that
ATX was induced in human monocytic THP-1 cells by TLR3 ligand poly(I:C), TLR4 ligand
LPS and TLRY ligand CpG ODN, respectively. ATX induction was also observed in human
moDCs treated with poly(I:C) or LPS. TLR system is responsible the recognition of infectious
and perhaps other agents to initiate the inflammatory progress [55]. The ATX induction in
response to TLR activation would increase the lysoPLD activity and enhance LPA levels in
microenvironment, to modulate the activity of immune cells through the activation of
LPA-LPA receptor signaling. Three alternative splicing isoforms of ATX, named o, f and vy,
have been reported. In our previous study, we had characterized that f isoform ATX is
expressed and induced in LPS-simulated THP-1 cells [33]. ATX in the conditional culture
medium of THP-1 cells stimulated by LPS, CpG or poly(I:C) was detected as one band with
molecular weight at approximately 120 kDa by Western-blot analysis (54 Fig). It is interesting
to note that ATX mRNA level and lysoPLD activity in culture medium are correlated, but do
not have a linear relationship, suggesting there is a regulation of ATX activity at the post-tran-
scriptional level, which need to be further studied in the future.

Type I interferons (IFNs) are produced during TLR activation and control the induction of
a significant proportion of genes regulated by TLR signaling [32]. In this study, we found that
type I IFN autocrine loop played a key role for the ATX induction in response to TLR activa-
tion. The IRF-mediated IFN-f production was required for the ATX induction in THP-1 cells
under LPS, poly(I:C) or CpG ODN stimulation. Type I interferons (IFN-o/f) function as auto-
crine factors to upregulate ATX expression in human moDCs treated by LPS or poly(I:C). It
has been reported that type I IFNs can be induced by the activation of TLRs 4,3,7,8 and 9 in
immune cells [32]. The dendritic cells (DCs), especially the plasmacytiod DCs (pDCs), are
regarded as the major cells for the type I-IFN production in response to TLR activation [56,
57]. Both mouse and human pDCs express high levels of TLR7 and TLR9 [58]. Whether ATX
is induced in pDCs by TLR ligand through INF-a/f autocrine loop will be studied in the future.
In addition to TLR activation, type I IFN production can be induced by dsRNA through the
cytosolic receptors MDAS5 and RIG-1 or by the right-handed conformation dsDNA (B-DNA)
through DAI [59]. ATX expression in immune cells may also be induced by these stimulations.

Type I IFNs not only function as autocrine factors, but also as paracrine factors to regulate
the immune response. In this study, it was found that both IFN-o. and IFN-f was able to induce
ATX expression in THP-1 cells, as well as in human PBMCs and monocytes isolated from
blood sample. The IFNAR-mediated activation of JAK-STAT and PI3K-AKT pathways was
required for the ATX induction by IFN-o and IFN-B, suggesting that IFN-o and IFN-f have
somehow similar signaling mechanisms to induce ATX expression. However, IFN-o. and IFN-
Binduced ATX in THP-1 cells with different time-dependent manners (Fig 4A). ATX expres-
sion was induced quickly by IFN-o, peaked at 2h of treatment and then decreased, while during
IFN-B treatment ATX expression was increased continually, achieved high levels after 8h
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Fig 9. A proposed model of the ATX induction through type | IFN autocrine and paracrine loops in response to TLR activation. IFN-o/8 was induced
during TLR activation through IRF3/7, and then IFN-o/B functions as autocrine and paracrine factor to induced ATX expression in immune cells through the
IFNAR-mediated JAK-STAT and PI3K-AKT pathways. The induction of ATX enhances LPA production in cellular microenvironment and activates the
LPA-LPA receptor signaling to modulate immune responses.

doi:10.1371/journal.pone.0136629.g009

treatment and then kept at the high levels. It has been reported that IFN-B has higher receptor
binding affinity than IFN-a. [60, 61]. Although the relative affinity to receptor subunits is pro-
posed as the reason for the differential activities of type I IFNs, the mechanisms of the different
ATX induction activities between IFN-a and IFN-f remain to be further elucidated. Type I
IFN receptor (IFNAR) is ubiquitously expressed. In HUVEC, Jurkat, HEK293, SW480, A549,
and MCF-7 cells, IFN-0/f induced the expression of its target gene MX2, but not the expres-
sion of ATX (Fig 7B, S5 Fig), indicating that the ATX induction by IFN-o/p has cell type
specificity.

ATX is originally regarded as a protein involved in cancer cell motility [62]. Recently,
emerging data indicate that ATX-LPA axis has an important role in immunity. The enhanced
ATX-LPA signaling is implicated in several inflammatory diseases, such as rheumatoid arthri-
tis [20], asthma [63], pulmonary fibrosis [17] and hepatitis C [21]. It has been reported that
TNF-a increased ATX production from synovial fibroblasts in both mouse and human
arthritic joints [19]. In this study, we found that TNF-o could not induce ATX in THP-1 cells,
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but ATX was significantly induced in THP-1 cells by the treatment with TNF-o. and IFN-y
together. It is interesting that the ATX induction by TNF-o. plus IFN-y was suppressed by the
IFN-B specific neutralizing antibody or the knockdown of IFNAR1, suggesting that type I IFN
plays an essential role in this process (Figures A, B and C in S6 Fig). It has been reported that
TNF-o. can slightly induce the expression of IFN-f in bone marrow-derived macrophages
(BMDMs) from C57BL/6 mice [64]. A slight induction of IFN-B by TNF-a was observed in
THP-1 cells (Figure D in S6 Fig), and the ATX induction by TNF-a-induced IFN-f may be fur-
ther enhanced in the presence of IFN-y.

Conclusions

In conclusion, we have demonstrated ATX is induced in response to TLR activation, and that
type I IFN autocrine loop is essential for the ATX induction. Moreover, IFN-0/p can directly
induce ATX in human PBMCs and monocytes through the IFNAR-mediated activation of
JAK-STAT and PI3K-AKT pathways. A model of the mechanism for ATX expression regula-
tion in response to TLR activation is presented as Fig 9. We propose that IFN-o0/ produced
by TLR activation functions as autocrine and paracrine factor to induce ATX expression in
immune cells, leading to the enhanced LPA production in cellular microenvironment. Our
data have provided intriguing and important bases for further elucidation of the mechanisms
by which ATX-LPA axis is activated in inflammation responses.

Supporting Information

S1 Fig. The time- and dose-dependent induction of ATX and IFNo/p in THP-1 cells stimu-
lated by TLR ligands. (Figure A) THP-1 cells were stimulated with LPS (0.1 pg/ml) for the
indicated times. TNF-o, ATX, IFN-o and IFN-B mRNA expression were detected by RT-PCR.
(Figure B) THP-1 cells were stimulated for with different concentration of LPS (0.01-1 pg/ml)
as indicated. ATX mRNA expression was detected after LPS stimulation for 16h, while IFN-o/
B mRNA expression were detected after LPS stimulation for 1h by RT-PCR. (Figure C) THP-1
cells were stimulated with CpG (1 uM) for the indicated times. ATX, IFN-o and IFN-B mRNA
expression were detected by RT-PCR. (Figure D) THP-1 cells were stimulated for 6h with vari-
ous amount of CpG (0.1-10 pM). ATX, IFN-o and IFN-B mRNA expression were detected by
RT-PCR. (Figure E) THP-1 cells were stimulated with poly(I:C) (10 pug/ml) for the indicated
times. ATX, IFN-o and IFN-B mRNA expression were detected by RT-PCR. (Figure F) THP-1
cells were stimulated for 6 h with various amount of poly(I:C) (1-50 pg/ml). ATX, IFN-a and
IFN-B mRNA expression were detected by RT-PCR.

(TIFF)

S2 Fig. The activation of JAK-STAT and PI3K-AKT pathways is essential for ATX induc-
tion in LPS-stimulated THP-1 cells. (Figure A) THP-1 cells were pretreated with LY294002
(10 uM) and pyridone 6 (P6; 10 uM) for 30 min, and then subjected to LPS treatment. After
LPS treatment for 16 h, ATX mRNA levels were detected by qRT-PCR. (Figure B) THP-1 cells
were transfected with AKT siRNA and non-specific siRNA (siNC) respectively. After siRNA
transfection for 48 h, THP-1 cells were treated with LPS for 16 h. AKT protein was detected by
Western blot, and ATX mRNA expression was analyzed by qRT-PCR. (Figure C) STAT1 and
STAT3 siRNAs were transfected into THP-1 cells respectively, with non-specific siRNA (siNC)
as the control. After siRNA transfection for 48 h, THP-1 cells were treated with LPS for 16 h.
STAT1 and STAT3 were detected by Western blot, and ATX mRNA expression was analyzed
by qRT-PCR. The ATX expression detected by qRT-PCR analyses was normalized to expres-
sion of GAPDH and presented relative to expression in untreated cells. All qRT-PCR data are
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expressed as mean values + SD, n = 3. The p values derived from Student’s t test are (*)
p < 0.05, (**) p < 0.01. A representative experiment out of three is shown.
(TIFF)

S3 Fig. LPA production in response to IFN-a/p treatment and TLRs ligand stimulation in
the presence of additional LPC. THP-1 cells were washed by PBS for three times and cultured
with serum-free RPMI 1640, then stimulated by IFN-a. (50 ng/ml) and IFN-B (10 ng/ml)
respectively for 24 h (Figure A), or by LPS (0.1 pg/ml) for 24 h, CpG ODN (1 uM) and poly(I:
C) (10 pg/ml) respectively for 12 h (Figure B) in the presence of 18:1 LPC (100 uM) and
250pg/ml fatty-acid free BSA. After stimulation, 18:1 LPA levels in the supernatant of condi-
tional medium were assayed by mass spectrometry. Data represent the mean and SD of tripli-
cate determinations. The p values derived from Student’s t test are (*) p < 0.05, (**) p < 0.01.
(TIFF)

$4 Fig. Western blot analysis of ATX in the conditional culture medium of THP-1 cells
stimulated by TLR ligands. THP-1 cells were washed by PBS for three times and cultured
with serum-free medium, then treated with TLR4 ligand LPS (0.1 pg/ml) for 24 h, TLR9 ligand
CpG (1 uM) for 12 h, or TLR3 ligand poly(I:C) (10 p/ml) for 12 h, respectively. The secreted
ATX in the conditional culture medium was detected by Western blot.

(TIFF)

S5 Fig. The effects of type I IFNs on ATX expression in different cell lines. (Figure A)
IFNARI mRNA expression was detected by RT-PCR in HUVEC, Jurkat, HEK293, SW480,
A549 and MCEF-7 cells. (Figure B) HEK293, SW480, A549 and MCF-7 cells were treated with
IFN-o. (50 ng/ml) for 2 h or with IFN-B (10 ng/ml) for 4 h. ATX and MX2 mRNA expression
levels were detected by RT-PCR.

(TIFF)

S6 Fig. ATX is induced by TNF-a and IFN-y together in THP-1 cells dependent the IFN-§
autocrine loop. (Figure A) THP-1 cells were treated for 16h with TNF-o (50 ng/ml) and/or
IFN-v (50 ng/ml) as indicated. ATX mRNA levels were detected by qRT-PCR. (Figure B)
THP-1 cells were preincubated with IFN-B specific neutralizing antibody (anti-IFN-f; 1ug/ml)
or negative control antibody (rabbit IgG; 1 pg/ml) for 30 min, and then subjected to TNF-a.
and/or IFN-y treatment as indicated. ATX mRNA levels were detected by qRT-PCR after 16 h
treatment. (Figure C) IFNARI1 siRNA and non-specific siRNA (siNC) were transfected into
THP-1 cells respectively. After siRNA transfection for 48 h, THP-1 cells were treated with
TNF-o plus IFN-y for 16 h. IFENAR1 were detected by Western blot, and ATX mRNA expres-
sion was analyzed by qRT-PCR. The ATX expression detected by qRT-PCR analyses was nor-
malized to expression of GAPDH and presented relative to expression in untreated cells.
(Figure D) THP-1 cells were treated with TNF-a. (50 ng/ml) for 2 h, and then the expression of
IFN-o and IFN-B mRNA was detected by RT-PCR. All qRT-PCR data are expressed as mean
values + SD, n = 3. The p values derived from Student’s t test are (*) p < 0.05, (**) p < 0.01. A
representative experiment out of three is shown.

(TIFF)

S1 Table. LPA levels in THP-1 cell culture medium with or without (control) IFN-a, IFN-
B, LPS, CpG or poly(I:C) treatment. THP-1 cells were washed by PBS for three times and cul-
tured with serum-free RPMI 1640, then stimulated by IFN-o (50 ng/ml), IFN- (10 ng/ml) or
LPS (0.1 pug/ml) for 24h and by CpG ODN (1 uM) or poly(I:C) (10 pg/ml) for 12h. The concen-
trations of 16:0, 18:0, and 18:1 LPA in the supernatant of conditional medium were assayed by
mass spectrometry. Data represent the mean and SD of triplicate determinations. The p values
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derived from Student’s t test are (*) p < 0.05, (**) p < 0.01.
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