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Abstract

Objective

There is no consensus on the embryonic components or morphogenetic processes involved

in mature ventricular outflow tract development. Our goal was to use in vivo labelling to

investigate the prospective fate of the myocardium of each conal wall. The conal and atrio-

ventricular cushion mesenchyme changes during transformation into mature structures and

their role in apoptosis were also investigated.

Methods

Plastic labels were placed at the cephalic and caudal conal limits of chicken embryo hearts

(stage 22HH) and traced up to stage 36HH. Histological analyses, scanning electron

microscopy and apoptotic detection using Lysotracker-Red were performed. The conal lon-

gitudinal length and medial displacement were registered. Muscle myosin was identified by

immunofluorescence.

Results

Labels positioned in the myocardium of each conal wall moved to the right ventricle (RV),

shifting from the arterial subvalvular myocardial zone to the apex. No labels were found in

the aortic vestibule. At stage 22HH, the conus was a tubular structure composed of myocar-

dium and endocardium with scarce mesenchyme. The dorso-left conal myocardial wall

gradually lost continuity and the free ends separated, while the myocardium was distributed

to the RV free wall (24HH-28HH). At stage 22HH, conal crests were not observed, but they

were apparent at the dorsal zone of the conus at stage 26HH; towards stage 30HH, they

fused to form the supraventricular crest, and the pulmonary infundibulum was evident. The

ventro-superior cushion of the AV canal was reorganized into the fibrous and muscular

structures lined the aortic vestibule.
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Conclusions

The posterior conus is an erroneous concept. The conal myocardium is reorganized in the

free wall of the RV. Internally, the conal lumen is transformed into the pulmonary infundibu-

lum. The aortic vestibule is formed from the ventro-superior cushion of the AV canal. Thus,

the ventricular outflow tracts have different embryonic origins.

Introduction

It is generally accepted at present that the ventricular outflow tracts of the postnatal tetracavi-

tary heart consist of three well-defined anatomical regions: arterial trunks (pulmonary and

aortic trunks), arterial valves (valvar leaflets and their supporting annulus) and subvalvular

intracardiac ventricular outflow tracts (pulmonary infundibulum and aortic vestibule) [1]. In

agreement with this idea, it has been pointed out that the embryonic outflow also consists of

three segments: distal, intermediate and proximal [2]. The distal segment corresponds to the

aortic sac with a vascular composition, while the intermediate and proximal segments of the

developing outflow comprise the truncus and conus, both of which are covered by a myocar-

dial sleeve. Additionally, the concept of the first (FHF) and second (SHF) heart fields has

recently been developed [3–5]. The straight heart tube represents the FHF, while the SHF orig-

inates the latter, which gradually converges into the heart tube during the torsion and looping

process and is the cellular source from which the embryonic outflow, inflow and atria are

derived. Despite this new anatomical approach of the embryonic and postnatal heart, and the

discoveries in the two heart fields, there is still no consensus on the embryonic components

involved in the genesis of the intrapericardial arterial trunks. Additionally, the information

about each element that forms the mature intracardiac ventricular outflow tracts is controver-

sial. There is also no agreement on the morphogenetic processes involved in the development

of each of these cardiac structures. Most classic authors of cardiac embryology indicate that

the truncus is involved in all [6–15] or only in a part of the vascular extension of the great

arteries, including the aortic and pulmonary valves formation [2, 16]. However, in 2005 we

concluded that the truncus is involved only in the development of the pulmonary and aortic

insertion annuls and valves, but it does not form the entire vascular region of the great arteries,

which is derived from the aortic sac [17]. This statement was supported by at least two findings

in the chick embryo heart: 1) The ultrastructural and experimental evidences of myocardial

cell differentiation in to connective tissue in the truncus [18]. 2) The high incidence of persis-

tent truncus arteriosus associated with anomalies of the aortic arches resulted from the neural

crest cells between the third and right fourth aortic arches region depleted [19, 20]. Regarding

the embryogenesis of the ventricular outflow tracts, it has been widely reported that the conus

decreases its longitudinal dimensions during developmental progression, and its final anatom-

ical representation in the adult heart is limited to the subvalvular area of the intracardiac RV

infundibulum [8, 9, 21]. Additional classical and current descriptive studies mention that the

conus is initially a tubular structure, with a smooth myocardial wall, without trabeculae, and

with a lumen lined circumferentially by cardiac jelly, covered by endocardium. Later, in the

advanced loop stage, endocardial ridges develop inside the intermediate and proximal seg-

ments of the developing outflow via the endothelial to mesenchymal transformation process

[22]. It has also been reported that the right and left endocardial crest divide the conus into an

anterior and posterior conduit. The anterior conus will transform into the pulmonary infun-

dibulum (located between the free edge of the supraventricular crest and the pulmonary valve

The conus does not participate in aortic vestibule development
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supporting annulus). In contrast, the posterior conus will form the aortic vestibule (located

between the mitral-aortic fibrous continuity and the aortic valve supporting the annulus) [6, 7,

23, 24]. In this context, classic in vivo labelling studies in the chick embryo heart by De la Cruz

et al [24] demonstrated that the conus is fully developed in the advanced loop stage (Stage

22HH). The conus-ventricular limit was described as the transition zone between a smooth

conal region, which contrasts with a ventricular trabecular zone. And the boundary between

the conus and the truncus was considered the angular junction between the proximal caudo-

cephalic and the distal ventro-dorsal segments of the heart tube (Fig 1A).

The differential arrangement of the right and left endocardial conal crests, contrasting with

the upper and lower endocardial truncal crests, was further recognized to facilitate the distinc-

tion between the conus and the truncus. This description of the chick embryonic heart at stage

22HH by De la Cruz et al [24] is similar to the “dog-leg bend” described in the mouse heart of

embryos with 42 somites by Anderson and cols [15]. The de la Cruz delimitation of the ante-

rior conus by differential labelling with a gelatin-Indian ink mixture and tracing of its precise

fate throughout the mature heart has confirmed that the anterior conus provides the origin for

the right ventricular outflow tract and inferred that the posterior conus will form the aortic

vestibule [24]. However, recent studies utilizing cell tracing with a fluorescent dye in the

chicken embryo have led to the conclusion that the embryonic outflow forms both the trabecu-

lar free wall and the infundibulum of the right ventricle [25].

The idea of the fate of the posterior conus as a precursor of the aortic vestibule has been

maintained until the present. However, in the 1980s, two groups of researchers labelled the

ventro-superior cushion of the atrioventricular canal (AV canal) in the chicken embryo heart

[26, 27]. These researchers found that this cushion was involved in the formation of the fibrous

(mitroaortic continuity) and muscular walls of the aortic vestibule, but in no case was a con-

vincing explanation provided for the role of the posterior conus.

Most classic authors point out in humans [9, 21] and birds [13, 24] that the conus under-

goes longitudinal reduction; in fact, it has been suggested that the conus completely disappears

[10, 12, 13, 23]. Moreover, Watanabe et al by viral transfection of the chicken embryo heart,

reported reduction of the cono-truncus myocardium by apoptosis during transformation of

the embryonic outflow into the mature anatomical structures [28, 29]. However, they did not

mention whether apoptosis was present in the conus, truncus or both regions. Additionally, in

Fig 1. Spatial situation of the myocardial conal walls. (A) Right sagittal view of the cephalic portion of a stage 22HH

chicken embryo showing the different regions that make up the heart and the location of the conal walls in the organ in

situ. Arrowheads: yellow = dorsal wall; green = ventral wall; red = right wall; blue = left wall. (B) Cross-section of the

middle zone of the conus at stage 22HH, haematoxylin-eosin stain. Digitally, colours were impressed to the conal walls

myocardium as described in section A. Observe a black label immersed in the myocardium of the ventral conal wall.

Abbreviations: As = atrial segment; C = conus; Ca = caudal; Ce = cephalic; D = dorsal; L = left; R = right; T = truncus;

V = ventral; Vs = ventricular segment.

https://doi.org/10.1371/journal.pone.0209930.g001
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murine animal models, the right ventricle (RV) is now known to develop completely from the

second heart field [30], which has been identified in embryonic stages as the cono-truncus and

a part of the pharyngeal mesoderm [31, 32]. This new information raises questions concerning

the fate of the conus as a precursor of both ventricular outflow tracts. Due to all these contro-

versies, by in vivo labelling of the chicken embryo heart and histological analysis, we aimed to

investigate the reordering of the myocardium of each conal wall and the changes in the mesen-

chymal tissue of the conus and the AV cushions during their transformation into mature

structures. The role of apoptosis was also investigated. We demonstrated that the conus was

not divided in two conducts, nor did it display apoptosis. Rather, the conal myocardium par-

ticipates in the formation of the right ventricle free wall, including the pulmonary infundibu-

lum. Additionally, we identified the ventro-superior cushion of the AV canal as the embryonic

precursor of the aortic vestibule.

Materials and methods

Nomenclature

In this work, we used the classic conus and truncus nomenclature because although it is obso-

lete among embryologists, it is still used in the field of paediatric cardiology and pathology.

Additionally, one of the basic principles of anatomical states is that all structures within the

body should be described as observed in the anatomical position of the subject facing the

viewer [33]. In accordance with this principle, the walls of the proximal segment of the embry-

onic outflow classically known as the conus are named based on their relative positions within

the embryo, following the axis symmetry but not their supposed prospective fate as is custom-

ary. Thus, we designated right and left conal walls as the classically denoted anterior and poste-

rior conal walls, while the conal walls conventionally considered right and left in this paper

were designated as dorsal and ventral walls, respectively (Fig 1).

Embryos

Fertilized Bovans chicken eggs were obtained from the local poultry farm ALPES (Puebla,

México). The eggs were incubated at 37.8˚C and 60% relative humidity until they reached

stage 22HH [34]. The eggshells were disinfected with 70% alcohol and then windowed to stage

the embryos. Having exposed the heart by dissection of the allantoidal and pericardial mem-

branes, the myocardial conal walls were differentially labelled based on the description by de la

Cruz et al [24]. The animal use protocols and study procedures were based strictly on the Mex-

ican Official Guidelines (NOM-062-ZOO-1999). In addition, the research, ethics, and bio-

safety Children’s Hospital of Mexico Federico Gomez committees approved this project

(HIM-2013-060).

Plastic labels preparation

Plastic labels were make with a gelatine-activated charcoal mixture with some modifications of

the Seichert technique [35]. With this purpose, thin (�10 μM in diameter) and long (10 cm)

filaments were prepared by heating to red hot and extensively stretching a glass rod. India ink

(0.1 mL), an aqueous pure 5% gelatine mixture (1 mL) and activated charcoal (0.17 g) were

mixed in an Eppendorf tube and gently stirred in warm water (70˚C) for 3 min. The liquid

mixture was used to varnish the 10 μM glass filaments. Once the mixture of black coloured gel-

atine had solidified, the varnished filaments were stored in a sterile petri dish under refrigera-

tion. To label the embryonic chicken hearts in vivo, small black coloured glass fragments (0.5

mm) were cut and inserted into the previously chosen tissue.

The conus does not participate in aortic vestibule development
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Labelling experiments

Embryos at stage 22HH, when the conus completes development and the truncus can be cer-

tainty identified, were randomly separated into four groups. GI. To determine the prospective

fate of the classically designated anterior conus, a fine glass filament covered with a gelatine-

activated charcoal mixture was inserted for 15 seconds in the myocardium at the boundary

between the smooth conal region and the ventricular trabeculated zone. Another filament was

inserted at the angular junction between the conus and the truncus. The filaments were subse-

quently drawn out, leaving a dark tattoo immersed in the myocardium. To place the labels, a 1

cm2 window was opened in the egg shell. The vitelline and pericardial membranes were imme-

diately dissected to expose the heart. The prospective fate of the myocardium of the remaining

conal walls was determined by placing a label into the myocardium in the middle area of the

conus (Stage 22HH) with the following distribution: GII. At the ventral conal wall. GIII. At the

dorsal conal wall GIV. At the left conal wall. After labelling, the embryos in the four groups

were photographed in ovo using a Carl Zeiss stereomicroscope Lumar V12 and a digital camera

Axiocam MRC (Carl Zeiss, Germany). Once the window of the shell was covered with Parafilm,

the eggs were returned to the incubator and maintained at 37.8˚C and 90% relative humidity to

acquire embryos at various representative stages of the process of cardiac septation (24-36HH).

The labelling procedure causes mortality, and therefore only those embryos that showed a nor-

mal morphology and heart with no apparent defects were selected. Forty normal GI hearts from

each stage (24–36HH) and twenty GII–GIV hearts from each stage were counted to identify the

myocardial conal fate and histological analysis. Additionally, GI embryos were assessed using

scanning electron microscopy, morphometric, apoptosis and immunofluorescence analyses.

The total hearts acquired at each stage were: GI = 45, GII–GIV = 30 (Table 1).

Prospective fate of the myocardial wall of the conus

Mature labelled hearts (stage 36HH) that had completed cardiac septation, great vessel branch-

ing, and valve leaflet development were photographed using the same equipment as at the

beginning of the experiments (n = 30 in each group). Photographs were used to identify the

final location of the labels, define the prospective fate of each myocardial wall of the conus and

design a destination map of the conal walls.

Histological procedures

Six representative labelled fixed hearts at each stage (24-36HH) from GI-GIV previously pho-

tographed were dehydrated through a graded series of alcohols to 100%. The hearts were

Table 1. Embryonic hearts acquired and number of hearts used for each stage.

Conal Wall labelled HH Stage Myocardial conal fate Histological analysis Morphometric analysis Apoptosis analysis IF Analysis

Conus Length Conal Rotation

GI Right

GII Ventral

GIII Dorsal GIVLeft

22HH n = 30 n = 6 n = 20+ n = 20+ n = 6� n = 6�

24HH n = 30 n = 6 n = 20+ n = 20+ n = 6� n = 6�

26HH n = 30 n = 6 n = 20+ n = 20+ n = 6� n = 6�

28HH n = 30 n = 6 n = 20+ n = 20+ n = 6� n = 6�

30HH n = 30 n = 6 n = 20+ n = 20+ n = 6� n = 6�

32HH n = 30 n = 6 n = 20+ n = 20+ n = 6� n = 6�

36HH n = 30 n = 6 n = 20+ n = 20+ n = 6� n = 6�

Total hearts acquired: GI = 45 at each stage, GII–GIV = 30 at each stage. + Captured images from GI labelled hearts.

� Fresh GI labelled hearts.

https://doi.org/10.1371/journal.pone.0209930.t001

The conus does not participate in aortic vestibule development
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cleared in xylene (Sigma, USA) and embedded in Paraplast wax (Tissue-Tek, USA) to obtain

5 μm serial transverse sections. The sections were stained with haematoxylin and eosin (H&E)

to investigate the topographical changes in the conus and the AV canal. A description of the

conal myocardium and mesenchymal tissue at the conus and AV cushions was also provided.

Morphometric analysis

To define the conus length changes and the conus displacement during cardiac septation

(stages 22- 36HH), photographs of GI hearts in the frontal view at stages 22- 36HH were used.

In the first case (conal length), the distance between the central zone of initially compact black

tattoo of the plastic label to the half zone of the dispersed black sports immersed in the myocar-

dial ventricular tissue were measured. In the second case (conus displacement), the opening of

the angle between the middle line of the embryo (neural tube) and the sagittal line drawn up

throughout the developing conus was registered, using the ImageJ programme (n = 20 cap-

tured images at each stage).

Statistical analysis

For conus length changes and displacement values, data are present as means. Analyses were

performed using the Student’s test and ANOVA with Prism software. Differences were consid-

ered to be significant at p� 0.01.

Scanning electron microscopy

Ten embryonic GI hearts at different stages (22-36HH) previously fixed and photographed

were used for scanning electron microscopy analysis. A group of this hearts (n = 5) was dis-

sected in a transversal plane at the level of the base of the heart to observe the lumen of the

conus and the AV canal. In both cases (dissected and complete hearts), the samples were dehy-

drated and desiccated under liquid CO2 with a critical-point drying apparatus Samdri 789A

(Tousimins Research Co., MD, USA) and sputter-coated with 350 nm gold in a Denton Vac-

uum Desk 1A apparatus (Cherry Hill Industrial Centre, NJ, USA). Photographs were obtained

using a JEOL Scanning Electron Microscope JSM 5300 (JEOL, Tokyo, Japan) at 15 kV and at

different magnifications. Photographs acquired were used to illustrate the gradual displace-

ment of the conus from its original right position to a definitive ventral position, previously

measured in the GI hearts captured images.

Apoptotic pattern at the embryonic outflow

Live hearts of embryos labelled at the stage 22HH at the conal limits (GI) and re-incubated

until they reached stage 24-36HH were used to evidence the apoptotic pattern in the embry-

onic outflow during cardiac septation (n = 5 at each stage). The hearts were isolated in 0.01 M

phosphate-buffered saline (PBS, pH 7.4, 8 mM Na2HPO4, 2 mM KH2PO4, 136 mM NaCl, 2.6

mM KCI) supplemented with the vital dye LysoTracker Red (50 nM, LTR). After a 30 minutes

incubation at 37˚C, the hearts were washed (PBS) and fixed for 4 hours (4% formaldehyde in

PBS). After extensive washing (PBS), LysoTracker fluorescence was visualized using an epi-

fluorescence stereomicroscope Lumar V12 (Carl Zeiss, Germany) using a rhodamine filter.

Special emphasis was placed on the anatomical regions between the labels previously inserted

in the conal limits. Specimens were photographed and processed to histological analysis. Serial

transverse sections (5 μm) were obtained for careful analysis under a CONFOCAL LSM-780

NLO microscope (Carl Zeiss, Germany).

The conus does not participate in aortic vestibule development
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Immunofluorescence

Representative transversal histological sections from GI embryonic hearts (Stages 24-36HH)

were washed and permeabilized with Tween 20 (Sigma-Aldrich, USA) in PBS and treated with

serum-free protein block (Dako, USA). Tissues sections were incubated with a mouse anti skele-

tal muscle myosin antibody (Santa Cruz Biotechnology USA, SC-32732) and secondary rabbit

anti-mouse antibody conjugated to Alexa Fluor 488 (Thermo Fisher Scientific, USA). The sec-

tions were then observed under a CONFOCAL LSM 780 NLO (Carl Zeiss, Germany). Controls

for immunofluorescence experiments included the use of the secondary antibody alone.

Results

Prospective fate of the myocardial wall of the conus

To determine the prospective fate of the right conal wall (classically denoted anterior conus),

plastic black labels were placed in the myocardium at each boundary of conus and traced up to

the mature heart (Fig 2). Labels initially inserted at the right surface of the conus-ventricular

limit (Fig 2A) turned counter-clockwise towards to the embryonic middle line and in the

mature heart (St 36HH) were distributed in the myocardium of the apical ventricular region in

relation to the anterior interventricular groove (compare A with A’ in Fig 2). In contrast, labels

placed at the beginning at the conus-truncus border, at stage 36HH, were located across the

entire length of the right region of the cardiac base to the level of the sub-valvular pulmonary

region (compare B with B’ in Fig 2).

Fig 2. Prospective fate of the right conal wall (classically denoted anterior conus). (A) Representative images of

embryonic heart at stage 22HH showing a black label inserted in the myocardium on the right surface of the cono-

ventricular boundary (red arrowhead). (A’) Embryonic heart at stage 36HH. Visualization of small dark spots (red

arrowheads) distributed in the myocardium of the apical ventricular region in relation to the anterior interventricular

groove (AIVG). (B) Embryonic heart at stage 22HH with a black label inserted in the myocardium on the right surface

of the conus-truncus border (red arrowheads). (B’) Embryonic heart at stage 36HH showing small dark spots (red

arrowheads) distributed in the myocardium from the right region of the cardiac base to the subvalvular pulmonary

region. The dotted white line indicates the limit of the right ventricular-free wall. Abbreviations: AIVG = anterior

interventricular groove; As = atrial segment; C = conus; IVS = interventricular septum; LA = left atrium; LV = left

ventricle; PA = pulmonary artery, RA = right atrium; RV = right ventricle; T = truncus, Vs = ventricular segment.

https://doi.org/10.1371/journal.pone.0209930.g002

The conus does not participate in aortic vestibule development
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The myocardium of the left, ventral and dorsal conal walls was distributed to different ana-

tomical portions exclusive of the right ventricle. Specifically, labels inserted in the myocardium

of the ventral conal wall (Fig 3A) consistently remained in the same plane, revealing a limited

displacement during development and in the mature heart were distributed in the myocar-

dium of the sub-valvular region of the pulmonary artery (Fig 3A’). Labels inserted at the begin-

ning in the myocardium of the dorsal wall of the conus (Fig 3B) turned counter-clockwise to

the embryonic middle line, and labels in the mature heart were distributed in the myocardium

along the middle third of the free wall of the right ventricle (Fig 3B’). In contrast, the labels

placed at the beginning in the myocardium of the left conal wall (Fig 3C) showed an irregular

behaviour. In almost all the hearts (90%), the labels gradually shifted counter-clockwise over

time, and at the end of the experiment (Stage 36HH), they were distributed in the ventricular

Fig 3. Prospective fate of the myocardium of the ventral, dorsal and left conal walls. (A) Embryonic heart at stage

22HH showing a black label inserted in the myocardium at the medial zone of the ventral conal wall (green

arrowhead). (A’) Embryonic heart at stage 36HH with small dark granules (green arrowheads) distributed in the

myocardium of the sub-valvular region of the pulmonary artery. (B) Embryonic heart at stage 22HH with a black label

inserted in the myocardium of the dorsal conal wall (yellow arrowhead). (B’) Embryonic heart at stage 36HH showing

small dark spots (yellow arrowheads) distributed in the myocardium along the middle third of the free wall of the right

ventricle. (C) Embryonic heart at stage 22HH with a black label inserted in the myocardium of the medial zone of the

left conal wall. (C’) Embryonic heart at stage 36HH. Visualization of some small dark spots (blue arrowheads)

distributed in the myocardium between the acute border of the heart and the pulmonary infundibulum. The dotted

white line indicates the limit of the right ventricular-free wall. Abbreviations: AIVG = anterior interventricular groove;

Ao = aorta; As = atrial segment; C = conus; IVS = interventricular septum; LA = left atrium; LV = left ventricle;

PA = pulmonary artery, RA = right atrium; RV = right ventricle; T = truncus, Vs = ventricular segment.

https://doi.org/10.1371/journal.pone.0209930.g003

The conus does not participate in aortic vestibule development
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myocardium from the acute border of the heart to the middle portion of the pulmonary infun-

dibulum (Fig 3C’). In some hearts (9%), the labels shifted clockwise and were distributed in a

small portion corresponding to the left wall of the outflow tract of the right ventricle. Only 1%

of the hearts showed an initial label in the myocardium of the left conal wall, in which the label

was fragmented into two pieces. Each piece of the label was shifted in the opposite direction,

and in the mature heart, one label appeared in the myocardium between the acute border of

the heart and the pulmonary infundibulum. The other piece of label was found in the left wall

of the right ventricular outflow tract. It is important to mention that labels inserted in the left,

ventral and dorsal conal walls at the level of the conus-truncus border, in the mature heart

were also distributed in the RV myocardium but in a more superior position than those

inserted in the medial zone of the conus.

Morphometric analysis

In agreement with the results of the selective labelling experiments, the conus length registered

during cardiac septation showed a differential growth of the conus during its transformation

into mature structures. We observed that the conus length at stage 22HH was 0.51 mm

(sd ± 0.049), at stage 30HH 0.78 mm (sd ± 0.150) and at stage 36HH, it had increased to 1.930

mm (sd ± 0.170). Between stages 22 to 36HH, the increase in conus length was statistically sig-

nificant (Fig 4).

Fig 4. Increase in conus length during cardiac septation. Increase in conus length during cardiac septation was

statistically significant between stages 22–36HH. Data are expressed as means (standard deviation) using �p� 0.01 for

comparisons.

https://doi.org/10.1371/journal.pone.0209930.g004
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Conus remodelling during cardiac septation

To investigate how the conal myocardium remodels and moves from its originally right posi-

tion to a ventral position in the mature heart, topologic and histological changes in the conus

and AV canal during heart septation were registered. The results obtained in the captured

images from GI hearts showed that angle from the middle line of the embryo and the sagittal

line drawn up throughout the developing conus gradually increased. At stage 22HH, it had an

opening of 120˚, and it increased to 140˚ at stage 24HH, 160˚ at stage 26HH and 180˚ at stage

28HH (Fig 4C). Scanning electron microscopic images of embryonic hearts in the frontal view

showed that the conus was completely integrated into the right ventricle at stage 28HH, occu-

pying a ventral position from below the valvular floors of the developing pulmonary artery and

aorta (compare A with B in Fig 5).

Serial histological sections of the embryonic hearts in the transverse plane showed that at

stage 22HH, the lumen of the conus and the AV canal were in a contralateral position (Fig

6A). At this stage, the conus had a tubular structure formed by a thin layer of continuous myo-

cardium (corroborated by the immunolocalization of skeletal muscle myosin) and was inter-

nally lined by endocardium (Fig 6A and 6A’). Inside the conus, we observed a homogeneous

distribution of mesenchymal tissue formed by an abundant extracellular matrix with some

fibroblast-type cells but without an apparent bulge arrangement (Fig 6A). At stage 24HH, the

conus had moved from a right position to a slightly left and ventral position while the AV

Fig 5. Conus gradual medial displacement during cardiac septation. Frontal views of the embryonic heart. (A) Stage

22HH visualization of the right extra cardiac initial position of the conus. (B) Stage 28HH visualization of the conus

completely integrated into the right ventricle, occupying a ventral inferior position. (C) Graphic. Data are expressed as

means (standard deviation) using �p� 0.01 for comparisons. Abbreviations: Ao = developing aorta; As = atrial

segment; C = conus; LA = left atrium; LV = left ventricle; PA = developing pulmonary artery, RA = right atrium;

RV = right ventricle; T = truncus, Vs = ventricular segment.

https://doi.org/10.1371/journal.pone.0209930.g005
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canal had moved from a left to a right position (Fig 6B). In addition, in a histological section

closer to the ventricular segment, a small notch was observed in the myocardium of the left-

dorsal wall of the conus that marked the beginning of the loss of continuity of the myocardium

of that conal wall (Fig 6D). Mesenchymal tissue of the conus was still observed as a continuous

layer, without signs of any incipient conal crest. The cushions of the AV canal and the mesen-

chymal tissue of the conus were more voluminous, with a larger cell population than at stage

22HH (Fig 6B and 6B’). At stage 26HH, the conus had been displaced to the left, and the AV

canal was moved to the right (compare A, A’ with C, C’ in Fig 6). The myocardium of the ven-

tral conal wall had thickened, but a small portion of myocardium at the left-dorsal wall had

thinned, and in the zone adjacent to the cushions of the AV canal, the conal myocardium was

losing continuity. Analysis of subsequent histological sections showed an increase in the conal

myocardium opening in the cephalo-caudal direction (compare C with C’ in Fig 6). Addition-

ally, the mesenchymal tissue of the conus began to show signs of separation in two incipient

conal crests. At this stage (26HH), the ventro-superior and dorso-inferior cushion of the AV

Fig 6. Conal myocardium and mesenchymal remodelling. Adjacent cephalo-caudal sections of the embryonic heart

from stages 22HH to 26HH. (A) Stage 22HH. The lumen of the conus and the AV canal are side by side. (A’)

Immunolocalization of the skeletal muscle myosin (green). Observe the tubular structure of the conal myocardium, the

homogeneously distributed mesenchymal tissue (Mes), and the endocardium (red nucleus). (B, B’) Stage 24HH. The

conus is in a slightly left and ventral position with respect to the AV canal. (B’). A small myocardial notch (�) is

observed at the left-dorsal conal wall. (C, C’). Stage 26HH. Observe the loss of continuity at the thinned left-dorsal

myocardial conal wall (�) and the incipient endocardial conal crest (X). Abbreviations: AVC = atrioventricular canal;

Mes = mesenchymal tissue.

https://doi.org/10.1371/journal.pone.0209930.g006
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canal were already fused. The conal crest and the fused AV cushions mesenchyme were in con-

tact at the opening of the myocardial conal wall (Fig 6C and 6C’).

At stage 28HH, the myocardium of the left-dorsal wall of the conus continued losing tubu-

lar continuity, thus showing a wider opening zone in an dorso-ventral direction (compare A

with B in Fig 7). The loss of contact of the myocardium at the conal left-dorsal wall was corrob-

orated by skeletal muscle myosin immunolocation (Fig 7A’ and 7B’). Contact between the

mesenchymal tissue of the conal crest and that of the fused cushions of the AV canal had

increased, without leaving any signs of separation between them. The right and left cushions

of the AV canal were evident (Fig 7A and 7B). At this stage (28 HH), the recently fused AV

cushions had formed a voluminous mesenchymal structure that separated the incipient right

and left AV orifices. At stage 30HH, the myocardium of the conus had been transformed from

a closed tubular structure in the form of a letter "O" to acquire the shape of a letter “U” (Fig

6C). The originally incipient dextrodorsal and sinistroventral conal crests had increased in vol-

ume and were fused at the level of conus-truncus border but not at the level of the AV valves

(Fig 7C). Likewise, the left cushion of AV canal had been remodelled to form a mesenchymal

structure that resembled the mural leaflet of the left AV valve, while the dorso-inferior and

ventro-superior AV cushions in the process of fusion were forming an incipient anteroseptal

leaflet of the left AV valve (Fig 7C). In this heart (stage 30HH), an elongated canal was evident,

the edges of which were represented by the dorsal surface of the conal crest (in the fusion

Fig 7. Pulmonary vestibule and the aortic infundibulum develop from different embryonic components. (A, B).

Adjacent cephalo-caudal histological sections of the embryonic heart at stage 28HH. Observe a wider opening zone at

the originally left-dorsal myocardial conal wall (�). The voluminous mesenchymal structure separating the incipient

right (1) and left (2) atrioventricular orifices corresponding to the ventro-superior and the dorso-inferior cushions of

the AV canal during the fusion process (3). (A’, B’) Skeletal muscle myosin immunolocalization (green) corroborating

the left-dorsal myocardial conal wall loss of continuity (�). (C) Stage 30HH. Visualization of the well-developed

dextrodorsal (4) and sinistroventral (5) crests within the conus (C). The incipient mural leaflet of the left AV valve (6)

is also evident. Note the elongated canal (7) bordered by the dorsal surface of the conal crest (4 and 5) and the right

surface of the incipient anteroseptal leaflet of the left AV valve (8). (D, E). Stage 31 and 32HH. Mature heart showing

the fused conal crests forming the immature supraventricular crest (9). The single conal conduct corresponds to the

pulmonary infundibulum (PI). The aortic vestibule (AoV) behind the developing anteroseptal leaflet of the left AV

valve (8) is well developed. E’. Amplification of the red box in E. Observe traces from the label as some fine charcoal

granules immersed in the myocardium of the pulmonary infundibulum (40X). Abbreviations: RAVV = Right

atrioventricular valve; LAVV = Left atrioventricular valve.

https://doi.org/10.1371/journal.pone.0209930.g007
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process), the right surface of the incipient anteroseptal leaflet of the left AV valve and the inter-

ventricular foramen (Fig 7C). Later, at stage 31HH, the mesenchymal conal crests were fused,

and a single pulmonary conal conduct was formed (Fig 7D). The elongated canal bordered by

the conal crests, the right surface of the anteroseptal leaflet of the left AV valve and the inter-

ventricular septum were transformed in the aortic vestibule (Fig 7D). At stage 32HH, the conal

myocardium had acquired the shape of a myocardial cell sheet (Fig 7E). The already fused

conal crest formed a structure of mixed histological constitution (mesenchymal and myocar-

dial tissues) that separated the right ventricular inlet from the completely myocardial pulmo-

nary infundibulum. Likewise, the aortic vestibule bordered by the fibrous anteroseptal leaflet

of the left AV valve and the myocardial interventricular septum was completely developed

(Fig 7E).

Apoptotic pattern at the embryonic outflow

To investigate whether the conus is affected by apoptosis, as is frequently affirmed, and to

determine whether the loss of continuity of the left-dorsal conal wall depended on this process,

the spatio-temporal pattern of apoptotic cells at the conus during cardiac septation was regis-

tered. In all the stages studied (22-32HH), positive apoptotic cells were observed predomi-

nantly at the conus-truncus border, identified by the previously placed plastic labels; only a

few apoptotic cells were detected at the conus (Fig 8A–8D). Transverse histological sections of

the embryonic heart allowed us to distinguish that the apoptotic cells at stage 24HH corre-

sponded exclusively to the mesenchymal tissue of the endocardial conal crest; no traces of

Fig 8. Apoptotic pattern at the embryonic outflow. (A–E) Representative images of embryonic hearts (stages 24-32HH)

that have been previously labelled at the conus truncus limit and treated with LysoTracker Red. Visualization of positive

apoptotic cells, mainly at the level of the previously labelled conus-truncus border, dotted red line. (A’- E”) Histological

transversal sections of embryonic hearts treated with LysoTracker Red at the conus level. In this case, the apoptotic cells

correspond to the red dots with white arrowheads. (A’) Stage 24HH, apoptotic cells were observed in the conal

mesenchyme. (B’) Stage 26HH, some apoptotic cells were observed in the myocardium of the ventral conal wall. No

apoptotic cells were detected in the myocardium of the thinner left-dorsal conal wall between the conal mesenchyme

(CM) and the atrioventricular cushions (AVC). (C’) Stage 28HH. Observe few apoptotic cells immersed in the

myocardium of the ventral conal wall. (D’- E”) Stages 30 and 32HH. Visualization of apoptotic cells principally in the

epicardium. Abbreviations: LAVV = left atrioventricular oprifice; RAVV = right atrioventricular orifice. 1. Dextrodorsal

conal ridge; 2. sinistroventral conal ridge; 3. fused atrioventricular cushions; 4. septal leaflet of the mitral valve; 5.

pulmonary infundibulum; 6. aortic vestibulum.

https://doi.org/10.1371/journal.pone.0209930.g008
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apoptosis were observed in the conal myocardium (Fig 8A’). In contrast, at stage 26HH, some

apoptotic cells were observed in the myocardium of the ventral conal wall (Fig 8B’). Later, at

stage 28HH, several apoptotic cells were detected dispersed in the myocardium of the origi-

nally definite right conal wall compared to the apoptotic cells at the conus-truncus limit (Fig

8C’). At stage 30HH, apoptotic cells were registered at the myocardium of the originally left

conal wall. Between stages 30-32HH, the apoptotic signal was observed below the valvular aor-

tic and pulmonary floors (Fig 8D and 8E). At these stages, the histological sections showed

fewer apoptotic cells in the conal myocardium, but a large number of positive apoptotic cells

were identified in the epicardium (Fig 8D’, 8E’ and 8E”). Surprisingly, no apoptotic cells were

found in area adjacent to the conal myocardium opening (Fig 8B’).

Discussion

The embryonic components and morphogenetic processes involved not only in the develop-

ment of the intracardiac pulmonary infundibulum and aortic vestibule, but also in the forma-

tion of the extracardiac trunks of the great arteries are controversial. In our opinion, the

discrepancies are caused, in part, because many reports describe results without specifying the

region of the embryonic outflow tract (proximal or conus), intermediate (or truncus) or distal

(aortic sac) are involved. This information is a key point because although initially the truncus

and conus are morphologically and histologically similar, each has a different anatomical man-

ifestation in the postnatal heart (6–17). Additionally, although it is generally stated that the

conus participates in the development of the pulmonary infundibulum and aortic vestibule [6,

7, 23, 24], some researches involve the ventro-superior cushion of the AV canal in the develop-

ment of the aortic vestibule [26, 27]. Therefore, our goal was to investigate, by selective in vivo
labelling, the prospective fate of the myocardium of the right, left, ventral and dorsal conal

walls. The changes in the mesenchymal tissue of the conus and AV cushions and the role of

apoptosis in conus transformation into mature structures were also explored.

Origin and fate of the conal myocardium

Recently, the concept of the FHF represented by the straight heart tube and the second heart

field (SHF) originating later and gradually converging into the straight heart tube during the

torsion and looping process has been emerging [3–5]. This new finding has led to controversy

about the prospective fate of the straight heart tube. On the one hand, it was accepted that the

precursor cells of the RV in the chicken embryo are already present in the straight heart tube

[36]. Furthermore, it has been pointed out that the conus appears in the “C” shaped looped

heart and completes development in the advanced looped heart (stage 22HH) to form both

ventricular outflow tracts [24]. In this case, it is inferred that the RV would derive from the

FHF, while the conus would develop from the SHF. Findings in the mouse embryo are discor-

dant with these statements. Through genetic tracking, it has been demonstrated that the FHF

gives rise to the myocardium of the LV and the atria [5]. Likewise, the SHF has been identified

as the cellular source from which the conus and truncus develop in both chicken and mouse

embryos [3, 4, 30, 31, 32, 37]. Our in vivo labelling in the chick embryo heart of the conal walls

(stage 22HH to 36HH) show that the conal myocardium is gradually distributed into different

regions of the RV free wall, from the apex to the cardiac base, below the arterial valves (Figs 2,

3 and 8B). Our morphometric and topological studies that show a length increase in the conus

and its gradual movement from its original right position to a definitive ventral position (Fig

5C) agree with our in vivo labelling results. These findings, confirm that in the chick embryo

the conus completes development at stage 22HH [24], and indicate that the RV myocardium

both in birds and in mammals, is not formed by cell populations present at the straight heart
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tube as indicated in pioneering in vivo labelling studies in the chick embryo heart [36], really

the RV myocardium is developed from the region of the SHF that represents only the conus at

stage 22HH.

Conal remodelling during cardiac septation

It is universally accepted that ventricular outflow tracts develop via the fusion of two mesenchy-

mal crests in the lumen centre of the conus to originate two conduits: the anterior or pulmonary

and the posterior or aortic conuses [6, 7, 23, 24, 38–40]. In contrast, in absolute discrepancy

with this idea, we found that the conal myocardium participated in formation of the RV free

wall, including its outflow. This proposal questions the existence of the posterior conus. Thus,

to understand how the conal myocardium changed to be distributed along the RV ventral wall

and the fate of the supposed posterior conus, serial histological sections of the embryonic heart

in the transverse plane were analysed (stages 22-34HH). We confirmed our in vivo labeling and

morphometric findings (Figs 5–7). However, when analysing the conal and AV canal mesen-

chymal tissue changes, we observed important events that had not yet been reported in the

development of the conus. First, although it is common to describe the presence of two mesen-

chymal endocardial crests inside the conus from stage 22HH, we actually observed a gradual

development of the conal mesenchyme. It was initially scarce and homogeneously distributed

between the myocardium and endocardium (22HH). Later, at stage 24HH, the conal mesen-

chyme maintained a homogenous distribution but increased in volume. Between stages 26-

28HH the conal ridges had developed in the dorsal zone of the conal lumen. These results sup-

port the idea that the mesenchymal tissue that internally covers the conus at earlier stages has a

valvular function to prevent blood return to the ventricular segment, but it does not participate

in conus septation [41– 43]. Additionally, we found that at stage 22HH the conus had a tubular

structure, which was externally covered by a thin layer of continuous myocardium and inter-

nally lined by endocardium with a thin extracellular matrix (Fig 6A and 6A’). In no histological

section did we observe the presence of two well formed conal crests between stages 22-24HH.

Between stages 23-28HH, the myocardium of the left dorsal conal wall lost continuity. The free

borders of the conal myocardium gradually separated from each other until they formed a myo-

cardial cell sheet (compare Fig 6B’ and 6C’ with Fig 7, Fig 9A). The absence of apoptosis in the

opening region of the myocardium of the left dorsal conal wall indicated that the loss of conti-

nuity of that conal wall occurred independently of programmed cell death. Additionally, the

Fig 9. Fate map of the conal walls based on the labelling experiments. (A) Micrograph obtained using a scanning electron microscope of a 26HH

chicken embryo heart dissection. The results show the partial displacement of the conus on the way to its final ventral position and the discontinuity

of the dorsal-left wall conal myocardium (�). (B) Frontal view of the chicken embryo heart at stage 36HH, depicting the myocardial conal wall

distribution exclusively throughout the right ventricle (RV). The white dotted line marks the edge of the free wall of the right ventricle. (C). Chicken

postnatal heart dissection showing differential fate of each of the conal walls in the right ventricle below the arterial and atrioventricular valves. The

black dotted line denotes the fibrous skeleton where the pulmonary valvular ring (PA) is excluded.

https://doi.org/10.1371/journal.pone.0209930.g009
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progressive opening of the left-dorsal conal wall observed in the histological sections agreed

with our in vivo labelling of the same conal wall (Figs 2 and 3). Taken together, these findings

provide unequivocal evidence that the conus is the embryonic precursor of the RV, including

the pulmonary infundibulum (Fig 9B). Likewise, although Rana et al [25] reported that the RV

free wall forms from the “outflow myocardium”, we based on our in vivo labelling results; con-

clude that only the conus but not the truncus participates in this process.

Apoptosis and conus development

Massive myocardial apoptosis is a morphogenetic process that is proposed to explain the longi-

tudinal reduction of the embryonic outflow [28, 29, 44]. However, due to the impossibility of

distinguishing the conal and truncal myocardium by viral transfection, Watanabe and col-

leagues concluded that both embryonic structures disappear almost completely, causing a lon-

gitudinal shortening of the embryonic outflow tract [28, 29]. In contrast, by selective labelling,

we distinguished the conus from the truncus myocardium and found a spatiotemporal apopto-

tic pattern concordant with that described by Cheng in 2002 [45]. As Cheng we found that

during development, the truncus was mostly affected by apoptosis and that apoptotic focus

began to appear by stage 26HH in small clusters at the myocardial conus-truncus border. (Fig

8A–8E). We also observed that apoptosis in the conal domain shifted sequentially, starting in

the conal mesenchyme (Fig 8A’), later occurring in the lateral myocardium of the developing

conus (Fig 8B’–8D’), and finally being detected in the epicardium (Fig 8E”). These results sug-

gest that apoptosis does not participate in conal resorption but contributes to the fine remodel-

ling that allows conal transformation in a large part of the RV free wall. We can also suppose

that in the truncus apoptosis is linked to the arterial valves remodeling.

Conus septation

Septation of the conus occurs in the chicken embryo between stages 26-32HH. In this context, it

is universally known that during this process, the conal crests fuse in the centre of the conal

lumen to form the aortic and pulmonary conuses [6, 7, 23, 24, 38–40]. However, when analysing

the development of the conal mesenchyme, we simultaneously found that the myocardium of

the left dorsal conal wall was opening between stages 26-28HH, and two well developed conal

crests had developed in the dorsal zone of the conus lumen (Figs 6C and 6C’, 7A and 7C). Later,

between stages 30-32HH, the conal crests increased in volume and cellularity, approaching each

other (30HH) to finally fuse (31HH) on the dorsal surface, but not at the centre of the conal

lumen, as has been consistently clammed (Fig 7C). Interestingly, between stages 31 to 32HH,

we observed that when the conal crests were fused, two ducts were not formed, but rather the

fused crests formed a mesenchymal structure that separated the incipient inflow and outflow

tracts of the RV (Fig 7D and 7E). These results, in addition to refuting the existence of the poste-

rior conus, agree with previous findings obtained by in vivo labelling of the chick embryo heart

showing that the supraventricular crest develops from the fused conal crests [46]. The initially

mesenchymal supraventricular crest is gradually transformed into a myocardial structure by

“myocardialization”. At present, there is no consensus regarding the characterization of this

process. It is possible that the mesenchyme could serve as a scaffold for cardiomyocyte migra-

tion from the ventricular walls, the AV canal and / or the interventricular septum. Alternatively,

mesenchymal cells could be transformed in myocardiocytes.

Importance of AV cushions in the development of the aortic vestibule

In addition to separating the primitive inlet in two conducts, the AV cushions participate in

AV valve development. In the eighties, a group of researchers in vivo labelled the ventral
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(superior) cushion of the AV canal in the chick embryo heart (stage 22HH). In the mature

heart, the labels were found, surprisingly, in both components of the aortic infundibulum, i.e.,

the free region of the anteroseptal leaflet of the left AV valve and the muscular region of the

interventricular septum separating the aortic vestibule and the pulmonary infundibulum [26,

27]. These researchers could not explain the role of the posterior conus, the supposed precur-

sor of the aortic vestibule. However, using transverse histological sections, we could observe

the conal crest formation and a volume increase as well as more cellularity in the AV cushions

at stage 26HH, which led to the fusion of both AV cushions (Fig 6C and 6C’). Almost immedi-

ately, the cushion mesenchyme was remodelled, thinned and flattened, thus acquiring the

shape of a thick arch (Fig 7A and 7C). Later, at stage 30HH, the voluminous conal crests were

almost in contact. In this heart, the concave edge of the mesenchymal arch resulting from the

fusion of the ventral (superior) and dorsal (inferior) AV cushions had acquired the shape of an

incipient septal leaflet of the left AV valve (Fig 7C). The right surface of the incipient septal

leaflet of the left AV valve represented the edge of the aortic vestibule, which in this stage was

observed as a long narrow canal that was continuous with the pulmonary infundibulum

because the conal ridges had not yet fused (Fig 7C). Later, at stage 31-32HH, the already fused

conal crests had the location and appearance of the partially muscularized supraventricular

crest. The septal leaflet of the left AV valve was thinner, maintained a fibrous structure and

delimited the individualized LV outflow (Fig 7D and 7E). These results further confirmed that

when fused, the conal crests formed the myocardial supraventricular crest [46], leading to the

conclusion that the ventricular outflow tracts originated from different embryonic compo-

nents. The distal part of the conus with the fused conal crest participates in the development of

the completely myocardial pulmonary infundibulum, while the predominantly mesenchymal

aortic vestibule is formed from the ventro-superior cushion of the AV canal, as previously evi-

denced by in vivo labelling [26, 27]. Additionally, based on our results for the differential devel-

opment of the conal and AV cushions mesenchyme, and new evidence of a differential

endocardium to mesenchyme transformation molecular regulation pathway [47], we suggest

the use of the classic conal crest and AV cushions nomenclature.

Our findings refuting the existence of the posterior conus and showing evidence of a dis-

tinct embryonic origin for both outflow tracts are in agreement with the anatomic description

of the cardiac fibrous skeleton (Fig 9C) that includes the mitral, tricuspid and aortic valves

with the mitral-aortic fibrous continuity but excludes the pulmonary valve [48]. Additionally,

these same results allow us to speculate that persistence of the conus as a tubular structure

would lead to the development of a univentricular heart, defined by Anderson as a heart with

absence of the posterior interventricular septum [49].

The new information obtained in the present investigation, provides a frame of reference

for the molecular approaches of the origin of the pulmonary infundibulum and the aortic ves-

tibule. Additionally, it provides solid embryological bases for the improved diagnosis and sur-

gical treatment of the congenital defects that affect these anatomical structures of the heart.
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Writing – review & editing: Concepción Sánchez-Gómez.
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17. Sánchez Gómez C, Pliego Pliego L, Contreras Ramos A, Munguı́a Rosas MA, Salazar Garcı́a M, Gar-

cı́a Romero HL, et al. Anat Rec. 2005; 83(1): 202–211.
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